0
Technical Brief

A Conjugate Fluid–Porous Approach for Simulating Airflow in Realistic Geometric Representations of the Human Respiratory System

[+] Author and Article Information
Christopher T. DeGroot

Mem. ASME
Department of Mechanical and Materials Engineering,
Western University,
London, ON N6A 5B9, Canada
e-mail: cdegroo5@uwo.ca

Anthony G. Straatman

Mem. ASME
Department of Mechanical and Materials Engineering,
Western University,
London, ON N6A 5B9, Canada
e-mail: astraatman@eng.uwo.ca

1Corresponding author.

Manuscript received January 28, 2015; final manuscript received November 27, 2015; published online January 29, 2016. Assoc. Editor: Naomi Chesler.

J Biomech Eng 138(3), 034501 (Jan 29, 2016) (7 pages) Paper No: BIO-15-1036; doi: 10.1115/1.4032113 History: Received January 28, 2015; Revised November 27, 2015

Simulation of flow in the human lung is of great practical interest as a means to study the detailed flow patterns within the airways for many physiological applications. While computational simulation techniques are quite mature, lung simulations are particularly complicated due to the vast separation of length scales between upper airways and alveoli. Many past studies have presented numerical results for truncated airway trees, however, there are significant difficulties in connecting such results with respiratory airway models. This article presents a new modeling paradigm for flow in the full lung, based on a conjugate fluid–porous formulation where the upper airway is considered as a fluid region with the remainder of the lung being considered as a coupled porous region. Results are presented for a realistic lung geometry obtained from computed tomography (CT) images, which show the method's potential as being more efficient and practical than attempting to directly simulate flow in the full lung.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tawhai, M. H. , and Lin, C.-L. , 2010, “ Image-Based Modeling of Lung Structure and Function,” J. Magn. Reson. Imaging, 32(6), pp. 1421–1431. [CrossRef] [PubMed]
Weibel, E. R. , 1963, Morphometry of the Human Lung, Springer-Verlag, New York.
Comer, J. K. , Kleinstreuer, C. , Hyun, S. , and Kim, C. S. , 2000, “ Aerosol Transport and Deposition in Sequentially Bifurcating Airways,” ASME J. Biomech. Eng., 122(2), pp. 152–158. [CrossRef]
Zhang, Z. , Kleinstreuer, C. , and Kim, C. S. , 2001, “ Flow Structure and Particle Transport in a Triple Bifurcation Airway Model,” ASME J. Fluids Eng., 123(2), pp. 320–330. [CrossRef]
Zhang, Z. , and Kleinstreuer, C. , 2002, “ Transient Airflow Structures and Particle Transport in a Sequentially Branching Lung Airway Model,” Phys. Fluids, 14(2), pp. 862–880. [CrossRef]
Zhang, Z. , and Kleinstreuer, C. , 2003, “ Species Heat and Mass Transfer in a Human Upper Airway Model,” Int. J. Heat Mass Transfer, 46(25), pp. 4755–4768. [CrossRef]
Nowak, N. , Kakade, P. P. , and Annapragada, A. V. , 2003, “ Computational Fluid Dynamics Simulation of Airflow and Aerosol Deposition in Human Lungs,” Ann. Biomed. Eng., 31(4), pp. 374–390. [CrossRef] [PubMed]
van Ertbruggen, C. , Hirsch, C. , and Paiva, M. , 2005, “ Anatomically Based Three-Dimensional Model of Airways to Simulate Flow and Particle Transport Using Computational Fluid Dynamics,” J. Appl. Physiol., 98(3), pp. 970–980. [CrossRef] [PubMed]
Ma, B. , and Lutchen, K. R. , 2006, “ An Anatomically Based Hybrid Computational Model of the Human Lung and Its Application to Low Frequency Oscillatory Mechanics,” Ann. Biomed. Eng., 34(11), pp. 1691–1704. [CrossRef] [PubMed]
Zhang, Z. , Kleinstreuer, C. , and Kim, C. S. , 2008, “ Airflow and Nanoparticle Deposition in a 16-Generation Tracheobronchial Airway Model,” Ann. Biomed. Eng., 36(12), pp. 2095–2110. [CrossRef] [PubMed]
Gemci, T. , Ponyavin, V. , Chen, Y. , Chen, H. , and Collins, R. , 2008, “ Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract,” J. Biomech., 41(9), pp. 2047–2054. [CrossRef] [PubMed]
Luo, H. Y. , and Liu, Y. , 2008, “ Modeling the Bifurcating Flow in a CT-Scanned Human Lung Airway,” J. Biomech., 41(12), pp. 2681–2688. [CrossRef] [PubMed]
Nazridoust, K. , and Asgharian, B. , 2008, “ Unsteady-State Airflow and Particle Deposition in a Three-Generation Human Lung Geometry,” Inhal. Toxicol., 20(6), pp. 595–610. [CrossRef] [PubMed]
Lin, C. , Tawhai, M. H. , Lennan, G. M. , and Hoffman, E. A. , 2009, “ Multiscale Simulation of Gas Flow in Subject-Specific Models of the Human Lung,” IEEE Eng. Med. Biol. Mag., 28(3), pp. 25–33. [PubMed]
Walters, D. K. , and Luke, W. H. , 2010, “ A Method for Three-Dimensional Navier–Stokes Simulations of Large-Scale Regions of the Human Lung,” ASME J. Fluids Eng., 132(5), p. 051101. [CrossRef]
Comerford, A. , Förster, C. , and Wall, W. A. , 2010, “ Structured Tree Impedance Outflow Boundary Conditions for 3D Lung Simulations,” ASME J. Biomech. Eng., 132(8), p. 081002. [CrossRef]
Yin, Y. , Choi, J. , Hoffman, E. A. , Tawhai, M. H. , and Lin, C.-L. , 2010, “ Simulation of Pulmonary Air Flow With a Subject-Specific Boundary Condition,” J. Biomech., 43(11), pp. 2159–2163. [CrossRef] [PubMed]
Walters, D. K. , and Luke, W. H. , 2011, “ Computational Fluid Dynamics Simulations of Particle Deposition in Large-Scale Multigenerational Lung Models,” ASME J. Biomech. Eng., 133(1), p. 011003. [CrossRef]
Saksono, P. H. , Nithiarasu, P. , and Sazonov, I. , 2012, “ Numerical Prediction of Heat Transfer Patterns in a Subject-Specific Human Upper Airway,” ASME J. Heat Transfer, 134(3), p. 031022. [CrossRef]
Tsuda, A. , Henry, F. S. , and Butler, J. P. , 1995, “ Chaotic Mixing of Alveolated Duct Flow in Rhythmically Expanding Pulmonary Acinus,” J. Appl. Physiol., 79(3), pp. 1055–1063. [PubMed]
Darquenne, C. , and Paiva, M. , 1996, “ Two- and Three-Dimensional Simulations of Aerosol Transport and Deposition in Alveolar Zone of Human Lung,” J. Appl. Physiol., 80(4), pp. 1401–1414. [PubMed]
Lee, D. Y. , and Lee, J. W. , 2003, “ Characteristics of Particle Transport in an Expanding or Contracting Alveolated Tube,” J. Aerosol Sci., 34(9), pp. 1193–1215. [CrossRef]
Karl, A. , Henry, F. S. , and Tsuda, A. , 2004, “ Low Reynolds Number Viscous Flow in an Alveolated Duct,” ASME J. Biomech. Eng., 126(4), pp. 420–429. [CrossRef]
Sznitman, J. , Heimsch, F. , Heimsch, T. , Rusch, D. , and Rösgen, T. , 2007, “ Three-Dimensional Convective Alveolar Flow Induced by Rhythmic Breathing Motion of the Pulmonary Acinus,” ASME J. Biomech. Eng., 129(5), pp. 658–665. [CrossRef]
Tsuda, A. , Henry, F. S. , and Butler, J. P. , 2008, “ Gas and Aerosol Mixing in the Acinus,” Respir. Physiol. Neuro., 163(1), pp. 139–149. [CrossRef]
Sznitman, J. , Heimsch, T. , Wildhaber, J. H. , Tsuda, A. , and Rösgen, T. , 2009, “ Respiratory Flow Phenomena and Gravitational Deposition in a Three-Dimensional Space-Filling Model of the Pulmonary Acinar Tree,” ASME J. Biomech. Eng., 131(3), p. 031010. [CrossRef]
Kumar, H. , Tawhai, M. H. , Hoffman, E. A. , and Lin, C.-L. , 2009, “ The Effects of Geometry on Airflow in the Acinar Region of the Human Lung,” J. Biomech., 42(11), pp. 1635–1642. [CrossRef] [PubMed]
Harding, E. M. , and Robinson, R. J. , 2010, “ Flow in a Terminal Alveolar Sac Model With Expanding Walls Using Computational Fluid Dynamics,” Inhal. Toxicol., 22(8), pp. 669–678. [CrossRef] [PubMed]
Li, Z. , and Kleinstreuer, C. , 2011, “ Airflow Analysis in the Alveolar Region Using the Lattice-Boltzmann Method,” Med. Biol. Eng. Comput., 49(4), pp. 441–451. [CrossRef] [PubMed]
Ma, B. , and Darquenne, C. , 2011, “ Aerosol Deposition Characteristics in Distal Acinar Airways Under Cyclic Breathing Conditions,” J. Appl. Physiol., 110(5), pp. 1271–1282. [CrossRef] [PubMed]
Kumar, H. , Tawhai, M. H. , Hoffman, E. A. , and Lin, C.-L. , 2011, “ Steady Streaming: A Key Mixing Mechanism in Low-Reynolds-Number Acinar Flows,” Phys. Fluids, 23(4), p. 041902. [CrossRef]
Owen, M. R. , and Lewis, M. A. , 2001, “ The Mechanics of Lung Tissue Under High-Frequency Ventilation,” SIAM J. Appl. Math., 61(5), pp. 1731–1761. [CrossRef]
Lande, B. , and Mitzner, K. R. W. , 2006, “ Analysis of Lung Parenchyma as a Parametric Porous Medium,” J. Appl. Physiol., 101(3), pp. 926–933. [CrossRef] [PubMed]
DeGroot, C. T. , and Straatman, A. G. , 2012, “ Numerical Results for the Effective Flow and Thermal Properties of Idealized Graphite Foam,” ASME J. Heat Transfer, 134(4), p. 042603. [CrossRef]
DeGroot, C. T. , and Straatman, A. G. , 2011, “ A Finite-Volume Model for Fluid Flow and Nonequilibrium Heat Transfer in Conjugate Fluid-Porous Domains Using General Unstructured Grids,” Numer. Heat Transfer, Part A, 60(4), pp. 252–277. [CrossRef]
Demirdzić, I. , and Muzaferija, S. , 1995, “ Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis Using Unstructured Moving Meshes With Cells of Arbitrary Topology,” Comput. Methods Appl. Mech. Eng., 125(1–4), pp. 235–255. [CrossRef]
Demirdzić, I. , and Perić, M. , 1990, “ Finite Volume Method for Prediction of Fluid Flow in Arbitrarily Shaped Domains With Moving Boundaries,” Int. J. Numer. Methods Fluids, 10(7), pp. 771–790. [CrossRef]
Thomas, P. D. , and Lombard, C. K. , 1979, “ Geometric Conservation Law and Its Application to Flow Computations on Moving Grids,” AIAA J., 17(10), pp. 1030–1037. [CrossRef]
Demirdzić, I. , and Perić, M. , 1988, “ Space Conservation Law in Finite Volume Calculations of Fluid Flow,” Int. J. Numer. Methods Fluids, 8(9), pp. 1037–1050. [CrossRef]
Venkatakrishnan, V. , and Mavriplis, D. J. , 1996, “ Implicit Method for Computation of Unsteady Flows on Unstructured Grids,” J. Comput. Phys., 127(2), pp. 380–397. [CrossRef]
Tuković, Z. , and Jasak, H. , 2012, “ A Moving Mesh Finite Volume Interface Tracking Method for Surface Tension Dominated Interfacial Fluid Flow,” Comput. Fluids, 55, pp. 70–84. [CrossRef]
Yushkevich, P. A. , Piven, J. , Hazlett, H. C. , Smith, R. G. , Ho, S. , Gee, J. C. , and Gerig, G. , 2006, “ User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” Neuroimage, 31(3), pp. 1116–1128. [CrossRef] [PubMed]
Rosset, A. , Spadola, L. , and Ratib, O. , 2004, “ OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images,” J. Digit. Imaging, 17(3), pp. 205–216. [CrossRef] [PubMed]
West, J. B. , 2008, Respiratory Physiology: The Essentials, Lippincott Williams & Wilkins, Baltimore, MD.
Werner, R. , Ehrhardt, J. , Schmidt, R. , and Handels, H. , 2008, “ Modeling Respiratory Lung Motion—A Biophysical Approach Using Finite Element Methods,” Proc. SPIE, 6916, p. 69160N.
DeGroot, C. T. , 2012, “ Numerical Modelling of Transport in Complex Porous Media: Metal Foams to the Human Lung,” Ph.D. thesis, University of Western Ontario, London, ON, Canada.
Gehr, P. , Bachofen, M. , and Weibel, E. R. , 1978, “ The Normal Human Lung: Ultrastructure and Morphometric Estimation of Diffusion Capacity,” Respir. Physiol., 32(2), pp. 121–140. [CrossRef] [PubMed]
Kamschulte, M. , Schneider, C. R. , Litzbauer, H. D. , Tscholl, D. , Schneider, C. , Zeiner, C. , Krombach, G. A. , Ritman, E. L. , Bohle, R. M. , and Langheinrich, A. C. , 2013, “ Quantitative 3D Micro-CT Imaging of Human Lung Tissue,” Fortschr. Röntgenstr., 185(9), pp. 869–876. [CrossRef]
Mathur, S. R. , and Murthy, J. Y. , 1997, “ Pressure Boundary Conditions for Incompressible Flow Using Unstructured Meshes,” Numer. Heat Transfer B, 32(3), pp. 283–298. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

An illustration of the combined airway tree (inner structure) and the lung surfaces (remaining structure)

Grahic Jump Location
Fig. 2

Plots of the computational meshes for the lung geometry showing (a) the main lung mesh and (b) the trachea extension

Grahic Jump Location
Fig. 3

A plot of the maximum pressure difference within the domain as a function of time, where t = 0 represents the beginning of the breath cycle at maximum inflation

Grahic Jump Location
Fig. 4

Contour plots of the pressure in Pascals for the times: (a) 0.75, (b) 1.25, (c) 1.75, (d) 2.5, (e) 3.25, (f) 3.75, (g) 4.25, and (h) 5.0 s from the beginning of the breath cycle

Grahic Jump Location
Fig. 5

Contour plots of velocity vectors in the xy-plane, at times: (a) and (b) 1.25 and (c) and (d) 3.75 s from the beginning of the breath cycle

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In