0
Technical Brief

Measuring Three-Dimensional Thorax Motion Via Biplane Radiographic Imaging: Technique and Preliminary Results

[+] Author and Article Information
Timothy G. Baumer

Henry Ford Health System,
Department of Orthopaedic Surgery,
Bone and Joint Center,
2799 West Grand Boulevard, E&R 2015,
Detroit, MI 48202
e-mail: tbaumer1@hfhs.org

Joshua W. Giles

Roth|McFarlane Hand and Upper Limb
Centre Bioengineering Laboratory,
Western University,
London, ON N6A 4L6, Canada
e-mail: Giles.joshgiles@gmail.com

Anne Drake

Henry Ford Health System,
Department of Orthopaedic Surgery,
Bone and Joint Center,
2799 West Grand Boulevard, E&R 2015,
Detroit, MI 48202
e-mail: aed65@case.edu

Roger Zauel

Henry Ford Health System,
Department of Orthopaedic Surgery,
Bone and Joint Center,
2799 West Grand Boulevard, E&R 2015,
Detroit, MI 48202
e-mail: rzauel1@bjc.hfh.edu

Michael J. Bey

Henry Ford Health System,
Department of Orthopaedic Surgery,
Bone and Joint Center,
2799 West Grand Boulevard, E&R 2015,
Detroit, MI 48202
e-mail: mbey1@bjc.hfh.edu

1Corresponding author.

2Current affiliation: Imperial College London, South Kensington Campus, London SW7 2AZ.

Manuscript received May 28, 2015; final manuscript received September 29, 2015; published online December 8, 2015. Assoc. Editor: Brian D. Stemper.

J Biomech Eng 138(1), 014504 (Dec 08, 2015) (5 pages) Paper No: BIO-15-1267; doi: 10.1115/1.4032058 History: Received May 28, 2015; Revised September 29, 2015

Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Topics: Rotation , Imaging
Your Session has timed out. Please sign back in to continue.

References

Burkhart, S. S. , Morgan, C. D. , and Kibler, W. B. , 2003, “ The Disabled Throwing Shoulder: Spectrum of Pathology Part III: The SICK Scapula, Scapular Dyskinesis, the Kinetic Chain, and Rehabilitation,” Arthroscopy, 19(6), pp. 641–661. [CrossRef] [PubMed]
Kibler, W. B. , and McMullen, J. , 2003, “ Scapular Dyskinesis and Its Relation to Shoulder Pain,” J. Am. Acad. Orthop. Surg., 11(2), pp. 142–151. [PubMed]
Kibler, W. B. , and Sciascia, A. , 2010, “ Current Concepts: Scapular Dyskinesis,” Br. J. Sports Med., 44(5), pp. 300–305. [CrossRef] [PubMed]
Uhl, T. L. , Kibler, W. B. , Gecewich, B. , and Tripp, B. L. , 2009, “ Evaluation of Clinical Assessment Methods for Scapular Dyskinesis,” Arthroscopy, 25(11), pp. 1240–1248. [CrossRef] [PubMed]
Kibler, W. B. , Ludewig, P. M. , McClure, P. W. , Michener, L. A. , Bak, K. , and Sciascia, A. D. , 2013, “ Clinical Implications of Scapular Dyskinesis in Shoulder Injury: The 2013 Consensus Statement From the ‘Scapular Summit',” Br. J. Sports Med., 47(14), pp. 877–885. [CrossRef] [PubMed]
Reinold, M. M. , Escamilla, R. F. , and Wilk, K. E. , 2009, “ Current Concepts in the Scientific and Clinical Rationale Behind Exercises for Glenohumeral and Scapulothoracic Musculature,” J. Orthop. Sports Phys. Ther., 39(2), pp. 105–117. [CrossRef] [PubMed]
Amasay, T. , and Karduna, A. R. , 2009, “ Scapular Kinematics in Constrained and Functional Upper Extremity Movements,” J. Orthop. Sports Phys. Ther., 39(8), pp. 618–627. [CrossRef] [PubMed]
Braman, J. P. , Engel, S. C. , Laprade, R. F. , and Ludewig, P. M. , 2009, “ In Vivo Assessment of Scapulohumeral Rhythm During Unconstrained Overhead Reaching in Asymptomatic Subjects,” J. Shoulder Elbow Surg., 18(6), pp. 960–967. [CrossRef] [PubMed]
McClure, P. W. , Michener, L. A. , Sennett, B. J. , and Karduna, A. R. , 2001, “ Direct 3-Dimensional Measurement of Scapular Kinematics During Dynamic Movements In Vivo,” J. Shoulder Elbow Surg., 10(3), pp. 269–277. [CrossRef] [PubMed]
Ebaugh, D. D. , McClure, P. W. , and Karduna, A. R. , 2006, “ Scapulothoracic and Glenohumeral Kinematics Following an External Rotation Fatigue Protocol,” J. Orthop. Sports Phys. Ther., 36(8), pp. 557–571. [CrossRef] [PubMed]
Ludewig, P. M. , and Cook, T. M. , 2000, “ Alterations in Shoulder Kinematics and Associated Muscle Activity in People With Symptoms of Shoulder Impingement,” Phys. Ther., 80(3), pp. 276–291. [PubMed]
McClure, P. W. , Michener, L. A. , and Karduna, A. R. , 2006, “ Shoulder Function and 3-Dimensional Scapular Kinematics in People With and Without Shoulder Impingement Syndrome,” Phys. Ther., 86(8), pp. 1075–1090. [PubMed]
Ogston, J. B. , and Ludewig, P. M. , 2007, “ Differences in 3-Dimensional Shoulder Kinematics Between Persons With Multidirectional Instability and Asymptomatic Controls,” Am. J. Sports Med., 35(8), pp. 1361–1370. [CrossRef] [PubMed]
Ludewig, P. M. , and Braman, J. P. , 2011, “ Shoulder Impingement: Biomechanical Considerations in Rehabilitation,” Man. Ther., 16(1), pp. 33–39. [CrossRef] [PubMed]
Borstad, J. D. , and Ludewig, P. M. , 2002, “ Comparison of Scapular Kinematics Between Elevation and Lowering of the Arm in the Scapular Plane,” Clin. Biomech., 17(9–10), pp. 650–659. [CrossRef]
Ludewig, P. M. , and Reynolds, J. F. , 2009, “ The Association of Scapular Kinematics and Glenohumeral Joint Pathologies,” J. Orthop. Sports Phys. Ther., 39(2), pp. 90–104. [CrossRef] [PubMed]
Tsai, N. T. , McClure, P. W. , and Karduna, A. R. , 2003, “ Effects of Muscle Fatigue on 3-Dimensional Scapular Kinematics,” Arch. Phys. Med. Rehabil., 84(7), pp. 1000–1005. [CrossRef] [PubMed]
Bey, M. J. , Kline, S. K. , Zauel, R. , Lock, T. R. , and Kolowich, P. A. , 2008, “ Measuring Dynamic In-Vivo Glenohumeral Joint Kinematics: Technique and Preliminary Results,” J. Biomech., 41(3), pp. 711–714. [CrossRef] [PubMed]
Bey, M. J. , Zauel, R. , Brock, S. K. , and Tashman, S. , 2006, “ Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics,” ASME J. Biomech. Eng., 128(4), pp. 604–609. [CrossRef]
Massimini, D. F. , Boyer, P. J. , Papannagari, R. , Gill, T. J. , Warner, J. P. , and Li, G. , 2012, “ In-Vivo Glenohumeral Translation and Ligament Elongation During Abduction and Abduction With Internal and External Rotation,” J. Orthop. Surg. Res., 7(1), p. 29. [CrossRef] [PubMed]
Matsuki, K. , Matsuki, K. O. , Mu, S. , Yamaguchi, S. , Ochiai, N. , Sasho, T. , Sugaya, H. , Toyone, T. , Wada, Y. , Takahashi, K. , and Banks, S. A. , 2011, “ In Vivo 3-Dimensional Analysis of Scapular Kinematics: Comparison of Dominant and Nondominant Shoulders,” J. Shoulder Elbow Surg., 20(4), pp. 659–665. [CrossRef] [PubMed]
Nishinaka, N. , Tsutsui, H. , Mihara, K. , Suzuki, K. , Makiuchi, D. , Kon, Y. , Wright, T. W. , Moser, M. W. , Gamada, K. , Sugimoto, H. , and Banks, S. A. , 2008, “ Determination of In Vivo Glenohumeral Translation Using Fluoroscopy and Shape-Matching Techniques,” J. Shoulder Elbow Surg., 17(2), pp. 319–322. [CrossRef] [PubMed]
Zhu, Z. , Massimini, D. F. , Wang, G. , Warner, J. J. , and Li, G. , 2012, “ The Accuracy and Repeatability of an Automatic 2D–3D Fluoroscopic Image-Model Registration Technique for Determining Shoulder Joint Kinematics,” Med. Eng. Phys., 34(9), pp. 1303–1309. [CrossRef] [PubMed]
Bey, M. J. , Peltz, C. D. , Ciarelli, K. , Kline, S. K. , Divine, G. W. , van Holsbeeck, M. , Muh, S. , Kolowich, P. A. , Lock, T. R. , and Moutzouros, V. , 2011, “ In Vivo Shoulder Function After Surgical Repair of a Torn Rotator Cuff: Glenohumeral Joint Mechanics, Shoulder Strength, Clinical Outcomes, and Their Interaction,” Am. J. Sports Med., 39(10), pp. 2117–2129. [CrossRef] [PubMed]
San Juan, J. G. , Kosek, P. , and Karduna, A. R. , 2013, “ Humeral Head Translation After a Suprascapular Nerve Block,” J. Appl. Biomech., 29(4), pp. 371–379. [PubMed]
Giphart, J. E. , van der Meijden, O. A. , and Millett, P. J. , 2012, “ The Effects of Arm Elevation on the 3-Dimensional Acromiohumeral Distance: A Biplane Fluoroscopy Study With Normative Data,” J. Shoulder Elbow Surg., 21(11), pp. 1593–1600. [CrossRef] [PubMed]
Kon, Y. , Nishinaka, N. , Gamada, K. , Tsutsui, H. , and Banks, S. A. , 2008, “ The Influence of Handheld Weight on the Scapulohumeral Rhythm,” J. Shoulder Elbow Surg., 17(6), pp. 943–946. [CrossRef] [PubMed]
Wu, G. , van der Helm, F. C. , Veeger, H. E. , Makhsous, M. , Van Roy, P. , Anglin, C. , Nagels, J. , Karduna, A. R. , McQuade, K. , Wang, X. , Werner, F. W. , and Buchholz, B. , 2005, “ ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand,” J. Biomech., 38(5), pp. 981–992. [CrossRef] [PubMed]
Anderst, W. , Zauel, R. , Bishop, J. , Demps, E. , and Tashman, S. , 2008, “ Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running,” Med. Eng. Phys., 31(1), pp. 10–16. [CrossRef] [PubMed]
Bey, M. J. , Kline, S. K. , Tashman, S. , and Zauel, R. , 2008, “ Accuracy of Biplane X-Ray Imaging Combined With Model-Based Tracking for Measuring In-Vivo Patellofemoral Joint Motion,” J. Orthop. Surg. Res., 3(1), p. 38. [CrossRef] [PubMed]
McDonald, C. P. , Moutzouros, V. , and Bey, M. J. , 2012, “ Measuring Dynamic In-Vivo Elbow Kinematics: Description of Technique and Estimation of Accuracy,” ASME J. Biomech. Eng., 134(12), p. 124502. [CrossRef]
McDonald, C. P. , Bachison, C. C. , Chang, V. , Bartol, S. W. , and Bey, M. J. , 2010, “ Three-Dimensional Dynamic In Vivo Motion of the Cervical Spine: Assessment of Measurement Accuracy and Preliminary Findings,” Spine J., 10(9), pp. 497–504. [CrossRef] [PubMed]
Kapron, A. L. , Aoki, S. K. , Peters, C. L. , Maas, S. A. , Bey, M. J. , Zauel, R. , and Anderson, A. E. , 2014, “ Accuracy and Feasibility of Dual Fluoroscopy and Model-Based Tracking to Quantify In Vivo Hip Kinematics During Clinical Exams,” J. Appl. Biomech., 30(3), pp. 461–470. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Anatomical landmark definitions used in thorax coordinate system construction for (a) the conventional thorax coordinate system promoted by the International Society of Biomechanics (ISB) [28] and (b) rib-based thorax coordinate systems, based on all possible rib-pair combinations of rib1–rib6 (rib1:rib2, rib1:rib3, … , rib5:rib6)

Grahic Jump Location
Fig. 2

Comparison of the conventional thorax coordinate system promoted by the ISB (A) and the rib-based coordinate system (B)

Grahic Jump Location
Fig. 3

Comparison of scapulothoracic motion between the current study (⋄) and data previously reported by McClure et al. [9] (•) in terms of anterior/posterior tilting (a), internal/external rotation (b), and upward/downward rotation (c). The data from the current study are reported as mean (±SD) of three patients, whereas the McClure data are from eight healthy subjects.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In