0
Research Papers

Mechanical Integrity of a Decellularized and Laser Drilled Medial Meniscus

[+] Author and Article Information
Emily H. Lakes, Peter S. McFetridge

J Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610;
Institute for Cell and Tissue
Science and Engineering,
University of Florida,
Gainesville, FL 32610

Andrea M. Matuska

J Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610

Kyle D. Allen

Assistant Professor
J Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
1275 Center Drive,
Biomedical Sciences Building,
Gainesville, FL 32610;
Institute for Cell and Tissue
Science and Engineering,
University of Florida,
Gainesville, FL 32610
e-mail: kyle.allen@bme.ufl.edu

1Corresponding author.

Manuscript received September 23, 2015; final manuscript received December 16, 2015; published online January 29, 2016. Assoc. Editor: Michael Detamore.

J Biomech Eng 138(3), 031006 (Jan 29, 2016) (12 pages) Paper No: BIO-15-1477; doi: 10.1115/1.4032381 History: Received September 23, 2015; Revised December 16, 2015

Since the meniscus has limited capacity to self-repair, creating a long-lasting meniscus replacement may help reduce the incidence of osteoarthritis (OA) after meniscus damage. As a first step toward this goal, this study evaluated the mechanical integrity of a decellularized, laser drilled (LD) meniscus as a potential scaffold for meniscal engineering. To evaluate the decellularization process, 24 porcine menisci were processed such that one half remained native tissue, while the other half was decellularized in sodium dodecyl sulphate (SDS). To evaluate the laser drilling process, 24 additional menisci were decellularized, with one half remaining intact while the other half was LD. Decellularization did not affect the tensile properties, but had significant effects on the cyclic compressive hysteresis and unconfined compressive stress relaxation. Laser drilling decreased the Young's modulus and instantaneous stress during unconfined stress relaxation and the circumferential ultimate strength during tensile testing. However, the losses in mechanical integrity in the LD menisci were generally smaller than the variance observed between samples, and thus, the material properties for the LD tissue remained within a physiological range. In the future, optimization of laser drilling patterns may improve these material properties. Moreover, reseeding the construct with cells may further improve the mechanical properties prior to implantation. As such, this work serves as a proof of concept for generating decellularized, LD menisci scaffolds for the purposes of meniscal engineering.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Garrett, W. , Swiontkowski, M. , Weinstein, J. , Callaghan, J. , Rosier, R. , Berry, D. , Harrast, J. , and Derosa, G. , 2006, “ Forum American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part II, Certification Examination Case Mix,” J. Bone Joint Surg., 88-A(3), pp. 660–667. [CrossRef]
Roos, H. , Laurén, M. , Adalberth, T. , Roos, E. M. , Jonsson, K. , and Lohmander, L. S. , 1998, “ Knee Osteoarthritis After Meniscectomy: Prevalence of Radiographic Changes After Twenty-One Years, Compared With Matched Controls,” Arthritis Rheum., 41(4), pp. 687–93. [CrossRef] [PubMed]
Rangger, C. , Klestil, T. , Gloetzer, W. , Kemmler, G. , and Benedetto, K. P. , 1995, “ Osteoarthritis After Arthroscopic Partial Meniscectomy,” Am. J. Sports Med., 23(2), pp. 240–244. [CrossRef] [PubMed]
Baratz, M. E. , Fu, F. H. , and Mengato, R. , 1986, “ Meniscal Tears: The Effect of Meniscectomy and of Repair on Intraarticular Contact Areas Preliminary Report,” Am. J. Sports Med., 14(4), pp. 270–275. [CrossRef] [PubMed]
Englund, M. , Guermazi, A. , and Lohmander, S. L. , 2009, “ The Role of the Meniscus in Knee Osteoarthritis: A Cause or Consequence?” Radiol. Clin. N. Am., 47(4), pp. 703–712. [CrossRef]
Athanasiou, K. A. , and Sanchez-Adams, J. , 2009, Engineering the Knee Meniscus, Vol. 1, K. A. Athanasiou , ed., Morgan & Claypool, San Rafael, CA.
Maier, D. , Braeun, K. , Steinhauser, E. , Ueblacker, P. , Oberst, M. , Kreuz, P. C. , Roos, N. , Martinek, V. , and Imhoff, A. B. , 2007, “ In Vitro Analysis of an Allogenic Scaffold for Tissue-Engineered Meniscus Replacement,” J. Orthop. Res., 25(12), pp. 1598–1608. [CrossRef] [PubMed]
Hoben, G. M. , Hu, J. C. , James, R. A. , and Athanasiou, K. A. , 2007, “ Self-Assembly of Fibrochondrocytes and Chondrocytes for Tissue Engineering of the Knee Meniscus,” Tissue Eng., 13(5), pp. 939–946. [CrossRef] [PubMed]
Testa Pezzin, A. P. , Cardoso, T. P. , do Carmo Alberto Rincón, M. , de Carvalho Zavaglia, C. A. , and de Rezende Duek, E. A. , 2003, “ Bioreabsorbable Polymer Scaffold as Temporary Meniscal Prosthesis,” Artif. Organs, 27(5), pp. 428–431. [CrossRef] [PubMed]
Kang, S. , Son, S. , Lee, J. , Lee, E. , Lee, K. , Park, S. , Park, J. , and Kim, B. , 2006, “ Regeneration of Whole Meniscus Using Meniscal Cells and Polymer Scaffolds in a Rabbit Total Meniscectomy Model,” J. Biomed. Mater. Res., Part A, 78(3), pp. 659–671. [CrossRef]
Fisher, M. B. , Henning, E. A. , Söegaard, N. , Esterhai, J. L. , and Mauck, R. L. , 2013, “ Organized Nanofibrous Scaffolds That Mimic the Macroscopic and Microscopic Architecture of the Knee Meniscus,” Acta Biomater., 9(1), pp. 4496–4504. [CrossRef] [PubMed]
Hidaka, C. , Ibarra, C. , Hannafin, J. A. , Torzilli, P. A. , Quitoriano, M. , Jen, S.-S. , Warren, R. F. , and Crystal, R. G. , 2002, “ Formation of Vascularized Meniscal Tissue by Combining Gene Therapy With Tissue Engineering,” Tissue Eng., 8(1), pp. 93–105. [CrossRef] [PubMed]
Aufderheide, A. C. , and Athanasiou, K. A. , 2007, “ Assessment of a Bovine Co-Culture, Scaffold-Free Method for Growing Meniscus-Shaped Constructs,” Tissue Eng., 13(9), pp. 2195–2205. [CrossRef] [PubMed]
Hu, J. C. , and Athanasiou, K. A. , 2006, “ A Self-Assembling Process in Articular Cartilage Tissue Engineering,” Tissue Eng., 12(4), pp. 969–979. [CrossRef] [PubMed]
Hutchinson, I. D. , Moran, C. J. , Potter, H. G. , Warren, R. F. , and Rodeo, S. A. , 2013, “ Restoration of the Meniscus: Form and Function,” Am. J. Sports Med., 42(4), pp. 987–998. [CrossRef] [PubMed]
Samitier, G. , Alentorn-Geli, E. , Taylor, D. C. , Rill, B. , Lock, T. , Moutzouros, V. , and Kolowich, P. , 2014, “ Meniscal Allograft Transplantation. Part 2: Systematic Review of Transplant Timing, Outcomes, Return to Competition, Associated Procedures, and Prevention of Osteoarthritis,” Knee Surg. Sports Traumatol. Arthroscopy, 23(1), pp. 323–333. [CrossRef]
Stone, K. R. , Walgenbach, A. W. , Turek, T. J. , Freyer, A. , and Hill, M. D. , 2006, “ Meniscus Allograft Survival in Patients With Moderate to Severe Unicompartmental Arthritis: A 2- to 7-Year Follow-Up,” Arthroscopy, 22(5), pp. 469–478. [CrossRef] [PubMed]
Van Arkel, E. R. A. , and de Boer, H. H. , 2002, “ Survival Analysis of Human Meniscal Transplantations,” J. Bone Joint Surg., 84(2), pp. 227–231. [CrossRef]
McDermott, I. , and Thomas, N. P. , 2006, “ Human Meniscal Allograft Transplantation,” Knee, 13(1), pp. 69–71. [CrossRef] [PubMed]
Arnoczky, S. , McDevitt, C. , Schmidt, M. , Mow, V. , and Warren, R. , 1988, “ The Effect of Cryopreservation on Canine Menisci: A Biochemical, Morphologic, and Biomechanical Evaluation,” J. Orthop. Res., 6(1), pp. 1–12. [CrossRef] [PubMed]
Rodeo, S. A. , Seneviratne, A. , Suzuki, K. , Felker, K. , Wickiewicz, T. L. , and Warren, R. F. , 2000, “ Histological Analysis of Human Meniscal Allografts. A Preliminary Report,” J. Bone Joint Surg., 82-A(8), pp. 1071–1082.
Khoury, M. A. , Goldberg, V. M. , and Stevenson, S. , 1994, “ Demonstration of HLA and ABH Antigens in Fresh and Frozen Human Menisci by Immunohistochemistry,” J. Orthop. Res., 12(6), pp. 751–757. [CrossRef] [PubMed]
Klompmaker, J. , Jansen, H. W. , Veth, R. P. , Nielsen, H. K. , de Groot, J. H. , and Pennings, A. J. , 1993, “ Porous Implants for Knee Joint Meniscus Reconstruction: A Preliminary Study on the Role of Pore Sizes in Ingrowth and Differentiation of Fibrocartilage,” Clin. Mater., 14(1), pp. 1–11. [CrossRef] [PubMed]
White, R. A. , Hirose, F. M. , Sproat, R. W. , Lawrence, R. S. , and Nelson, R. J. , 1981, “ Histopathologic Observations After Short-Term Implantation of Two Porous Elastomers in Dogs,” Biomaterials, 2(3), pp. 171–176. [CrossRef] [PubMed]
De Groot, J. H. , De Vrijer, R. , Pennings, A. J. , Klompmaker, J. , Veth, R. P. H. , and Jansen, H. W. B. , 1996, “ Use of Porous Polyurethanes for Meniscal Reconstruction and Meniscal Prostheses,” Biomaterials, 17(2), pp. 163–173. [CrossRef] [PubMed]
Elema, H. , De Groot, J. H. , Nijenhuis, A. J. , Penningsl, A. J. , Veth, R. P. H. , and Klompmaker, J. , 1990, “ Use of Porous Biodegradable Polymer Implants in Meniscus Reconstruction. 2) Biological Evaluation of Porous Biodegradable Polymer Implants in Menisci,” Colloid Polym. Sci., 268(12), pp. 1082–1088. [CrossRef]
Tienen, T. G. , Heijkants, R. G. J. C. , de Groot, J. H. , Pennings, A. J. , Schouten, A. J. , Veth, R. P. H. , and Buma, P. , 2006, “ Replacement of the Knee Meniscus by a Porous Polymer Implant: A Study in Dogs,” Am. J. Sports Med., 34(1), pp. 64–71. [CrossRef] [PubMed]
Juran, C. M. , Dolwick, M. F. , and McFetridge, P. S. , 2015, “ Engineered Microporosity: Enhancing the Early Regenerative Potential of Decellularized Temporomandibular Joint Discs,” Tissue Eng., Part A, 21(3–4), pp. 829–839. [CrossRef]
Stabile, K. J. , Odom, D. , Smith, T. L. , Northam, C. , Whitlock, P. W. , Smith, B. P. , Van Dyke, M. E. , and Ferguson, C. M. , 2010, “ An Acellular, Allograft-Derived Meniscus Scaffold in an Ovine Model,” Arthroscopy, 26(7), pp. 936–948. [CrossRef] [PubMed]
Lumpkins, S. B. , Pierre, N. , and McFetridge, P. S. , 2008, “ A Mechanical Evaluation of Three Decellularization Methods in the Design of a Xenogeneic Scaffold for Tissue Engineering the Temporomandibular Joint Disc,” Acta Biomater., 4(4), pp. 808–816. [CrossRef] [PubMed]
Ionescu, L. C. , and Mauck, R. L. , 2013, “ Porosity and Cell Preseeding Influence Electrospun Scaffold Maturation and Meniscus Integration In Vitro,” Tissue Eng., Part A, 19, pp. 538–547. [CrossRef]
Maher, S. A. , Rodeo, S. A. , Doty, S. B. , Brophy, R. , Potter, H. , Foo, L. F. , Rosenblatt, L. , Deng, X. H. , Turner, A. S. , Wright, T. M. , and Warren, R. F. , 2010, “ Evaluation of a Porous Polyurethane Scaffold in a Partial Meniscal Defect Ovine Model,” Arthroscopy, 26(11), pp. 1510–1519. [CrossRef] [PubMed]
Baker, B. M. , Gee, A. O. , Metter, R. B. , Nathan, A. S. , Marklein, R. A. , Burdick, J. A. , and Mauck, R. L. , 2008, “ The Potential to Improve Cell Infiltration in Composite Fiber-Aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers,” Biomaterials, 29(15), pp. 2348–2358. [CrossRef] [PubMed]
Proctor, C. S. , Schmidt, M. B. , Whipple, R. R. , Kelly, M. , and Mow, V. C. , 1989, “ Material Properties of the Normal Medial Bovine Meniscus,” J. Orthop. Res., 7(6), pp. 771–782. [CrossRef] [PubMed]
Sweigart, M. A. , and Athanasiou, K. A. , 2005, “ Biomechanical Characteristics of the Normal Medial and Lateral Porcine Knee Menisci,” J. Eng. Med., 219(1), pp. 53–62. [CrossRef]
Spilker, R. L. , Donzelli, P. S. , and Mow, V . C. , 1992, “ A Transversely Isotropic Biphasic Finite Element Model of the Meniscus,” J. Biomech., 25(9), pp. 1027–1045. [CrossRef] [PubMed]
Martin Seitz, A. , Galbusera, F. , Krais, C. , Ignatius, A. , and Dürselen, L. , 2013, “ Stress–Relaxation Response of Human Menisci Under Confined Compression Conditions,” J. Mech. Behav. Biomed. Mater., 26(2013), pp. 68–80. [CrossRef] [PubMed]
Petri, M. , Ufer, K. , Toma, I. , Becher, C. , Liodakis, E. , Brand, S. , Haas, P. , Liu, C. , Richter, B. , Haasper, C. , von Lewinski, G. , and Jagodzinski, M. , 2012, “ Effects of Perfusion and Cyclic Compression on In Vitro Tissue Engineered Meniscus Implants,” Knee Surg. Sports Traumatol. Arthroscopy, 20(2), pp. 223–231. [CrossRef]
Maes, J. A. , and Haut Donahue, T. L. , 2006, “ Time Dependent Properties of Bovine Meniscal Attachments: Stress Relaxation and Creep,” J. Biomech., 39(16), pp. 3055–3061. [CrossRef] [PubMed]
Chia, H. N. , and Hull, M. L. , 2008, “ Compressive Moduli of the Human Medial Meniscus in the Axial and Radial Directions at Equilibrium and at a Physiological Strain Rate,” J. Orthop. Res., 26(7), pp. 951–956. [CrossRef] [PubMed]
Fung, Y. C. , 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer, New York.
Toms, S. R. , Dakin, G. J. , Lemons, J. E. , and Eberhardt, A. W. , 2002, “ Quasi-Linear Viscoelastic Behavior of the Human Periodontal Ligament,” J. Biomech., 35(10), pp. 1411–1415. [CrossRef] [PubMed]
Xu, F. , Seffen, K. , and Lu, T. , 2008, “ A Quasi-Linear Viscoelastic Model for Skin Tissue,” 3rd IASME/WSEAS International Conference on Continuum Mechanics (CM'08), Cambridge, UK, Feb. 23–25, pp. 14–21.
Wills, D. J. , Picton, D. C. A. , and Davies, W. I. R. , 1972, “ An Investigation of the Viscoelastic Properties of the Periodontium in Monkeys,” J. Periodontal Res., 7(1), pp. 42–51. [CrossRef] [PubMed]
Meakin, J. R. , Shrive, N. G. , Frank, C. B. , and Hart, D. A. , 2003, “ Finite Element Analysis of the Meniscus: The Influence of Geometry and Material Properties on its Behaviour,” Knee, 10(1), pp. 33–41. [CrossRef] [PubMed]
Sweigart, M. A. , and Athanasiou, K. A. , 2005, “ Tensile and Compressive Properties of the Medial Rabbit Meniscus,” Proc. Inst. Mech. Eng., Part H, 219(5), pp. 337–347. [CrossRef]
Stapleton, T. W. , Ingram, J. , Katta, J. , Knight, R. , Korossis, S. , Fisher, J. , and Ingham, E. , 2008, “ Development and Characterization of an Acellular Porcine Medial Meniscus for Use in Tissue Engineering,” Tissue Eng., Part A, 14(4), pp. 505–518. [CrossRef]
Matuska, A. M. , and McFetridge, P. S. , 2014, “ The Effect of Terminal Sterilization on Structural and Biophysical Properties of a Decellularized Collagen-Based Scaffold; Implications for Stem Cell Adhesion,” J. Biomed. Mater. Res., Part B, 103(2), pp. 397–406. [CrossRef]
Gilbert, T. , Sellaro, T. , and Badylak, S. , 2006, “ Decellularization of Tissues and Organs,” Biomaterials, 27(19), pp. 3675–3683. [PubMed]
Fithian, D. C. , Kelly, M. A. , and Mow, V. C. , 1990, “ Material Properties and Structure-Function Relationships in the Menisci,” Clin. Orthop. Relat. Res., 252, pp. 19–31. [PubMed]
Ghosh, P. , and Taylor, T. , 1987, “ The Knee Joint Meniscus: A Fibrocartilage of Some Distinction,” Clin. Orthop. Rel. Res., 224, pp. 52–63.
Prestrelski, S. J. , Tedeschi, N. , Arakawa, T. , and Carpenter, J. F. , 1993, “ Dehydration-Induced Conformational Transitions in Proteins and Their Inhibition by Stabilizers,” Biophys. J., 65(2), pp. 661–671. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Sample preparation where all menisci were dissected in half to allow for different treatments within the same meniscus (native/decellularized or decellularized/LD). (a) Tensile samples were taken as both radial and circumferential in relation to the circumferential collagen fibers of the meniscus. (b) For compression testing, two cylindrical samples were taken next to each other in the central portion of the meniscus. Samples were then cut with parallel blades.

Grahic Jump Location
Fig. 2

Top: Hematoxylin and eosin staining for (a) native, (b) decellularized, and (c) LD menisci. Bottom: DAPI staining for (d) native, (e) decellularized, and (f) LD menisci. Slices for all staining were taken at 10 μm on a cryotome. (g) Macro view of a LD meniscus showing full thickness pores.

Grahic Jump Location
Fig. 3

Native and decellularized tissue results from radial tensile testing showing the: (a) hysteresis area from cyclic loading, (b) loading energy from cyclic loading, (c) peak stress from cyclic loading, (d) representative curves from cyclic loading, (e) Young's modulus from the linear portion of the pull to failure curve, (f) strain at UTS, and (e) UTS. Lines connect samples from the same meniscus, and the legend indicates whether samples from the anterior or posterior region of the meniscus. * = significance from paired t-test (p < 0.05).

Grahic Jump Location
Fig. 4

Native and decellularized tissue results from circumferential tensile testing showing the: (a) hysteresis area from cyclic loading, (b) loading energy from cyclic loading, (c) peak stress from cyclic loading, (d) representative curves from cyclic loading, (e) Young's modulus from the linear portion of the pull to failure curve, (f) strain at UTS, and (g) UTS. Lines connect samples from the same meniscus, and the legend indicates whether samples from the anterior or posterior region of the meniscus.

Grahic Jump Location
Fig. 5

Native and decellularized tissue results from compressive testing showing the: (a) hysteresis area from cyclic loading, (b) loading energy from cyclic loading, (c) peak stress from cyclic loading, (d) representative curves from cyclic loading, (e) Young's modulus from the linear portion of the loading phase, (f) instantaneous stress at the beginning of stress relaxation, and (g) steady-state stress after stress relaxation. Lines connect samples from the same meniscus, and the legend indicates whether samples from the anterior or posterior region of the meniscus. * = significance from paired t-test (p < 0.05).

Grahic Jump Location
Fig. 6

Decellularized and LD tissue results from radial tensile testing showing the: (a) hysteresis area from cyclic loading, (b) loading energy from cyclic loading, (c) peak stress from cyclic loading, (d) representative curves from cyclic loading, (e) Young's modulus from the linear portion of the pull to failure curve, (e) strain at UTS, and (g) UTS. Lines connect samples from the same meniscus, and the legend indicates whether samples from the anterior or posterior region of the meniscus.

Grahic Jump Location
Fig. 7

Decellularized and LD tissue results from circumferential tensile testing showing the: (a) hysteresis area from cyclic loading, (b) loading energy from cyclic loading, (c) peak stress from cyclic loading, (d) representative curves from cyclic loading, (e) Young's modulus from the linear portion of the pull to failure curve, (f) strain at UTS, and (g) UTS. Lines connect samples from the same meniscus, and the legend indicates whether samples from the anterior or posterior region of the meniscus. * = significance from paired t-test (p < 0.05).

Grahic Jump Location
Fig. 8

Decellularized and LD tissue results from compressive testing showing the: (a) hysteresis area from cyclic loading, (b) loading energy from cyclic loading, (c) peak stress from cyclic loading, (d) representative curves from cyclic loading, (e) Young's modulus from the linear portion of the loading phase, (f) instantaneous stress at the beginning of stress relaxation, and (g) steady-state stress after stress relaxation. Lines connect samples from the same meniscus, and the legend indicates whether samples from the anterior or posterior region of the meniscus. * = significance from paired t-test (p < 0.05).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In