0
Research Papers

The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement

[+] Author and Article Information
Colin R. Smith

Department of Mechanical Engineering,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706
e-mail: crsmith25@wisc.edu

Michael F. Vignos

Department of Mechanical Engineering,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706
e-mail: mvignos@wisc.edu

Rachel L. Lenhart

Department of Mechanical Engineering,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706;
Department of Biomedical Engineering,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706
e-mail: rlenhart@wisc.edu

Jarred Kaiser

Department of Mechanical Engineering,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706
e-mail: jmkaiser2@wisc.edu

Darryl G. Thelen

Fellow ASME
Department of Mechanical Engineering,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706;
Department of Biomedical Engineering,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706;
Department of Orthopedics and Rehabilitation,
University of Wisconsin-Madison,
1513 University Avenue,
Madison, WI 53706
e-mail: dgthelen@wisc.edu

1Corresponding author.

Manuscript received October 16, 2015; final manuscript received January 6, 2016; published online January 27, 2016. Editor: Beth A. Winkelstein.

J Biomech Eng 138(2), 021017 (Jan 27, 2016) (10 pages) Paper No: BIO-15-1520; doi: 10.1115/1.4032464 History: Received October 16, 2015; Revised January 06, 2016

The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Fang, D. M. , Ritter, M. A. , and Davis, K. E. , 2009, “ Coronal Alignment in Total Knee Arthroplasty: Just How Important is It?” J. Arthroplasty, 24(Suppl. 6), pp. 39–43. [CrossRef] [PubMed]
Insall, J. , 1985, “ Correction of Arthritic Deformities of the Knee,” Arthritis and Allied Conditions: A Textbook of Rheumatology, 10th ed., Lea and Febiger, Philadelphia, PA, pp. 771–784.
Sambatakakis, A. , Wilton, T. , and Newton, G. , 1991, “ Radiographic Sign of Persistent Soft-Tissue Imbalance After Knee Replacement,” J. Bone Joint Surg., Br., 73(5), pp. 751–756.
Freeman, M. , Todd, R. , Bamert, P. , and Day, W. , 1978, “ ICLH Arthroplasty of the Knee: 1968–1977,” J. Bone Joint Surg., Br., 60(3), pp. 339–344.
Insall, J. N. , Binazzi, R. , Soudry, M. , and Mestriner, L. A. , 1985, “ Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 192, pp. 13–22. [PubMed]
Wasielewski, R. C. , Galante, J. O. , Leighty, R. M. , Natarajan, R. N. , and Rosenberg, A. G. , 1994, “ Wear Patterns on Retrieved Polyethylene Tibial Inserts and Their Relationship to Technical Considerations During Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 299, pp. 31–43. [PubMed]
Windsor, R. E. , Scuderi, G. R. , Moran, M. C. , and Insall, J. N. , 1989, “ Mechanisms of Failure of the Femoral and Tibial Components in Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 248, pp. 15–20. [PubMed]
Lotke, P. A. , and Ecker, M. L. , 1977, “ Influence of Positioning of Prosthesis in Total Knee Replacement,” J. Bone Joint Surg., 59(1), pp. 77–79.
Karachalios, T. , Sarangi, P. , and Newman, J. , 1994, “ Severe Varus and Valgus Deformities Treated by Total Knee Arthroplasty,” J. Bone Joint Surg., Br., 76(6), pp. 938–942.
Teeny, S. M. , Krackow, K. A. , Hungerford, D. S. , and Jones, M. , 1991, “ Primary Total Knee Arthroplasty in Patients With Severe Varus Deformity. A Comparative Study,” Clin. Orthop. Relat. Res., 273, pp. 19–31. [PubMed]
Dorr, L. D. , and Boiardo, R. A. , 1986, “ Technical Considerations in Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 205, pp. 5–11. [PubMed]
Matsuda, S. , Miura, H. , Nagamine, R. , Urabe, K. , Harimaya, K. , Matsunobu, T. , and Iwamoto, Y. , 1999, “ Changes in Knee Alignment After Total Knee Arthroplasty,” J. Arthroplasty, 14(5), pp. 566–570. [CrossRef] [PubMed]
Krackow, K. A. , and Mihalko, W. M. , 1998, “ The Effect of Medial Release on Flexion and Extension Gaps in Cadaveric Knees: Implications for Soft-Tissue Balancing in Total Knee Arthroplasty,” Am. J. Knee Surg., 12(4), pp. 222–228.
Whiteside, L. A. , Saeki, K. , and Mihalko, W. M. , 2000, “ Functional Medial Ligament Balancing in Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 380, pp. 45–57. [CrossRef] [PubMed]
Yagishita, K. , Muneta, T. , and Ikeda, H. , 2003, “ Step-by-Step Measurements of Soft Tissue Balancing During Total Knee Arthroplasty for Patients With Varus Knees,” J. Arthroplasty, 18(3), pp. 313–320. [CrossRef] [PubMed]
Scott, W. N. , 2011, Insall & Scott Surgery of the Knee, Elsevier Health Sciences, Philadelphia, PA.
Mihalko, W. M. , Saleh, K. J. , Krackow, K. A. , and Whiteside, L. A. , 2009, “ Soft-Tissue Balancing During Total Knee Arthroplasty in the Varus Knee,” J. Am. Acad. Orthop. Surg., 17(12), pp. 766–774. [PubMed]
Kinney, A. L. , Besier, T. F. , D'Lima, D. D. , and Fregly, B. J. , 2013, “ Update on Grand Challenge Competition to Predict In Vivo Knee Loads,” ASME J. Biomech. Eng., 135(2), p. 021012. [CrossRef]
Marra, M. A. , Vanheule, V. , Fluit, R. , Koopman, B. H. , Rasmussen, J. , Verdonschot, N. , and Andersen, M. S. , 2015, “ A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty,” ASME J. Biomech. Eng., 137(2), p. 020904. [CrossRef]
Kim, Y.-H. , Park, W.-M. , and Phuong, B. T. T. , 2010, “ Effect of Joint Center Location on In-Vivo Joint Contact Forces During Walking,” ASME Paper No. SBC2010-19353.
Manal, K. , and Buchanan, T. S. , 2013, “ An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns,” ASME J. Biomech. Eng., 135(2), p. 021014. [CrossRef]
Guess, T. M. , Stylianou, A. P. , and Kia, M. , 2014, “ Concurrent Prediction of Muscle and Tibiofemoral Contact Forces During Treadmill Gait,” ASME J. Biomech. Eng., 136(2), p. 021032. [CrossRef]
Thelen, D. G. , Choi, K. W. , and Schmitz, A. M. , 2014, “ Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking,” ASME J. Biomech. Eng., 136(2), p. 021033. [CrossRef]
Hast, M. W. , and Piazza, S. J. , 2013, “ Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion,” ASME J. Biomech. Eng., 135(2), p. 021013. [CrossRef]
Anderson, A. E. , Ellis, B. J. , and Weiss, J. A. , 2007, “ Verification, Validation and Sensitivity Studies in Computational Biomechanics,” Comput. Methods Biomech. Biomed. Eng., 10(3), pp. 171–184. [CrossRef]
Chandrashekar, N. , Mansouri, H. , Slauterbeck, J. , and Hashemi, J. , 2006, “ Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament,” J. Biomech., 39(16), pp. 2943–2950. [CrossRef] [PubMed]
Claes, L. , Beyer, A. , Krischke, W. , and Schmid, R. , 1987, “ Biomechanical Properties of Collateral and Cruciate Ligaments. Biomechanics of Human Knee Ligaments,” Proceedings of the European Society of Biomechanics, pp. 22.
Noyes, F. R. , and Grood, E. S. , 1976, “ The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys,” J. Bone Joint Surg., 58(8), pp. 1074–1082.
Prietto, M. , Bain, J. , Stonebrook, S. , and Settlage, R. , 1988, “ Tensile Strength of the Human Posterior Cruciate Ligament (PCL),” Trans. Orthop. Res. Soc., 13(195), pp. 736–745.
Trent, P. S. , Walker, P. S. , and Wolf, B. , 1976, “ Ligament Length Patterns, Strength, and Rotational Axes of the Knee Joint,” Clin. Orthop. Relat. Res., 117, pp. 263–270. [PubMed]
Woo, S. L.-Y. , Hollis, J. M. , Adams, D. J. , Lyon, R. M. , and Takai, S. , 1991, “ Tensile Properties of the Human Femur–Anterior Cruciate Ligament–Tibia Complex. The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225. [CrossRef] [PubMed]
Fregly, B. J. , Besier, T. F. , Lloyd, D. G. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , and D'Lima, D. D. , 2012, “ Grand Challenge Competition to Predict In Vivo Knee Loads,” J. Orthop. Res., 30(4), pp. 503–513. [CrossRef] [PubMed]
Meyer, A. J. , D'Lima, D. D. , Banks, S. A. , Coburn, J. , Harman, M. , Mikashima, Y. , and Fregly, B. J. , 2011, “ Evaluation of Regression Equations for Medial and Lateral Contact Force From Instrumented Knee Implant Data,” ASME Paper No. SBC2011-53938.
Smith, C. R. , Lenhart, R. L. , Kaiser, J. , Vignos, M. F. , and Thelen, D. G. , “ Influence of Ligament Properties on Tibiofemoral Mechanics in Walking,” J. Knee Surg. (in press).
Blankevoort, L. , and Huiskes, R. , 1991, “ Ligament–Bone Interaction in a Three-Dimensional Model of the Knee,” ASME J. Biomech. Eng., 113(3), pp. 263–269. [CrossRef]
Shelburne, K. B. , Pandy, M. G. , Anderson, F. C. , and Torry, M. R. , 2004, “ Pattern of Anterior Cruciate Ligament Force in Normal Walking,” J. Biomech., 37(6), pp. 797–805. [CrossRef] [PubMed]
Shin, C. S. , Chaudhari, A. M. , and Andriacchi, T. P. , 2007, “ The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study,” J. Biomech., 40(5), pp. 1145–1152. [CrossRef] [PubMed]
Amis, A. , Firer, P. , Mountney, J. , Senavongse, W. , and Thomas, N. , 2003, “ Anatomy and Biomechanics of the Medial Patellofemoral Ligament,” Knee, 10(3), pp. 215–220. [CrossRef] [PubMed]
Amis, A. , Gupte, C. , Bull, A. , and Edwards, A. , 2006, “ Anatomy of the Posterior Cruciate Ligament and the Meniscofemoral Ligaments,” Knee Surg. Sports Traumatol. Arthroscopy, 14(3), pp. 257–263. [CrossRef]
Basso, O. , Johnson, D. , and Amis, A. , 2001, “ The Anatomy of the Patellar Tendon,” Knee Surg. Sports Traumatol. Arthroscopy, 9(1), pp. 2–5. [CrossRef]
Edwards, A. , Bull, A. M. , and Amis, A. A. , 2007, “ The Attachments of the Fiber Bundles of the Posterior Cruciate Ligament: An Anatomic Study,” Arthroscopy, 23(3), pp. 284–290. [CrossRef] [PubMed]
Ferretti, M. , Ekdahl, M. , Shen, W. , and Fu, F. H. , 2007, “ Osseous Landmarks of the Femoral Attachment of the Anterior Cruciate Ligament: An Anatomic Study,” Arthroscopy, 23(11), pp. 1218–1225. [CrossRef] [PubMed]
Giron, F. , Cuomo, P. , Aglietti, P. , Bull, A. M. , and Amis, A. A. , 2006, “ Femoral Attachment of the Anterior Cruciate Ligament,” Knee Surg. Sports Traumatol. Arthroscopy, 14(3), pp. 250–256. [CrossRef]
Kopf, S. , Musahl, V. , Tashman, S. , Szczodry, M. , Shen, W. , and Fu, F. H. , 2009, “ A Systematic Review of the Femoral Origin and Tibial Insertion Morphology of the ACL,” Knee Surg. Sports Traumatol. Arthroscopy, 17(3), pp. 213–219. [CrossRef]
LaPrade, R. F. , Ly, T. V. , Wentorf, F. A. , and Engebretsen, L. , 2003, “ The Posterolateral Attachments of the Knee a Qualitative and Quantitative Morphologic Analysis of the Fibular Collateral Ligament, Popliteus Tendon, Popliteofibular Ligament, and Lateral Gastrocnemius Tendon,” Am. J. Sports Med., 31(6), pp. 854–860. [PubMed]
Liu, F. , Yue, B. , Gadikota, H. R. , Kozanek, M. , Liu, W. , Gill, T. J. , Rubash, H. E. , and Li, G. , 2010, “ Morphology of the Medial Collateral Ligament of the Knee,” J. Orthop. Surg. Res., 5(1), pp. 1–8. [CrossRef] [PubMed]
Meister, B. R. , Michael, S. P. , Moyer, R. A. , Kelly, J. D. , and Schneck, C. D. , 2000, “ Anatomy and Kinematics of the Lateral Collateral Ligament of the Knee,” Am. J. Sports Med., 28(6), pp. 869–878. [PubMed]
Nomura, E. , Inoue, M. , and Osada, N. , 2005, “ Anatomical Analysis of the Medial Patellofemoral Ligament of the Knee, Especially the Femoral Attachment,” Knee Surg. Sports Traumatol. Arthroscopy, 13(7), pp. 510–515. [CrossRef]
Rachmat, H. , Janssen, D. , Zevenbergen, W. , Verkerke, G. , Diercks, R. , and Verdonschot, N. , 2014, “ Generating Finite Element Models of the Knee: How Accurately Can We Determine Ligament Attachment Sites From MRI Scans?” Med. Eng. Phys., 36(6), pp. 701–707. [CrossRef] [PubMed]
Robinson, J. , Sanchez-Ballester, J. , Bull, A. , de, WM , Thomas, R. , and Amis, A. , 2004, “ The Posteromedial Corner Revisited. An Anatomical Description of the Passive Restraining Structures of the Medial Aspect of the Human Knee,” J. Bone Joint Surg., Br., 86(5), pp. 674–681. [CrossRef]
Sugita, T. , and Amis, A. A. , 2001, “ Anatomic and Biomechanical Study of the Lateral Collateral and Popliteofibular Ligaments,” Am. J. Sports Med., 29(4), pp. 466–472. [PubMed]
Wijdicks, C. A. , Griffith, C. J. , LaPrade, R. F. , Johansen, S. , Sunderland, A. , Arendt, E. A. , and Engebretsen, L. , 2009, “ Radiographic Identification of the Primary Medial Knee Structures,” J. Bone Joint Surg., 91(3), pp. 521–529. [CrossRef]
Vignos, M. F. , Smith, C. R. , and Thelen, D. G. , 2015, “ Automated Method for Discretizing Ligaments in Musculoskeletal Simulation Models,” 13th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE), Montreal, QC, Canada, Sept. 1–5.
Bei, Y. , and Fregly, B. J. , 2004, “ Multibody Dynamic Simulation of Knee Contact Mechanics,” Med. Eng. Phys., 26(9), pp. 777–789. [CrossRef] [PubMed]
Kurtz, S. , Jewett, C. , Bergström, J. , Foulds, J. , and Edidin, A. , 2002, “ Miniature Specimen Shear Punch Test for UHMWPE Used in Total Joint Replacements,” Biomaterials, 23(9), pp. 1907–1919. [CrossRef] [PubMed]
Bartel, D. , Rawlinson, J. , Burstein, A. , Ranawat, C. , and Flynn, W., Jr ., 1995, “ Stresses in Polyethylene Components of Contemporary Total Knee Replacements,” Clin. Orthop. Relat. Res., 317, pp. 76–82. [PubMed]
Arnold, E. M. , Ward, S. R. , Lieber, R. L. , and Delp, S. L. , 2010, “ A Model of the Lower Limb for Analysis of Human Movement,” Ann. Biomed. Eng., 38(2), pp. 269–279. [CrossRef] [PubMed]
Jeffery, R. S. , Morris, R. W. , and Denham, R. A. , 1991, “ Coronal Alignment After Total Knee Replacement,” J. Bone Joint Surg., Br., 73(5), pp. 709–714.
Delp, S. L. , and Loan, J. P. , 2000, “ A Computational Framework for Simulating and Analyzing Human and Animal Movement,” Comput. Sci. Eng., 2(5), pp. 46–55. [CrossRef]
Happee, R. , 1994, “ Inverse Dynamic Optimization Including Muscular Dynamics: A New Simulation Method Applied to Goal Directed Movements,” J. Biomech., 27(7), pp. 953–960. [CrossRef] [PubMed]
Lenhart, R. L. , Kaiser, J. , Smith, C. R. , and Thelen, D. G. , 2015, “ Prediction and Validation of Load-Dependent Behavior of the Tibiofemoral and Patellofemoral Joints During Movement,” Ann. Biomed. Eng., 43(11), pp. 2675–2685. [CrossRef] [PubMed]
Baldwin, M. A. , Laz, P. J. , Stowe, J. Q. , and Rullkoetter, P. J. , 2009, “ Efficient Probabilistic Representation of Tibiofemoral Soft Tissue Constraint,” Comput. Methods Biomech. Biomed. Eng., 12(6), pp. 651–659. [CrossRef]
Reinders, J. , Sonntag, R. , Vot, L. , Gibney, C. , Nowack, M. , and Kretzer, J. P. , 2015, “ Wear Testing of Moderate Activities of Daily Living Using In Vivo Measured Knee Joint Loading,” PloS One, 10(3), p. e0123155. [CrossRef] [PubMed]
Wimmer, M. , Knowlton, C. , Pourzal, R. , McEwen, P. , and Andriacchi, T. , 2013, “ Clinical TKA Wear Rates and Their Association With Gait Parameters,” Bone Joint J. Orthop. Proc. Suppl., 95(Suppl. 34), pp. 587.
Abdel-Jaber, S. , Belvedere, C. , Leardini, A. , and Affatato, S. , 2015, “ Wear Simulation of Total Knee Prostheses Using Load and Kinematics Waveforms From Stair Climbing,” J. Biomech., 48(14), pp. 3830–3836. [CrossRef] [PubMed]
Babazadeh, S. , Stoney, J. D. , Lim, K. , and Choong, P. F. , 2009, “ The Relevance of Ligament Balancing in Total Knee Arthroplasty: How Important is It? A Systematic Review of the Literature,” Orthop. Rev., 1(2), p. e26. [CrossRef]
Fregly, B. J. , Sawyer, W. G. , Harman, M. K. , and Banks, S. A. , 2005, “ Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics,” J. Biomech., 38(2), pp. 305–314. [CrossRef] [PubMed]
Lerner, Z. F. , DeMers, M. S. , Delp, S. L. , and Browning, R. C. , 2015, “ How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces,” J. Biomech., 48(4), pp. 644–650. [CrossRef] [PubMed]
Chen, Z. , Wang, L. , Liu, Y. , He, J. , Lian, Q. , Li, D. , and Jin, Z. , 2015, “ Effect of Component Mal-Rotation on Knee Loading in Total Knee Arthroplasty Using Multi-Body Dynamics Modeling Under a Simulated Walking Gait,” J. Orthop. Res., 33(9), pp. 1287–1296. [CrossRef] [PubMed]
Gerus, P. , Sartori, M. , Besier, T. F. , Fregly, B. J. , Delp, S. L. , Banks, S. A. , Pandy, M. G. , D'Lima, D. D. , and Lloyd, D. G. , 2013, “ Subject-Specific Knee Joint Geometry Improves Predictions of Medial Tibiofemoral Contact Forces,” J. Biomech., 46(16), pp. 2778–2786. [CrossRef] [PubMed]
Srivastava, A. , Lee, G. Y. , Steklov, N. , Colwell, C. W., Jr. , Ezzet, K. A. , and D'Lima, D. D. , 2012, “ Effect of Tibial Component Varus on Wear in Total Knee Arthroplasty,” Knee, 19(5), pp. 560–563. [CrossRef] [PubMed]
Ritter, M. A. , Faris, P. M. , Keating, E. M. , and Meding, J. B. , 1994, “ Postoperative Alignment of Total Knee Replacement Its Effect on Survival,” Clin. Orthop. Relat. Res., 299, pp. 153–156. [PubMed]
Feng, E. L. , Stulberg, S. D. , and Wixson, R. L. , 1994, “ Progressive Subluxation and Polyethylene Wear in Total Knee Replacements With Flat Articular Surfaces,” Clin. Orthop. Relat. Res., 299, pp. 60–71. [PubMed]
D'Lima, D. D. , Hermida, J. C. , Chen, P. C. , and Colwell, C. W., Jr. , 2001, “ Polyethylene Wear and Variations in Knee Kinematics,” Clin. Orthop. Relat. Res., 392, pp. 124–130. [CrossRef] [PubMed]
Hernigou, P. , and Deschamps, G. , 2004, “ Alignment Influences Wear in the Knee After Medial Unicompartmental Arthroplasty,” Clin. Orthop. Relat. Res., 423, pp. 161–165. [CrossRef] [PubMed]
Werner, F. W. , Ayers, D. C. , Maletsky, L. P. , and Rullkoetter, P. J. , 2005, “ The Effect of Valgus/Varus Malalignment on Load Distribution in Total Knee Replacements,” J. Biomech., 38(2), pp. 349–355. [CrossRef] [PubMed]
Crottet, D. , Kowal, J. , Sarfert, S. A. , Maeder, T. , Bleuler, H. , Nolte, L.-P. , and Dürselen, L. , 2007, “ Ligament Balancing in TKA: Evaluation of a Force-Sensing Device and the Influence of Patellar Eversion and Ligament Release,” J. Biomech., 40(8), pp. 1709–1715. [CrossRef] [PubMed]
Hicks, J. L. , Uchida, T. K. , Seth, A. , Rajagopal, A. , and Delp, S. L. , 2015, “ Is My Model Good Enough? Best Practices for Verification and Validation of Musculoskeletal Models and Simulations of Movement,” ASME J. Biomech. Eng., 137(2), p. 020905. [CrossRef]
Halloran, J. P. , Easley, S. K. , Petrella, A. J. , and Rullkoetter, P. J. , 2005, “ Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics,” ASME J. Biomech. Eng., 127(5), pp. 813–818. [CrossRef]
Scheys, L. , Loeckx, D. , Spaepen, A. , Suetens, P. , and Jonkers, I. , 2009, “ Atlas-Based Non-Rigid Image Registration to Automatically Define Line-of-Action Muscle Models: A Validation Study,” J. Biomech., 42(5), pp. 565–572. [CrossRef] [PubMed]
Blemker, S. S. , Asakawa, D. S. , Gold, G. E. , and Delp, S. L. , 2007, “ Image-Based Musculoskeletal Modeling: Applications, Advances, and Future Opportunities,” J. Magn. Reson. Imaging, 25(2), pp. 441–451. [CrossRef] [PubMed]
Valente, G. , Pitto, L. , Testi, D. , Seth, A. , Delp, S. L. , Stagni, R. , Viceconti, M. , and Taddei, F. , 2014, “ Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?” PLoS One, 9(11), p. e112625. [CrossRef] [PubMed]
Thelen, D. G. , 2003, “ Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults,” ASME J. Biomech. Eng., 125(1), pp. 70–77. [CrossRef]
Millard, M. , Uchida, T. , Seth, A. , and Delp, S. L. , 2013, “ Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics,” ASME J. Biomech. Eng., 135(2), p. 021005. [CrossRef]
Erdemir, A. , McLean, S. , Herzog, W. , and van den Bogert, A. J. , 2007, “ Model-Based Estimation of Muscle Forces Exerted During Movements,” Clin. Biomech., 22(2), pp. 131–154. [CrossRef]
Laz, P. , and Browne, M. , 2010, “ A Review of Probabilistic Analysis in Orthopaedic Biomechanics,” Proc. Inst. Mech. Eng., Part H, 224(8), pp. 927–943. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The knee model used subject-specific bone and TKR component geometry and included an extensible PT and 11 ligament bundles. The knee model was integrated into a generic lower extremity model which included 44 muscle–tendon units acting about the hip, knee, and ankle. The coronal plane TKR component alignment in the nominal model was set to match the limb alignment measured for the subject in a standing radiograph.

Grahic Jump Location
Fig. 4

Representative scatter plots showing the correlation between the second peak tibiofemoral contact forces and ligament reference strain. Each data point corresponds to 1 of the 2000 simulations run. The strength of the correlation between the predicted contact forces and the reference strain was evaluated using Pearson's correlation coefficients (R).

Grahic Jump Location
Fig. 3

Lower extremity posture, activated muscles (shown in red), and computed contact pressures on the femoral and tibial components throughout the smooth gait cycle (see online version for color)

Grahic Jump Location
Fig. 2

A numerical optimization approach was used to simultaneously predict patellofemoral kinematics, secondary tibiofemoral kinematics, and muscle forces that, together with the induced ligament forces and contact pressures, generated the measured hip, knee, and ankle accelerations at each time step of a gait cycle. Muscle force distribution was determined by minimizing an objective function that consisted of a sum of volume weighted squared muscle activations and the knee joint contact energy.

Grahic Jump Location
Fig. 5

Comparison of the blinded and unblinded model predicted tibial component contact forces (in tibia superior direction) to measured contact forces throughout the smooth and bouncy gait cycles. Error metrics are given in Table 2.

Grahic Jump Location
Fig. 6

Sensitivity of the joint contact forces to variations in coronal plane component alignment for smooth gait. Placing the components in a varus alignment relative to the nominal position shifted more of the total contact force to the medial compartment. The opposite relationship exists when placing the components in a valgus alignment, relative to nominal. Comparable results were found for bouncy gait.

Grahic Jump Location
Fig. 7

Variability in ligament forces (shaded area represents the 95% confidence interval) throughout the smooth gait cycle due to uncertainty in ligament stiffness and reference strains. The dark center line is the mean of the Monte Carlo simulations, which is nearly identical to the force predicted by the nominal model.

Grahic Jump Location
Fig. 8

Variability in predicted tibiofemoral joint contact forces (95% confience interval) throughout the smooth gait cycle due to uncertainty in the stiffness and reference strains assumed for ligaments

Grahic Jump Location
Fig. 9

Correlations of tibiofemoral contact forces with ligament stiffness (solid bars) and reference strain (open bars) at the first and second peaks of tibiofemoral loading during stance

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In