0
Technical Brief

Computationally Optimizing the Compliance of a Biopolymer Based Tissue Engineered Vascular Graft

[+] Author and Article Information
Scott Harrison

Department of Aerospace and Mechanical Engineering,
The University of Arizona,
Tucson, AZ 85721
e-mail: scottharrison@email.arizona.edu

Ehab Tamimi

Graduate Interdisciplinary Program in
Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721
e-mail: ehab@email.arizona.edu

Josh Uhlorn

Department of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721
e-mail: juhlorn@email.arizona.edu

Tim Leach

Department of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721
e-mail: tsleach@email.arizona.edu

Jonathan P. Vande Geest

Department of Aerospace and Mechanical Engineering,
The University of Arizona,
Tucson, AZ 85721;
Department of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721;
Graduate Interdisciplinary Program in
Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721;
BIO5 Institute for Biocollaborative Research,
The University of Arizona,
Tucson, AZ 85721;
Soft Tissue Biomechanics Laboratory,
The University of Arizona,
Tucson, AZ 85721
e-mail: jpv1@email.arizona.edu

1Corresponding author.

Manuscript received September 11, 2015; final manuscript received November 18, 2015; published online December 8, 2015. Assoc. Editor: Hai-Chao Han.

J Biomech Eng 138(1), 014505 (Dec 08, 2015) (5 pages) Paper No: BIO-15-1447; doi: 10.1115/1.4032060 History: Received September 11, 2015; Revised November 18, 2015

Coronary heart disease is a leading cause of death among Americans for which coronary artery bypass graft (CABG) surgery is a standard surgical treatment. The success of CABG surgery is impaired by a compliance mismatch between vascular grafts and native vessels. Tissue engineered vascular grafts (TEVGs) have the potential to be compliance matched and thereby reduce the risk of graft failure. Glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen constructs were fabricated and mechanically tested in a previous study by our research group at 2, 8, and 24 hrs of GLUT vapor exposure. The current study details a computational method that was developed to predict the material properties of our constructs for crosslinking times between 2 and 24 hrs by interpolating the 2, 8, and 24 hrs crosslinking time data. matlab and abaqus were used to determine the optimal combination of fabrication parameters to produce a compliance matched construct. The validity of the method was tested by creating a 16-hr crosslinked construct of 130 μm thickness and comparing its compliance to that predicted by the optimization algorithm. The predicted compliance of the 16-hr construct was 0.00059 mm Hg−1 while the experimentally determined compliance was 0.00065 mm Hg−1, a relative difference of 9.2%. Prior data in our laboratory has shown the compliance of the left anterior descending porcine coronary (LADC) artery to be 0.00071 ± 0.0003 mm Hg−1. Our optimization algorithm predicts that a 258-μm-thick construct that is GLUT vapor crosslinked for 8.1 hrs would match LADC compliance. This result is consistent with our previous work demonstrating that an 8-hr GLUT vapor crosslinked construct produces a compliance that is not significantly different from a porcine coronary LADC.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Go, A. S. , Mozaffarian, D. , Roger, V. L. , Benjamin, E. J. , Berry, J. D. , Blaha, M. J. , Dai, S. , Ford, E. S. , Fox, C. S. , Franco, S. , Fullerton, H. J. , Gillespie, C. , Hailpern, S. M. , Heit, J. A. , Howard, V. J. , Huffman, M. D. , Judd, S. E. , Kissela, B. M. , Kittner, S. J. , Lackland, D. T. , Lichtman, J. H. , Lisabeth, L. D. , Mackey, R. H. , Magid, D. J. , Marcus, G. M. , Marelli, A. , Matchar, D. B. , McGuire, D. K. , Mohler, E. R., 3rd , Moy, C. S. , Mussolino, M. E. , Neumar, R. W. , Nichol, G. , Pandey, D. K. , Paynter, N. P. , Reeves, M. J. , Sorlie, P. D. , Stein, J. , Towfighi, A. , Turan, T. N. , Virani, S. S. , Wong, N. D. , Woo, D. , and Turner, M. B. , 2014, “ Heart Disease and Stroke Statistics–2014 Update: A Report From the American Heart Association,” Circulation, 129(3), pp. e28–e292. [CrossRef] [PubMed]
Liu, T. , Liu, S. , Zhang, K. , Chen, J. , and Huang, N. , 2014, “ Endothelialization of Implanted Cardiovascular Biomaterial Surfaces: The Development From In Vitro to In Vivo,” J. Biomed. Mater. Res. Part A, 102(10), pp. 3754–3772. [CrossRef]
Nezarati, R. M. , Eifert, M. B. , Dempsey, D. K. , and Cosgriff-Hernandez, E. , 2015, “ Electrospun Vascular Grafts With Improved Compliance Matching to Native Vessels,” J. Biomed. Mater. Res. Part B, Appl. Biomater., 103(2), pp. 313–323. [CrossRef]
Tamimi, E. , Ardila, D. C. , Haskett, D. G. , Doetschman, T. , Slepian, M. J. , Kellar, R. S. , and Vande Geest, J. P. , 2015, “ Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries,” ASME J. Biomech. Eng., 138(1), p. 011001. [CrossRef]
Boland, E. D. , Matthews, J. A. , Pawlowski, K. J. , Simpson, D. G. , Wnek, G. E. , and Bowlin, G. L. , 2004, “ Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering,” Front. Biosci., 9(2), pp. 1422–1432. [CrossRef] [PubMed]
MCClure, M. J. , Sell, S. , Simpson, D. , and Bowlin, G. , 2009, “ Electrospun Polydioxanone, Elastin, and Collagen Vascular Scaffolds: Uniaxial Cyclic Distension,” J. Eng. Fibers Fabr., 4(2), pp. 18–25.
Wong, C. S. , Liu, X. , Xu, Z. , Lin, T. , and Wang, X. , 2013, “ Elastin and Collagen Enhances Electrospun Aligned Polyurethane as Scaffolds for Vascular Graft,” J. Mater. Sci.: Mater. Med., 24(8), pp. 1865–1874. [CrossRef] [PubMed]
Chung, J. , and Li, J. K. , 2004, “ Hemodynamic Simulation of Vascular Prosthesis Altering Pulse Wave Propagation,” 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEMBS '04), San Francisco, CA, Sept. 1–5, pp. 3678–3680.
Haskett, D. S. E. , Fouts, M. , Larson, D. , Azhar, M. , Utzinger, U. , and Vande Geest, J. P. , 2012, “ The Effects of Angiotensin II on the Coupled Microstructural and Biomechanical Response of C57BL/6 Mouse Aorta,” J. Biomech., 45(5), pp. 722–729. [CrossRef]
Haskett, D. G. , Azhar, M. , Utzinger, U. , and Vande Geest, J. P. , 2013, “ Progressive Alterations in Microstructural Organization and Biomechanical Response in the apoE Mouse Model of Aneurysm,” Biomatter, 3(2), pp. e24648-24641–e24648-24610.
Haskett, D. G. , Doyle, J. , Gard, C. , Chen, H. , Ball, C. , Estabrook, M. A. , Encinas, A. C. , Dietz, H. C. , Utzinger, U. , Vande Geest, J. P. , and Azhar, M. , 2012, “ Altered Tissue Behavior of Non-Aneurysmal Descending Thoracic Aorta in the Mouse Model of Marfan Syndrome,” Cell Tissue Res., 347(1), pp. 267–277. [CrossRef] [PubMed]
Keyes, J. T. , Borowicz, S. M. , Rader, J. H. , Utzinger, U. , Azhar, M. , and Vande Geest, J. P. , “ Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues With Two-Photon Microscopy,” Microsc. Microanal., 17(2), pp. 167–175. [CrossRef] [PubMed]
Keyes, J. T. , Lockwood, D. R. , Utzinger, U. , Montilla, L. G. , Witte, R. S. , and Vande Geest, J. P. , 2013, “ Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries,” Ann. Biomed. Eng., 41(7), pp. 1579–1591. [CrossRef] [PubMed]
Keyes, J. T. , Utzinger, U. , and Vande Geest, J. P. , 2011, “ Adaptation of a Two-Photon-Microscope-Interfacing Planar Biaxial Testing Device for the Microstructural and Macroscopic Characterization of Small Tubular Tissue Specimens,” ASME J. Biomech. Eng., 133(7), p. 075001. [CrossRef]
Keyes, J. T. , Lockwood, D. R. , Simon, B. R. , and Vande Geest, J. P. , 2013, “ Deformationally Dependent Fluid Transport Properties of Porcine Coronary Arteries Based on Location in the Coronary Vasculature,” J. Mech. Behav. Biomed. Mater., 17(1), pp. 296–306. [CrossRef] [PubMed]
Keyes, J. T. , Haskett, D. G. , Utzinger, U. , Azhar, M. , and Vande Geest, J. P. , 2011, “ Adaptation of a Planar Microbiaxial Optomechanical Device for the Tubular Biaxial Microstructural and Macroscopic Characterization of Small Vascular Tissues,” ASME J. Biomech. Eng., 133(7), p. 075001. [CrossRef]
Williams, M. J. , Utzinger, U. , Barkmeier-Kraemer, J. M. , and Vande Geest, J. P. , 2014, “ Differences in the Microstructure and Biomechanical Properties of the Recurrent Laryngeal Nerve as a Function of Age and Location,” ASME J. Biomech. Eng., 136(8), p. 081008. [CrossRef]
Keyes, J. T. , Simon, B. R. , and Vande Geest, J. P. , 2013, “ Location - Dependent Coronary Artery Diffusive and Convective Mass Transport Properties of a Lipophilic Drug Surrogate Measured Using Nonlinear Microscopy,” Pharm. Res., 30(4), pp.1147–1160. [CrossRef] [PubMed]
Dargaville, B. L. , Vaquette, C. , Rasoul, F. , Cooper-White, J. J. , Campbell, J. H. , and Whittaker, A. K. , 2013, “ Electrospinning and Crosslinking of Low-Molecular-Weight Poly(Trimethylene Carbonate-co-l-Lactide) as an Elastomeric Scaffold for Vascular Engineering,” Acta Biomater., 9(6), pp. 6885–6897. [CrossRef] [PubMed]
Ardila, D. C. , Tamimi, E. , Danford, F. L. , Haskett, D. G. , Kellar, R. S. , Doetschman, T. , and Vande Geest, J. P. , 2014, “ TGFβ2 Differentially Modulates Smooth Muscle Cell Proliferation and Migration in Electrospun Gelatin-Fibrinogen Constructs,” Biomaterials, 37(1), pp. 164–173. [PubMed]

Figures

Grahic Jump Location
Fig. 4

Example of an axisymmetric tube with fixed boundary conditions at the top and bottom and an applied pressure, P, on the inner surface. The tube has inside diameter (ID) and thickness t. The dotted line is the line of axisymmetry.

Grahic Jump Location
Fig. 3

Time dependent response surfaces used to determine constants for constitutive model in order to predict material behavior for crosslinking times for which experimental data has not been collected

Grahic Jump Location
Fig. 6

Response surface and experimental data comparison

Grahic Jump Location
Fig. 2

MOD being used to test a gelatin/fibrinogen tubular construct

Grahic Jump Location
Fig. 1

Electrospinning setup

Grahic Jump Location
Fig. 5

Optimization program schematic

Grahic Jump Location
Fig. 7

Objective function (current compliance–desired compliance) and simulation results. The desired compliance was 0.0007 mm Hg−1.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In