0
Research Papers

Predictive Neuromuscular Fatigue of the Lower Extremity Utilizing Computer Modeling

[+] Author and Article Information
Michael A. Samaan

Department of Mechanical
and Aerospace Engineering,
Old Dominion University,
Norfolk, VA 23529;
Department of Radiology
and Biomedical Imaging,
University of California–San Francisco,
San Francisco, CA 94107
e-mail: michael.samaan@ucsf.edu

Joshua T. Weinhandl

Department of Kinesiology,
Recreation and Sports Studies,
The University of Tennessee,
Knoxville, TN 37996
e-mail: jweinhan@utk.edu

Steven A. Hans

Department of Mechanical
and Aerospace Engineering,
Old Dominion University,
Norfolk, VA 23529
e-mail: shans001@odu.edu

Sebastian Y. Bawab

Department of Mechanical
and Aerospace Engineering,
Old Dominion University,
Norfolk, VA 23529
e-mail: sbawab@odu.edu

Stacie I. Ringleb

Department of Mechanical
and Aerospace Engineering,
Old Dominion University,
Norfolk, VA 23529
e-mail: sringleb@odu.edu

1Corresponding author.

Manuscript received December 16, 2014; final manuscript received November 7, 2015; published online December 8, 2015. Assoc. Editor: Silvia Blemker.

J Biomech Eng 138(1), 011008 (Dec 08, 2015) (10 pages) Paper No: BIO-14-1632; doi: 10.1115/1.4032071 History: Received December 16, 2014; Revised November 07, 2015

This paper studies the modeling of lower extremity muscle forces and their correlation to neuromuscular fatigue. Two analytical fatigue models were combined with a musculoskeletal model to estimate the effects of hamstrings fatigue on lower extremity muscle forces during a side step cut. One of the fatigue models (Tang) used subject-specific knee flexor muscle fatigue and recovery data while the second model (Xia) used previously established fatigue and recovery parameters. Both fatigue models were able to predict hamstrings fatigue within 20% of the experimental data, with the semimembranosus and semitendinosus muscles demonstrating the largest (11%) and smallest (1%) differences, respectively. In addition, various hamstrings fatigue levels (10–90%) on lower extremity muscle force production were assessed using one of the analytical fatigue models. As hamstrings fatigue levels increased, the quadriceps muscle forces decreased by 21% (p < 0.01), while gastrocnemius muscle forces increased by 36% (p < 0.01). The results of this study validate the use of two analytical fatigue models in determining the effects of neuromuscular fatigue during a side step cut, and therefore, this model can be used to assess fatigue effects on risk of lower extremity injury during athletic maneuvers. Understanding the effects of fatigue on muscle force production may provide insight on muscle group compensations that may lead to altered lower extremity motion patterns as seen in noncontact anterior cruciate ligament (ACL) injuries.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Edwards, R. H. T. , Hill, D. K. , Jones, D. A. , and Merton, P. A. , 1977, “ Fatigue of Long Duration in Human Skeletal Muscle After Exercise,” J. Physiol., 272(3), pp. 769–778. [CrossRef] [PubMed]
Hunter, S. K. , 2009, “ Sex Differences and Mechanisms of Task-Specific Muscle Fatigue,” Exercise Sport Sci. Rev., 37(3), pp. 113–122. [CrossRef]
Hunter, S. K. , Duchateau, J. , and Enoka, R. M. , 2004, “ Muscle Fatigue and the Mechanisms of Task Failure,” Exercise Sport Sci. Rev., 32(2), pp. 44–49. [CrossRef]
Xia, T. , and Frey Law, L. A. , 2008, “ A Theoretical Approach for Modeling Peripheral Muscle Fatigue and Recovery,” J. Biomech., 41(14), pp. 3046–3052. [CrossRef] [PubMed]
Chappell, J. D. , Herman, D. C. , Knight, B. S. , Kirkendall, D. T. , Garrett, W. E. , and Yu, B. , 2005, “ Effect of Fatigue on Knee Kinetics and Kinematics in Stop-Jump Tasks,” Am. J. Sports Med., 33(7), pp. 1022–1029. [CrossRef] [PubMed]
McLean, S. G. , Felin, R. E. , Suedekum, N. , Calabrese, G. , Passerallo, A. , and Joy, S. , 2007, “ Impact of Fatigue on Gender-Based High-Risk Landing Strategies,” Med. Sci. Sports Exercise, 39(3), pp. 502–514. [CrossRef]
Sanna, G. , and O’Connor, K. M. , 2008, “ Fatigue-Related Changes in Stance Leg Mechanics During Sidestep Cutting Maneuvers,” Clin. Biomech., 23(7), pp. 946–954. [CrossRef]
Weinhandl, J. T. , Earl-Boehm, J. E. , Ebersole, K. T. , Huddleston, W. E. , Armstrong, B. S. R. , and O’Connor, K. M. , 2014, “ Reduced Hamstrings Strength Increases Anterior Cruciate Ligament Loading During Anticipated Sidestep Cutting,” Clin. Biomech., 29(7), pp. 752–759. [CrossRef]
Iguchi, J. , Tateuchi, H. , Taniguchi, M. , and Ichihashi, N. , 2014, “ The Effect of Sex and Fatigue on Lower Limb Kinematics, Kinetics, and Muscle Activity During Unanticipated Side-Step Cutting,” Knee Surg. Sports Traumatol. Arthroscopy, 22(1), pp. 41–48. [CrossRef]
Lucci, S. , Cortes, N. , Van Lunen, B. , Ringleb, S. , and Onate, J. , 2011, “ Knee and Hip Sagittal and Transverse Plane Changes After Two Fatigue Protocols,” J. Sci. Med. Sport, 14(5), pp. 453–459. [CrossRef] [PubMed]
Borotikar, B. S. , Newcomer, R. , Koppes, R. , and McLean, S. G. , 2008, “ Combined Effects of Fatigue and Decision Making on Female Lower Limb Landing Postures: Central and Peripheral Contributions to ACL Injury Risk,” Clin. Biomech., 23(1), pp. 81–92. [CrossRef]
Brazen, D. M. , Todd, M. K. , Ambegaonkar, J. P. , Wunderlich, R. , and Peterson, C. , 2010, “ The Effect of Fatigue on Landing Biomechanics in Single-Leg Drop Landings,” Clin. J. Sports Med., 20(4), pp. 286–292. [CrossRef]
Weinhandl, J. T. , Smith, J. D. , and Dugan, E. L. , 2011, “ The Effects of Repetitive Drop Jumps on Impact Phase Joint Kinematics and Kinetics,” J. Appl. Biomech., 27(2), pp. 108–115. [PubMed]
Benjaminse, A. , Habu, A. , Sell, T. C. , Abt, J. P. , Fu, F. H. , Myers, J. B. , and Lephart, S. M. , 2008, “ Fatigue Alters Lower Extremity Kinematics During a Single-Leg Stop-Jump Task,” Knee Surg. Sports Traumatol. Arthroscopy, 16(4), pp. 400–407. [CrossRef]
Hawkins, D. , and Hull, M. L. , 1993, “ Muscle Force as Affected by Fatigue: Mathematical Model and Experimental Verification,” J. Biomech., 26(9), pp. 1117–1128. [CrossRef] [PubMed]
Tang, C. Y. , Stojanovic, B. , Tsui, C. P. , and Kojic, M. , 2005, “ Modeling of Muscle Fatigue Using Hill’s Model,” Bio-Med. Mater. Eng., 15(5), pp. 341–348.
Ma, L. , Chablat, D. , Bennis, F. , and Zhang, W. , 2009, “ A New Simple Dynamic Muscle Fatigue Model and Its Validation,” Int. J. Ind. Ergon., 39(1), pp. 211–220. [CrossRef]
Marion, M. S. , Wexler, A. S. , and Hull, M. L. , 2010, “ Predicting Fatigue During Electrically Stimulated Non-Isometric Contractions,” Muscle Nerve, 41(6), pp. 857–867. [CrossRef] [PubMed]
Liu, J. Z. , Brown, R. W. , and Yue, G. H. , 2002, “ A Dynamical Model of Muscle Activation, Fatigue and Recovery,” Biophys. J., 82(5), pp. 2344–2359. [CrossRef] [PubMed]
Frey-Law, L. A. , Looft, J. M. , and Heitsman, J. , 2012, “ A Three-Compartment Muscle Fatigue Model Accurately Predicts Joint-Specific Maximum Endurance Times for Sustained Isometric Tasks,” J. Biomech., 45(10), pp. 1803–1808. [CrossRef] [PubMed]
Allen, D. G. , Lamb, G. D. , and Westerblad, H. , 2008, “ Skeletal Muscle Fatigue: Cellular Mechanisms,” Physiol. Rev., 88(1), pp. 287–332. [CrossRef] [PubMed]
Weinhandl, J. T. , Earl-Boehm, J. E. , Ebersole, K. T. , Huddleston, W. E. , Armstrong, B. S. R. , and O’Connor, K. M. , 2013, “ Anticipatory Effects on Anterior Cruciate Ligament Loading During Sidestep Cutting,” Clin. Biomech., 28(6), pp. 655–663. [CrossRef]
Donnelly, C. J. , Lloyd, D. G. , Elliott, B. C. , and Reinbolt, J. A. , 2012, “ Optimizing Whole-Body Kinematics to Minimize Valgus Knee Loading During Sidestepping: Implications for ACL Injury Risk,” J. Biomech., 45(8), pp. 1491–1497. [CrossRef] [PubMed]
Mokhtarzadeh, H. , Yeow, C. H. , Hong Goh, J. C. , Oetomo, D. , Malekipour, F. , and Lee, P. V.-S. , 2013, “ Contributions of the Soleus and Gastrocnemius Muscles to the Anterior Cruciate Ligament Loading During Single-Leg Landing,” J. Biomech., 46(11), pp. 1913–1920. [CrossRef] [PubMed]
Laughlin, W. A. , Weinhandl, J. T. , Kernozek, T. W. , Cobb, S. C. , Keenan, K. G. , and O’Connor, K. M. , 2011, “ The Effects of Single-Leg Landing Technique on ACL Loading,” J. Biomech., 44(10), pp. 1845–1851. [CrossRef] [PubMed]
Kar, J. , and Quesada, P. M. , 2012, “ A Numerical Simulation Approach to Studying Anterior Cruciate Ligament Strains and Internal Froces Among Young Recreational Women Performing Valgus Inducing Stop-Jump Activities,” Ann. Biomed. Eng., 40(8), pp. 1679–1691. [CrossRef] [PubMed]
Kar, J. , and Quesada, P. M. , 2013, “ A Musculoskeletal Modeling Approach for Estimating Anterior Cruciate Ligament Strains and Knee Anterior–Posterior Shear Forces in Stop-Jumps Performed by Young Recreational Female Athletes,” Ann. Biomed. Eng., 41(2), pp. 338–348. [CrossRef] [PubMed]
Lund, M. E. , de Zee, M. , Andersen, M. S. , and Rasmussen, J. , 2012, “ On Validation of Multibody Musculoskeletal Models,” Proc. Inst. Mech. Eng., Part H, 226(2), pp. 82–94. [CrossRef]
Silva, M. T. , Pereira, A. F. , and Martins, J. M. , 2011, “ An Efficient Muscle Fatigue Model for Forward and Inverse Dynamic Analysis of Human Movements,” Procedia IUTAM, 2, pp. 262–274. [CrossRef]
Bizid, R. , Margnes, E. , Francois, Y. , Jully, J. L. , Gonzalez, G. , Dupui, P. , and Paillard, T. , 2009, “ Effects of Knee and Ankle Muscle Fatigue on Postural Control in the Unipedal Stance,” Eur. J. Appl. Physiol., 106(3), pp. 375–380. [CrossRef] [PubMed]
Kollock, R. O., Jr. , Onate, J. A. , and Van Lunen, B. , 2010, “ The Reliability of Portable Fixed Dynamometry During Hip and Knee Strength Assessments,” J. Athletic Train., 45(4), pp. 349–356. [CrossRef]
McLean, S. G. , Neal, R. J. , Myers, P. T. , and Walters, M. R. , 1999, “ Knee Joint Kinematics During the Sidestep Cutting Maneuver: Potential for Injury in Women,” Med. Sci. Sports Exercise, 31(7), pp. 959–968. [CrossRef]
Hermens, H. J. , Freriks, B. , Merletti, R. , Stegeman, D. , Blok, J. , Rau, G. , Disselhorst-Klug, C. , and Hagg, G. , 1999, European Recommendations for Surface ElectroMyoGraphy, Roessingh Research and Development, Enschede, The Netherlands.
Vanrenterghem, J. , Venables, E. , Pataky, T. , and Robinson, M. A. , 2012, “ The Effect of Running Speed on Knee Mechanical Loading in Females During Side Cutting,” J. Biomech., 45(14), pp. 2444–2449. [CrossRef] [PubMed]
Weinhandl, J. T. , and O’Connor, K. M. , 2010, “ Assessment of a Greater Trochanter-Based Method of Locating the Hip Joint Center,” J. Biomech., 43(13), pp. 2633–2636. [CrossRef] [PubMed]
Spoor, C. W. , and Veldpaus, F. E. , 1980, “ Rigid Body Motion Calculated From Spatial Co-ordinates of Markers,” J. Biomech., 13(4), pp. 391–393. [CrossRef] [PubMed]
Lu, T. W. , and O’Connor, J. J. , 1999, “ Bone Position Estimation From Skin Marker Co-ordinates Using Global Optimisation With Joint Constraints,” J. Biomech., 32(2), pp. 129–134. [CrossRef] [PubMed]
Besier, T. , Lloyd, D. G. , and Ackland, T. R. , 2003, “ Muscle Activation Strategies at the Knee During Running and Cutting Maneuvers,” Med. Sci. Sports Exercise, 35(1), pp. 119–127. [CrossRef]
Levenberg, K. , 1944, “ A Method for the Solution of Certain Non-Linear Problems in Least Squares,” Q. Appl. Math., 2, pp. 164–168.
Hamner, S. R. , Seth, A. , and Delp, S. L. , 2010, “ Muscle Contributions to Propulsion and Support During Running,” J. Biomech., 43(14), pp. 2709–2716. [CrossRef] [PubMed]
Delp, S. L. , Anderson, F. C. , Arnold, A. S. , Loan, P. , Habib, A. , John, C. T. , Guendelman, E. , and Thelen, D. G. , 2007, “ OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef] [PubMed]
Yamaguchi, G. T. , and Zajac, F. E. , 1989, “ A Planar Model of the Knee Joint to Characterize the Knee Extensor Mechanism,” J. Biomech., 22(1), pp. 1–10. [CrossRef] [PubMed]
Delp, S. L. , Loan, J. P. , Hoy, M. G. , Zajac, F. E. , Topp, E. L. , and Rosen, J. M. , 1990, “ An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures,” IEEE Trans. Biomed. Eng., 37(8), pp. 757–767. [CrossRef] [PubMed]
Anderson, F. C. , and Pandy, M. G. , 2003, “ Individual Muscle Contributions to Support in Normal Walking,” Gait Posture, 17(2), pp. 159–169. [CrossRef] [PubMed]
Anderson, F. C. , and Pandy, M. G. , 1999, “ A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions,” Comput. Methods Biomech. Biomed. Eng., 2(3), pp. 201–231. [CrossRef]
Anderson, F. C. , and Pandy, M. G. , 2001, “ Dynamic Optimization of Human Walking,” ASME J. Biomech. Eng., 123(5), pp. 381–390. [CrossRef]
Millard, M. , Uchida, T. , Seth, A. , and Delp, S. L. , 2013, “ Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics,” ASME J. Biomech. Eng., 135(2), pp. 1–11. [CrossRef]
Kuo, A. D. , 1998, “ A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations,” ASME J. Biomech. Eng., 120(1), pp. 148–159. [CrossRef]
Kennedy, J. , 2010, “ Particle Swarm Optimization,” Encyclopedia of Machine Learning, C. Sammut , and G. Webb , eds., Springer, New York, pp. 760–766.
Thelen, D. G. , and Anderson, F. C. , 2006, “ Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data,” J. Biomech., 39(6), pp. 1107–1115. [CrossRef] [PubMed]
Thelen, D. G. , Anderson, F. C. , and Delp, S. L. , 2003, “ Generating Dynamic Simulations of Movement Using Computed Muscle Control,” J. Biomech., 36(3), pp. 321–328. [CrossRef] [PubMed]
Crowninshield, R. D. , and Brand, R. A. , 1981, “ A Physiologically Based Criterion of Muscle Force Prediction in Locomotion,” J. Biomech., 14(11), pp. 793–801. [CrossRef] [PubMed]
Zajac, F. E. , 1989, “ Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control,” Crit. Rev. Biomed. Eng., 17(4), pp. 359–411. [PubMed]
Koga, H. , Nakamae, A. , Shima, Y. , Iwasa, J. , Myklebust, G. , Engebretsen, L. , Bahr, R. , and Krosshaug, T. , 2010, “ Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations From Female Team Handball and Basketball,” Am. J. Sports Med., 20(10), pp. 1–9.
Buchanan, T. S. , Lloyd, D. G. , Manal, K. , and Besier, T. , 2005, “ Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model,” Med. Sci. Sports Exercise, 37(11), pp. 1911–1916. [CrossRef]
Neptune, R. R. , Wright, I. C. , and Van den Bogert, A. J. , 1999, “ Muscle Coordination and Function During Cutting Movements,” Med. Sci. Sports Exercise, 31(2), pp. 294–302. [CrossRef]
Li, L. , Landin, D. , Grodesky, J. , and Myers, J. , 2002, “ The Function of Gastrocnemius as a Knee Flexor at Selected Knee and Ankle Angles,” J. Electromyogr. Kinesiology, 12(5), pp. 385–390. [CrossRef]
Frey Law, L. A. , and Avin, K. G. , 2010, “ Endurance Time is Joint Specific: A Modelling and Meta-Analysis Investigation,” Ergonomics, 53(1), pp. 109–129. [CrossRef] [PubMed]
Besier, T. , Lloyd, D. G. , Ackland, T. R. , and Cochrane, J. L. , 2001, “ Anticipatory Effects on Knee Joint Loading During Running and Cutting Maneuvers,” Med. Sci. Sports Exercise, 33(7), pp. 1176–1181. [CrossRef]
Kernozek, T. W. , and Ragan, R. J. , 2008, “ Estimation of Anterior Cruciate Ligament Tension From Inverse Dynamics Data and Electromyography in Females During Drop Landing,” Clin. Biomech., 23(10), pp. 1279–1286. [CrossRef]
Lin, C.-F. , Gross, M. , Ji, C. , Padua, D. , Weinhold, P. , Garrett, W. E. , and Yu, B. , 2009, “ A Stochastic Biomechanical Model for Risk and Risk Factors of Non-Contact Anterior Cruciate Ligament Injuries,” J. Biomech., 42(4), pp. 418–423. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The workflow shown here summarizes the processes used in opensim to produce the musculoskeletal simulations that were integrated with both the Tang et al. [16] and Xia and Frey Law [4] fatigue models

Grahic Jump Location
Fig. 2

The hamstrings fatigue protocol was implemented using a portable fixed dynamometer. This device consists of a load cell attached to a wall on one end and the other end was attached to the participant using an ankle strap.

Grahic Jump Location
Fig. 3

A participant’s hamstrings fatigue (top) and recovery (bottom) curves, normalized by MVC, are displayed. The dashed lines in the fatigue and recovery plots represent the failure criteria of 25% and recovery criteria of 80% MVC, respectively. The solid lines represent the exponential approximation of the fatigue and recovery data. In addition, the exponential equations that approximate the participant’s hamstrings fatigue and recovery are displayed.

Grahic Jump Location
Fig. 4

Fatigued hamstrings total muscle force, normalized by BW, predicted by the postfatigue CMC data (solid), the Tang (dotted) and Xia (dashed) fatigue models. The 95% confidence interval of the postfatigue CMC muscle force is shown as well.

Grahic Jump Location
Fig. 5

The Xia and Frey Law [4] fatigue model was used to test the effect of various levels of hamstrings fatigue on total quadriceps muscle force. The group average total quadriceps muscle force, normalized by BW, from 20 ms prior to and 50 ms after initial contact during the side step cut is displayed.

Grahic Jump Location
Fig. 6

The Xia and Frey Law [4] fatigue model was used to test the effect of various levels of hamstrings fatigue on muscle force production. The group average total hamstrings muscle force, normalized by BW, from 20 ms prior to and 50 ms after initial contact during the side step cut is displayed.

Grahic Jump Location
Fig. 7

The Xia and Frey Law [4] fatigue model was used to test the effect of various levels of hamstrings fatigue on total gastrocnemius muscle force. The group average total gastrocnemius muscle force, normalized by BW, from 20 ms prior to and 50 ms after initial contact during the side step cut is displayed.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In