0
Research Papers

In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model

[+] Author and Article Information
Ziyun Ding

Department of Bioengineering,
Imperial College London,
London SW7 2AZ, UK
e-mail: z.ding@imperial.ac.uk

Daniel Nolte

Department of Bioengineering,
Imperial College London,
London SW7 2AZ, UK
e-mail: d.nolte@imperial.ac.uk

Chui Kit Tsang

Department of Bioengineering,
Imperial College London,
London SW7 2AZ, UK
e-mail: chui.k.tsang@gmail.com

Daniel J. Cleather

School of Sport,
Health and Applied Science,
St Mary's University,
Waldegrave Road,
Twickenham TW1 4SX, UK
e-mail: daniel.cleather@stmarys.ac.uk

Angela E. Kedgley

Department of Bioengineering,
Imperial College London,
London SW7 2AZ, UK
e-mail: akedgley@imperial.ac.uk

Anthony M. J. Bull

Department of Bioengineering,
Imperial College London,
London SW7 2AZ, UK
e-mail: a.bull@imperial.ac.uk

1Corresponding author.

Manuscript received October 15, 2015; final manuscript received December 23, 2015; published online January 27, 2016. Editor: Beth A. Winkelstein.

J Biomech Eng 138(2), 021018 (Jan 27, 2016) (9 pages) Paper No: BIO-15-1518; doi: 10.1115/1.4032412 History: Received October 15, 2015; Revised December 23, 2015

Segment-based musculoskeletal models allow the prediction of muscle, ligament, and joint forces without making assumptions regarding joint degrees-of-freedom (DOF). The dataset published for the “Grand Challenge Competition to Predict in vivo Knee Loads” provides directly measured tibiofemoral contact forces for activities of daily living (ADL). For the Sixth Grand Challenge Competition to Predict in vivo Knee Loads, blinded results for “smooth” and “bouncy” gait trials were predicted using a customized patient-specific musculoskeletal model. For an unblinded comparison, the following modifications were made to improve the predictions: further customizations, including modifications to the knee center of rotation; reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artifact. For validation, the improved model was applied to normal gait, squat, and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48–0.65 times body weight (BW) for normal gait trials. Comparisons between measured and predicted tibiofemoral contact forces yielded an average coefficient of determination of 0.81 and RMSEs of 0.46–1.01 times BW for squatting and 0.70–0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Crowninshield, R. D. , and Brand, R. A. , 1981, “ A Physiologically Based Criterion of Muscle Force Prediction in Locomotion,” J. Biomech., 14(11), pp. 793–801. [CrossRef] [PubMed]
Bull, A. M. , Reilly, P. , Wallace, A. L. , Amis, A. A. , and Emery, R. J. , 2005, “ A Novel Technique to Measure Active Tendon Forces: Application to the Subscapularis Tendon,” Knee Surg. Sports Traumatol. Arthroscopy, 13(2), pp. 145–150. [CrossRef]
Bergmann, G. , Graichen, F. , and Rohlmann, A. , 1993, “ Hip Joint Loading During Walking and Running, Measured in Two Patients,” J. Biomech., 26(8), pp. 969–990. [CrossRef] [PubMed]
Knarr, B. A. , and Higginson, J. S. , 2015, “ Practical Approach to Subject-Specific Estimation of Knee Joint Contact Force,” J. Biomech., 48(11), pp. 2897–2902. [CrossRef] [PubMed]
Kinney, A. L. , Besier, T. F. , Silder, A. , Delp, S. L. , D'Lima, D. D. , and Fregly, B. J. , 2013, “ Changes in In Vivo Knee Contact Forces Through Gait Modification,” J. Orthop. Res., 31(3), pp. 434–440. [CrossRef] [PubMed]
Modenese, L. , Phillips, A. T. , and Bull, A. M. , 2011, “ An Open Source Lower Limb Model: Hip Joint Validation,” J. Biomech., 44(12), pp. 2185–2193. [CrossRef] [PubMed]
Guess, T. M. , Stylianou, A. P. , and Kia, M. , 2014, “ Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait,” ASME J. Biomech. Eng., 136(2), p. 021032. [CrossRef]
Nikooyan, A. A. , Veeger, H. E. , Westerhoff, P. , Graichen, F. , Bergmann, G. , and van der Helm, F. C. , 2010, “ Validation of the Delft Shoulder and Elbow Model Using In-Vivo Glenohumeral Joint Contact Forces,” J. Biomech., 43(15), pp. 3007–3014. [CrossRef] [PubMed]
Mizu-Uchi, H. , Colwell, C. W., Jr. , Flores-Hernandez, C. , Fregly, B. J. , Matsuda, S. , and D'Lima, D. D. , 2015, “ Patient-Specific Computer Model of Dynamic Squatting After Total Knee Arthroplasty,” J. Arthroplasty, 30(5), pp. 870–874. [CrossRef] [PubMed]
Stylianou, A. P. , Guess, T. M. , and Kia, M. , 2013, “ Multibody Muscle Driven Model of an Instrumented Prosthetic Knee During Squat and Toe Rise Motions,” ASME J. Biomech. Eng., 135(4), p. 041008. [CrossRef]
Fregly, B. J. , Besier, T. F. , Lloyd, D. G. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , and D'Lima, D. D. , 2012, “ Grand Challenge Competition to Predict In Vivo Knee Loads,” J. Orthop. Res., 30(4), pp. 503–513. [CrossRef] [PubMed]
Arnold, E. M. , Ward, S. R. , Lieber, R. L. , and Delp, S. L. , 2010, “ A Model of the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng., 38(2), pp. 269–279. [CrossRef] [PubMed]
Donnelly, C. J. , Lloyd, D. G. , Elliott, B. C. , and Reinbolt, J. A. , 2012, “ Optimizing Whole-Body Kinematics to Minimize Valgus Knee Loading During Sidestepping: Implications for ACL Injury Risk,” J. Biomech., 45(8), pp. 1491–1497. [CrossRef] [PubMed]
Gerus, P. , Sartori, M. , Besier, T. F. , Fregly, B. J. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , D'Lima, D. D. , and Lloyd, D. G. , 2013, “ Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces,” J. Biomech., 46(16), pp. 2778–2786. [CrossRef] [PubMed]
Uvehammer, J. , Karrholm, J. , and Brandsson, S. , 2000, “ In Vivo Kinematics of Total Knee Arthroplasty. Concave Versus Posterior-Stabilised Tibial Joint Surface,” J. Bone Jt. Surg. Br., 82-B(4), pp. 499–505. [CrossRef]
Cleather, D. J. , and Bull, A. M. J. , 2015, “ The Development of a Segment-Based Musculoskeletal Model of the Lower Limb: Introducing FreeBody,” R. Soc. Open Sci., 2(6), p. 140449. [CrossRef] [PubMed]
Dumas, R. , Aissaoui, R. , and de Guise, J. A. , 2004, “ A 3D Generic Inverse Dynamic Method Using Wrench Notation and Quaternion Algebra,” Comput. Methods Biomech. Biomed. Eng., 7(3), pp. 159–166. [CrossRef]
Cleather, D. J. , and Bull, A. M. , 2011, “ An Optimization-Based Simultaneous Approach to the Determination of Muscular, Ligamentous, and Joint Contact Forces Provides Insight Into Musculoligamentous Interaction,” Ann. Biomed. Eng., 39(7), pp. 1925–1934. [CrossRef] [PubMed]
Cleather, D. J. , Goodwin, J. E. , and Bull, A. M. , 2011, “ An Optimization Approach to Inverse Dynamics Provides Insight as to the Function of the Biarticular Muscles During Vertical Jumping,” Ann. Biomed. Eng., 39(1), pp. 147–160. [CrossRef] [PubMed]
Kirking, B. , Krevolin, J. , Townsend, C. , Colwell, C. W., Jr. , and D'Lima, D. D. , 2006, “ A Multiaxial Force-Sensing Implantable Tibial Prosthesis,” J. Biomech., 39(9), pp. 1744–1751. [CrossRef] [PubMed]
Kinney, A. L. , Besier, T. F. , D'Lima, D. D. , and Fregly, B. J. , 2013, “ Update on Grand Challenge Competition to Predict In Vivo Knee Loads,” ASME J. Biomech. Eng., 135(2), p. 021012. [CrossRef]
Anderson, F. C. , and Pandy, M. G. , 2001, “ Dynamic Optimization of Human Walking,” ASME J. Biomech. Eng., 123(5), pp. 381–390. [CrossRef]
Damsgaard, M. , Rasmussen, J. , Christensen, S. T. , Surma, E. , and de Zee, M. , 2006, “ Analysis of Musculoskeletal Systems in the AnyBody Modeling System,” Simul. Model. Pract. Theory., 14(8), pp. 1100–1111. [CrossRef]
Delp, S. L. , Anderson, F. C. , Arnold, A. S. , Loan, P. , Habib, A. , John, C. T. , Guendelman, E. , and Thelen, D. G. , 2007, “ OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef] [PubMed]
Cleather, D. J. , and Bull, A. M. , 2010, “ Influence of Inverse Dynamics Methods on the Calculation of Inter-Segmental Moments in Vertical Jumping and Weightlifting,” Biomed. Eng. Online, 9, p. 74.
Dumas, R. , Moissenet, F. , Gasparutto, X. , and Cheze, L. , 2012, “ Influence of Joint Models on Lower-Limb Musculo-Tendon Forces and Three-Dimensional Joint Reaction Forces During Gait,” Proc. Inst. Mech. Eng. H, 226(2), pp. 146–160. [CrossRef] [PubMed]
Klein Horsman, M. D. , Koopman, H. F. , van der Helm, F. C. , Prose, L. P. , and Veeger, H. E. , 2007, “ Morphological Muscle and Joint Parameters for Musculoskeletal Modelling of the Lower Extremity,” Clin. Biomech., 22(2), pp. 239–247. [CrossRef]
Yamaguchi, G. T. , 2001, Dynamic Modeling of Musculoskeletal Motion: A Vectorized Approach for Biomechanical Analysis in Three Dimensions, Springer, New York.
Soderkvist, I. , and Wedin, P. A. , 1993, “ Determining the Movements of the Skeleton Using Well-Configured Markers,” J. Biomech., 26(12), pp. 1473–1477. [CrossRef] [PubMed]
Kim, Y. H. , Park, W. M. , and Phuong, B. T. T. , 2010, “ Effect of Joint Center Location on In-Vivo Joint Contact Forces During Walking,” ASME Paper No. SBC2010-19353.
Hast, M. W. , and Piazza, S. J. , 2013, “ Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion,” ASME J. Biomech. Eng., 135(2), p. 021013. [CrossRef]
Manal, K. , and Buchanan, T. S. , 2012, “ Predictions of Condylar Contact During Normal and Medial Thrust Gait,” ASME Paper No. SBC2012-80560.
Knowlton, C. B. , Wimmer, M. A. , and Lundberg, H. J. , 2012, “ Grand Challenge Competition: A Parametric Numerical Model to Predict In Vivo Medial and Lateral Knee Forces in Walking Gaits,” ASME Paper No. SBC2012-80581.
Thelen, D. G. , Won, C. K. , and Schmitz, A. M. , 2014, “ Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking,” ASME J. Biomech. Eng., 136(2), p. 021033. [CrossRef]
Chen, Z. , Zhang, X. , Ardestani, M. M. , Wang, L. , Liu, Y. , Lian, Q. , He, J. , Li, D. , and Jin, Z. , 2014, “ Prediction of In Vivo Joint Mechanics of an Artificial Knee Implant Using Rigid Multi-Body Dynamics With Elastic Contacts,” Proc. Inst. Mech. Eng. H, 228(6), pp. 564–575. [CrossRef] [PubMed]
Southgate, D. F. , Cleather, D. J. , Weinert-Aplin, R. A. , and Bull, A. M. , 2012, “ The Sensitivity of a Lower Limb Model to Axial Rotation Offsets and Muscle Bounds at the Knee,” Proc. Inst. Mech. Eng. H, 226(9), pp. 660–669. [CrossRef] [PubMed]
Narici, M. V. , and Maganaris, C. N. , 2006, “ Adaptability of Elderly Human Muscles and Tendons to Increased Loading,” J. Anat., 208(4), pp. 433–443. [CrossRef] [PubMed]
Samuel, D. , and Rowe, P. J. , 2009, “ Effect of Ageing on Isometric Strength Through Joint Range at Knee and Hip Joints in Three Age Groups of Older Adults,” Gerontology, 55(6), pp. 621–629. [CrossRef] [PubMed]
D'Lima, D. D. , Townsend, C. P. , Arms, S. W. , Morris, B. A. , and Colwell, C. W., Jr. , 2005, “ An Implantable Telemetry Device to Measure Intra-Articular Tibial Forces,” J. Biomech., 38(2), pp. 299–304. [CrossRef] [PubMed]
Silva, M. , Shepherd, E. F. , Jackson, W. O. , Pratt, J. A. , McClung, C. D. , and Schmalzried, T. P. , 2003, “ Knee Strength After Total Knee Arthroplasty,” J. Arthroplasty, 18(5), pp. 605–611. [CrossRef] [PubMed]
Arnold, E. M. , Hamner, S. R. , Seth, A. , Millard, M. , and Delp, S. L. , 2013, “ How Muscle Fiber Lengths and Velocities Affect Muscle Force Generation as Humans Walk and Run at Different Speeds,” J. Exp. Biol., 216(11), pp. 2150–2160. [CrossRef] [PubMed]
Giroux, M. , Moissenet, F. , and Dumas, R. , 2013, “ EMG-Based Validation of Musculo-Skeletal Models for Gait Analysis,” Comput. Methods Biomech. Biomed. Eng., 16(5), pp. 152–154. [CrossRef]
Moissenet, F. , Cheze, L. , and Dumas, R. , 2014, “ A 3D Lower Limb Musculoskeletal Model for Simultaneous Estimation of Musculo-Tendon, Joint Contact, Ligament and Bone Forces During Gait,” J. Biomech., 47(1), pp. 50–58. [CrossRef] [PubMed]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
DeMers, M. S. , Pal, S. , and Delp, S. L. , 2014, “ Changes in Tibiofemoral Forces Due to Variations in Muscle Activity During Walking,” J. Orthop. Res., 32 (6), pp. 769–776. [CrossRef] [PubMed]
Akiyama, K. , Sakai, T. , Koyanagi, J. , Yoshikawa, H. , and Sugamoto, K. , 2011, “ Evaluation of Translation in the Normal and Dysplastic Hip Using Three-Dimensional Magnetic Resonance Imaging and Voxel-Based Registration,” Osteoarth. Cartil., 19(6), pp. 700–710. [CrossRef]
Gilles, B. , Christophe, F. K. , Magnenat-Thalmann, N. , Becker, C. D. , Duc, S. R. , Menetrey, J. , and Hoffmeyer, P. , 2009, “ MRI-Based Assessment of Hip Joint Translations,” J. Biomech., 42(9), pp. 1201–1205. [CrossRef] [PubMed]
Shelburne, K. B. , and Pandy, M. G. , 2002, “ A Dynamic Model of the Knee and Lower Limb for Simulating Rising Movements,” Comput. Methods Biomech. Biomed. Eng., 5(2), pp. 149–159. [CrossRef]
Smith, S. M. , Cockburn, R. A. , Hemmerich, A. , Li, R. M. , and Wyss, U. P. , 2008, “ Tibiofemoral Joint Contact Forces and Knee Kinematics During Squatting,” Gait Posture, 27(3), pp. 376–386. [CrossRef] [PubMed]
Dahlkvist, N. J. , Mayo, P. , and Seedhom, B. B. , 1982, “ Forces During Squatting and Rising From a Deep Squat,” Eng. Med., 11(2), pp. 69–76. [CrossRef] [PubMed]
Handsfield, G. G. , Meyer, C. H. , Hart, J. M. , Abel, M. F. , and Blemker, S. S. , 2014, “ Relationships of 35 Lower Limb Muscles to Height and Body Mass Quantified Using MRI,” J. Biomech., 47(3), pp. 631–638. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Blinded model predictions of medial, lateral, and total tibiofemoral contact forces compared with in vivo measurements obtained during two different gait trials

Grahic Jump Location
Fig. 3

Comparison of the predicted muscle forces in blinded and unblinded models and the corresponding active/inactive state for muscles of adductor brevis (AdB), gluteus maximus (GMax), gracilis (Gra), semimembranosus (SemM), biceps femoris long head (BF), vastus medialis (VasMed), vastus lateralis (VasLat), RF, gastrocnemius medialis (GasMed), sartorius (Sar), tibialis anterior (TibA), and soleus (Sol)

Grahic Jump Location
Fig. 2

Unblinded model predictions of medial, lateral, and total tibiofemoral contact forces compared with in vivo measurements obtained during two different gait trials

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In