0
Research Papers

Influence of the Level of Muscular Redundancy on the Validity of a Musculoskeletal Model

[+] Author and Article Information
Florent Moissenet

CNRFR—Rehazenter,
Laboratoire d'Analyse du Mouvement
et de la Posture,
1 rue André Vésale,
L-2674, Luxembourg
e-mail: florent.moissenet@mailoo.org

Laurence Chèze

Université de Lyon,
Lyon F-69622, France;
Université Claude Bernard Lyon 1,
Villeurbanne, France;
IFSTTAR, UMR_T9406,
Laboratoire de Biomécanique
et Mécanique des Chocs,
Bron F-69675, France
e-mail: laurence.cheze@univ-lyon1.fr

Raphaël Dumas

Université de Lyon,
Lyon F-69622, France;
Université Claude Bernard Lyon 1,
Villeurbanne, France;
IFSTTAR, UMR_T9406,
Laboratoire de Biomécanique
et Mécanique des Chocs,
Bron F-69675, France
e-mail: raphael.dumas@ifsttar.fr

1Corresponding author.

Manuscript received October 14, 2015; final manuscript received November 26, 2015; published online January 27, 2016. Editor: Beth A. Winkelstein.

J Biomech Eng 138(2), 021019 (Jan 27, 2016) (6 pages) Paper No: BIO-15-1513; doi: 10.1115/1.4032127 History: Received October 14, 2015; Revised November 26, 2015

While recent literature has clearly demonstrated that an extensive personalization of the musculoskeletal models was necessary to reach high accuracy, several components of the generic models may be further investigated before defining subject-specific parameters. Among others, the choice in muscular geometry and thus the level of muscular redundancy in the model may have a noticeable influence on the predicted musculotendon and joint contact forces. In this context, the aim of this study was to investigate if the level of muscular redundancy can contribute or not to reduce inaccuracies in tibiofemoral contact forces predictions. For that, the dataset disseminated through the Sixth Grand Challenge Competition to Predict In Vivo Knee Loads was applied to a versatile 3D lower limb musculoskeletal model in which two muscular geometries (i.e., two different levels of muscular redundancy) were implemented. This dataset provides tibiofemoral implant measurements for both medial and lateral compartments and thus allows evaluation of the validity of the model predictions. The results suggest that an increase of the level of muscular redundancy corresponds to a better accuracy of total tibiofemoral contact force whatever the gait pattern investigated. However, the medial and lateral contact forces ratio and accuracy were not necessarily improved when increasing the level of muscular redundancy and may thus be attributed to other parameters such as the location of contact points. To conclude, the muscular geometry, among other components of the generic model, has a noticeable impact on joint contact forces predictions and may thus be correctly chosen even before trying to personalize the model.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chèze, L. , Moissenet, F. , and Dumas, R. , “ State of the Art and Current Limits of Musculo-Skeletal Models for Clinical Applications,” Mov. Sport Sci.—Sci. Mot. (in press).
Erdemir, A. , McLean, S. , Herzog, W. , and van den Bogert, A. J. , 2007, “ Model-Based Estimation of Muscle Forces Exerted During Movements,” Clin. Biomech. (Bristol, Avon), 22(2), pp. 131–154. [CrossRef] [PubMed]
Pandy, M. G. , and Andriacchi, T. P. , 2010, “ Muscle and Joint Function in Human Locomotion,” Annu. Rev. Biomed. Eng., 12(1), pp. 401–433. [CrossRef] [PubMed]
Gerus, P. , Sartori, M. , Besier, T. F. , Fregly, B. J. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , D'Lima, D. D. , and Lloyd, D. G. , 2013, “ Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces,” J. Biomech., 46(16), pp. 2778–2786. [CrossRef] [PubMed]
Lenaerts, G. , De Groote, F. , Demeulenaere, B. , Mulier, M. , Van der Perre, G. , Spaepen, A. , and Jonkers, I. , 2008, “ Subject-Specific Hip Geometry Affects Predicted Hip Joint Contact Forces During Gait,” J. Biomech., 41(6), pp. 1243–1252. [CrossRef] [PubMed]
Lerner, Z. F. , DeMers, M. S. , Delp, S. L. , and Browning, R. C. , 2015, “ How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces,” J. Biomech., 48(4), pp. 644–650. [CrossRef] [PubMed]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. F. J. M. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
Dumas, R. , Moissenet, F. , Gasparutto, X. , and Chèze, L. , 2012, “ Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait,” Proc. Inst. Mech. Eng. H., 226(2), pp. 146–160. [CrossRef] [PubMed]
Modenese, L. , Phillips, A. T. M. , and Bull, A. M. J. , 2011, “ An Open Source Lower Limb Model: Hip Joint Validation,” J. Biomech., 44(12), pp. 2185–2193. [CrossRef] [PubMed]
Cleather, D. J. , and Bull, A. M. J. , 2011, “ An Optimization-Based Simultaneous Approach to the Determination of Muscular, Ligamentous, and Joint Contact Forces Provides Insight Into Musculoligamentous Interaction,” Ann. Biomed. Eng., 39(7), pp. 1925–1934. [CrossRef] [PubMed]
Hu, C.-C. , Lu, T.-W. , and Chen, S.-C. , 2013, “ Influence of Model Complexity and Problem Formulation on the Forces in the Knee Calculated Using Optimization Methods,” Biomed. Eng. Online, 12(1), p. 20.
Lin, Y.-C. , Walter, J. P. , Banks, S. A. , Pandy, M. G. , and Fregly, B. J. , 2010, “ Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait,” J. Biomech., 43(5), pp. 945–952. [CrossRef] [PubMed]
Moissenet, F. , Chèze, L. , and Dumas, R. , 2014, “ A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait,” J. Biomech., 47(1), pp. 50–58. [CrossRef] [PubMed]
Valente, G. , Martelli, S. , Taddei, F. , Farinella, G. , and Viceconti, M. , 2012, “ Muscle Discretization Affects the Loading Transferred to Bones in Lower-Limb Musculoskeletal Models,” Proc. Inst. Mech. Eng. H., 226(2), pp. 161–169. [CrossRef] [PubMed]
Xiao, M. , and Higginson, J. , 2010, “ Sensitivity of Estimated Muscle Force in Forward Simulation of Normal Walking,” J. Appl. Biomech., 26(2), pp. 142–149. [PubMed]
Cleather, D. I. , and Bull, A. M. J. , 2010, “ Lower-Extremity Musculoskeletal Geometry Affects the Calculation of Patellofemoral Forces in Vertical Jumping and Weightlifting,” Proc. Inst. Mech. Eng. H., 224(9), pp. 1073–1083. [CrossRef] [PubMed]
Delp, S. L. , Loan, J. P. , Hoy, M. G. , Zajac, F. E. , Topp, E. L. , and Rosen, J. M. , 1990, “ An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures,” IEEE Trans. Biomed. Eng., 37(8), pp. 757–767. [CrossRef] [PubMed]
Klein Horsman, M. D. , Koopman, H. F. J. M. , van der Helm, F. C. T. , Prosé, L. P. , and Veeger, H. E. J. , 2007, “ Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity,” Clin. Biomech. (Bristol, Avon), 22(2), pp. 239–247. [CrossRef] [PubMed]
Fregly, B. J. , Besier, T. F. , Lloyd, D. G. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , and D'Lima, D. D. , 2012, “ Grand Challenge Competition to Predict In Vivo Knee Loads.,” J. Orthop. Res., 30(4), pp. 503–513. [CrossRef] [PubMed]
Sancisi, N. , and Parenti-Castelli, V. , 2011, “ On the Role of Ligaments in the Guidance of the Human Knee Passive Motion,” Euromech Colloquium 511, Ponta Delgada, Mar. 9–11, pp. 1–9.
Arnold, E. M. , Ward, S. R. , Lieber, R. L. , and Delp, S. L. , 2010, “ A Model of the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng., 38(2), pp. 269–279. [CrossRef] [PubMed]
Moissenet, F. , Chèze, L. , and Dumas, R. , 2012, “ Anatomical Kinematic Constraints: Consequences on Musculo-Tendon Forces and Joint Reactions,” Multibody Syst. Dyn., 28(1–2), pp. 125–141. [CrossRef]
Sancisi, N. , and Parenti-Castelli, V. , 2011, “ A New Kinematic Model of the Passive Motion of the Knee Inclusive of the Patella,” J. Mech. Rob., 3(4), p. 041003. [CrossRef]
Duprey, S. , Cheze, L. , and Dumas, R. , 2010, “ Influence of Joint Constraints on Lower Limb Kinematics Estimation From Skin Markers Using Global Optimization,” J. Biomech., 43(14), pp. 2858–2862. [CrossRef] [PubMed]
D'Lima, D. D. , Steklov, N. , Fregly, B. J. , Banks, S. A. , and Colwell, C. W. , 2008, “ In Vivo Contact Stresses During Activities of Daily Living After Knee Arthroplasty,” J. Orthop. Res., 26(12), pp. 1549–1555. [CrossRef] [PubMed]
Moissenet, F. , Giroux, M. , Chèze, L. , and Dumas, R. , 2015, “ Validity of a Musculoskeletal Model Using Two Different Geometries for Estimating Hip Contact Forces During Normal Walking,” Comput. Methods Biomech. Biomed. Engin., 18(Suppl 1), pp. 2000–2001. [CrossRef] [PubMed]
Herzog, W. , Longino, D. , and Clark, A. , 2003, “ The Role of Muscles in Joint Adaptation and Degeneration,” Langenbecks. Arch. Surg., 388(5), pp. 305–315. [CrossRef] [PubMed]
Moissenet, F. , Chèze, L. , and Dumas, R. , “ Contribution of Individual Musculo-Tendon Forces to the Axial Compression Force of the Femur During Normal Gait,” Mov. Sport Sci.—Sci. Mot. (accepted).
Sritharan, P. , Lin, Y.-C. , and Pandy, M. G. , 2012, “ Muscles That Do Not Cross the Knee Contribute to the Knee Adduction Moment and Tibiofemoral Compartment Loading During Gait,” J. Orthop. Res., 30(10), pp. 1586–1595. [CrossRef] [PubMed]
Winby, C. R. , Lloyd, D. G. , Besier, T. F. , and Kirk, T. B. , 2009, “ Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait,” J. Biomech., 42(14), pp. 2294–2300. [CrossRef] [PubMed]
Raikova, R. T. , and Prilutsky, B. I. , 2001, “ Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-Based Human Leg Model Revealed by Analytical and Numerical Analyses,” J. Biomech., 34(10), pp. 1243–1255. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Medial, lateral, and total tibiofemoral contact force predictions compared to implant measurements [19] for both Delp et al. [17] and Klein Horsman et al. [18] muscular geometries during normal gait pattern

Grahic Jump Location
Fig. 2

Medial, lateral, and total tibiofemoral contact forces predictions compared to implant measurements [19] for both Delp et al. [17] and Klein Horsman et al. [18] muscular geometries during bouncy gait pattern

Grahic Jump Location
Fig. 3

Medial, lateral, and total tibiofemoral contact force predictions compared to implant measurements [19] for both Delp et al. [17] and Klein Horsman et al. [18] muscular geometries during smooth gait pattern

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In