0
Technical Brief

Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow

[+] Author and Article Information
Amirhossein Arzani

Department of Mechanical Engineering,
University of California,
Berkeley, CA 94720-1740

Shawn C. Shadden

Department of Mechanical Engineering,
University of California,
Berkeley, CA 94720-1740
e-mail: shadden@berkeley.edu

1Corresponding author.

Manuscript received May 6, 2015; final manuscript received November 5, 2015; published online December 8, 2015. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 138(1), 014503 (Dec 08, 2015) (10 pages) Paper No: BIO-15-1221; doi: 10.1115/1.4032056 History: Received May 06, 2015; Revised November 05, 2015

Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Barakat, A. I. , and Lieu, D. K. , 2003, “ Differential Responsiveness of Vascular Endothelial Cells to Different Types of Fluid Mechanical Shear Stress,” Cell Biochem. Biophys., 38(3), pp. 323–343. [CrossRef] [PubMed]
Lu, D. , and Kassab, G. S. , 2011, “ Role of Shear Stress and Stretch in Vascular Mechanobiology,” J. R. Soc., Interface, 8(63), pp. 1379–1385. [CrossRef]
Chiu, J. J. , and Chien, S. , 2011, “ Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives,” Physiol. Rev., 91(1), pp. 327–387. [CrossRef] [PubMed]
Archie, J. P., Jr. , Hyun, S. , Kleinstreuer, C. , Longest, P. W. , Truskey, G. A. , and Buchanan, J. R. , 2001, “ Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels,” Crit. Rev. Biomed. Eng., 29(1), pp. 1–64. [CrossRef] [PubMed]
Gallo, D. , Isu, G. , Massai, D. , Pennella, F. , Deriu, M. A. , Ponzini, R. , Bignardi, C. , Audenino, A. , Rizzo, G. , and Morbiducci, U. , 2014, “ A Survey of Quantitative Descriptors of Arterial Flows,” Visualization and Simulation of Complex Flows in Biomedical Engineering, Springer, Dordrecht, pp. 1–24.
Ostrowski, M. A. , Huang, N. F. , Walker, T. W. , Verwijlen, T. , Poplawski, C. , Khoo, A. S. , Cooke, J. P. , Fuller, G. G. , and Dunn, A. R. , 2014, “ Microvascular Endothelial Cells Migrate Upstream and Align Against the Shear Stress Field Created by Impinging Flow,” Biophys. J., 106(2), pp. 366–374. [CrossRef] [PubMed]
Meng, H. , Tutino, V. M. , Xiang, J. , and Siddiqui, A. , 2013, “ High WSS or Low WSS? Complex Interactions of Hemodynamics With Intracranial Aneurysm Initiation, Growth, and Rupture: Toward a Unifying Hypothesis,” Am. J. Neuroradiol., 35(7), pp. 1254–1262. [CrossRef]
Watton, P. N. , Selimovic, A. , Raberger, N. B. , Huang, P. , Holzapfel, G. A. , and Ventikos, Y. , 2011, “ Modelling Evolution and the Evolving Mechanical Environment of Saccular Cerebral Aneurysms,” Biomech. Model. Mechanobiol., 10(1), pp. 109–132. [CrossRef] [PubMed]
Ku, D. N. , Giddens, D. P. , Zarins, C. K. , and Glagov, S. , 1985, “ Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress,” Arterioscler., Thromb., Vasc. Biol., 5(3), pp. 293–302. [CrossRef]
Knight, J. , Olgac, U. , Saur, S. C. , Poulikakos, D. , Marshall, W., Jr. , Cattin, P. C. , Alkadhi, H. , and Kurtcuoglu, V. , 2010, “ Choosing the Optimal Wall Shear Parameter for the Prediction of Plaque Location—A Patient-Specific Computational Study in Human Right Coronary Arteries,” Atherosclerosis, 211(2), pp. 445–450. [CrossRef] [PubMed]
Buchanan, J. R., Jr. , Kleinstreuer, C. , Truskey, G. A. , and Lei, M. , 1999, “ Relation Between Non-Uniform Hemodynamics and Sites of Altered Permeability and Lesion Growth at the Rabbit Aorto-Celiac Junction,” Atherosclerosis, 143(1), pp. 27–40. [CrossRef] [PubMed]
Dolan, J. M. , Kolega, J. , and Meng, H. , 2013, “ High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review,” Ann. Biomed. Eng., 41(7), pp. 1411–1427. [CrossRef] [PubMed]
Buchanan, J. R. , Kleinstreuer, C. , Hyun, S. , and Truskey, G. A. , 2003, “ Hemodynamics Simulation and Identification of Susceptible Sites of Atherosclerotic Lesion Formation in a Model Abdominal Aorta,” J. Biomech., 36(8), pp. 1185–1196. [CrossRef] [PubMed]
White, C. R. , Haidekker, M. , Bao, X. , and Frangos, J. A. , 2001, “ Temporal Gradients in Shear, But Not Spatial Gradients, Stimulate Endothelial Cell Proliferation,” Circulation, 103(20), pp. 2508–2513. [CrossRef] [PubMed]
Dolan, J. M. , Meng, H. , Singh, S. , Paluch, R. , and Kolega, J. , 2011, “ High Fluid Shear Stress and Spatial Shear Stress Gradients Affect Endothelial Proliferation, Survival, and Alignment,” Ann. Biomed. Eng., 39(6), pp. 1620–1631. [CrossRef] [PubMed]
Van Wyk, S. , Wittberg, L. P. , and Fuchs, L. , 2014, “ Atherosclerotic Indicators for Blood-Like Fluids in 90-degree Arterial-Like Bifurcations,” Comput. Biol. Med., 50, pp. 56–69. [CrossRef] [PubMed]
Browne, L. D. , O'Callaghan, S. , Hoey, D. A. , Griffin, P. , McGloughlin, T. M. , and Walsh, M. T. , 2014, “ Correlation of Hemodynamic Parameters to Endothelial Cell Proliferation in an End to Side Anastomosis,” Cardiovasc. Eng. Technol., 5(1), pp. 110–118. [CrossRef]
Shimogonya, Y. , Ishikawa, T. , Imai, Y. , Matsuki, N. , and Yamaguchi, T. , 2009, “ Can Temporal Fluctuation in Spatial Wall Shear Stress Gradient Initiate a Cerebral Aneurysm? A Proposed Novel Hemodynamic Index, the Gradient Oscillatory Number (GON),” J. Biomech., 42(4), pp. 550–554. [CrossRef] [PubMed]
Chen, H. , Selimovic, A. , Thompson, H. , Chiarini, A. , Penrose, J. , Ventikos, Y. , and Watton, P. N. , 2013, “ Investigating the Influence of Haemodynamic Stimuli on Intracranial Aneurysm Inception,” Ann. Biomed. Eng., 41(7), pp. 1492–1504. [CrossRef] [PubMed]
Chakraborty, A. , Chakraborty, S. , Jala, V . R. , Haribabu, B. , Sharp, M. K. , and Berson, R. E. , 2012, “ Effects of Biaxial Oscillatory Shear Stress on Endothelial Cell Proliferation and Morphology,” Biotechnol. Bioeng., 109(3), pp. 695–707. [CrossRef] [PubMed]
Peiffer, V. , Sherwin, S. J. , and Weinberg, P. D. , 2013, “ Computation in the Rabbit Aorta of a New Metric—The Transverse Wall Shear Stress—To Quantify the Multidirectional Character of Disturbed Blood Flow,” J. Biomech., 46(15), pp. 2651–2658. [CrossRef] [PubMed]
Mohamied, Y. , Rowland, E. M. , Bailey, E. L. , Sherwin, S. J. , Schwartz, M. A. , and Weinberg, P. D. , 2014, “ Change of Direction in the Biomechanics of Atherosclerosis,” Ann. Biomed. Eng., 43(1), pp. 16–25. [CrossRef] [PubMed]
Morbiducci, U. , Gallo, D. , Cristofanelli, S. , Ponzini, R. , Deriu, M. A. , Rizzo, G. , and Steinman, D. A. , 2015, “ A Rational Approach to Defining Principal Axes of Multidirectional Wall Shear Stress in Realistic Vascular Geometries, With Application to the Study of the Influence of Helical Flow on Wall Shear Stress Directionality in Aorta,” J. Biomech., 48(6), pp. 899–906. [CrossRef] [PubMed]
Lee, S. W. , Antiga, L. , and Steinman, D. A. , 2009, “ Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation,” ASME J. Biomech. Eng., 131(6), p. 061013. [CrossRef]
Gambaruto, A. M. , Doorly, D. J. , and Yamaguchi, T. , 2010, “ Wall Shear Stress and Near-Wall Convective Transport: Comparisons With Vascular Remodelling in a Peripheral Graft Anastomosis,” J. Comput. Phys., 229(14), pp. 5339–5356. [CrossRef]
Gambaruto, A. M. , and João, A. J. , 2012, “ Flow Structures in Cerebral Aneurysms,” Comput. Fluids, 65, pp. 56–65. [CrossRef]
El Hassan, M. , Assoum, H. H. , Martinuzzi, R. , Sobolik, V. , Abed-Meraim, K. , and Sakout, A. , 2013, “ Experimental Investigation of the Wall Shear Stress in a Circular Impinging Jet,” Phys. Fluids, 25(7), p. 077101. [CrossRef]
Hansen, K. , and Shadden, S. , 2015, “ A Reduced-Dimensional Model for Near-Wall Transport in Cardiovascular Flows,” Biomech. Model. Mechanobiol., epub.
Conway, D. E. , and Schwartz, M. A. , 2013, “ Flow-Dependent Cellular Mechanotransduction in Atherosclerosis,” J. Cell Sci., 126(22), pp. 5101–5109. [CrossRef] [PubMed]
John, K. , and Barakat, A. I. , 2001, “ Modulation of ATP/ADP Concentration at the Endothelial Surface by Shear Stress: Effect of Flow-Induced ATP Release,” Ann. Biomed. Eng., 29(9), pp. 740–751. [CrossRef] [PubMed]
Arzani, A. , and Shadden, S. C. , 2012, “ Characterization of the Transport Topology in Patient-Specific Abdominal Aortic Aneurysm Models,” Phys. Fluids, 24(8), p. 081901. [CrossRef]
Arzani, A. , Les, A. S. , Dalman, R. L. , and Shadden, S. C. , 2014, “ Effect of Exercise on Patient Specific Abdominal Aortic Aneurysm Flow Topology and Mixing,” Int. J. Numer. Methods Biomed. Eng., 30(2), pp. 280–295. [CrossRef]
Taylor, C. A. , Hughes, T. J. R. , and Zarins, C. K. , 1998, “ Finite Element Modeling of Blood Flow in Arteries,” Comput. Methods Appl. Mech. Eng., 158(1), pp. 155–196. [CrossRef]
Jansen, K. E. , Whiting, C. H. , and Hulbert, G. M. , 2000, “ A Generalized-Alpha Method for Integrating the Filtered Navier-Stokes Equations With a Stabilized Finite Element Method,” Comput. Methods Appl. Mech. Eng., 190(3–4), pp. 305–319. [CrossRef]
Les, A. S. , Shadden, S. C. , Figueroa, C. A. , Park, J. M. , Tedesco, M. M. , Herfkens, R. J. , Dalman, R. L. , and Taylor, C. A. , 2010, “ Quantification of Hemodynamics in Abdominal Aortic Aneurysms During Rest and Exercise Using Magnetic Resonance Imaging and Computational Fluid Dynamics,” Ann. Biomed. Eng., 38(4), pp. 1288–1313. [CrossRef] [PubMed]
Arzani, A. , Suh, G. Y. , Dalman, R. L. , and Shadden, S. C. , 2014, “ A Longitudinal Comparison of Hemodynamics and Intraluminal Thrombus Deposition in Abdominal Aortic Aneurysms,” Am. J. Physiol.: Heart Circ. Physiol., 307, pp. H1786–H1795. [CrossRef] [PubMed]
Martorell, J. , Santomá, P. , Kolandaivelu, K. , Kolachalama, V . B. , Melgar-Lesmes, P. , Molins, J. J. , Garcia, L. , Edelman, E. R. , and Balcells, M. , 2014, “ Extent of Flow Recirculation Governs Expression of Atherosclerotic and Thrombotic Biomarkers in Arterial Bifurcations,” Cardiovasc. Res., 103(1), pp. 37–46. [CrossRef] [PubMed]
Barbee, K. A. , 2002, “ Role of Subcellular Shear–Stress Distributions in Endothelial Cell Mechanotransduction,” Ann. Biomed. Eng., 30(4), pp. 472–482. [CrossRef] [PubMed]
Kuharsky, A. L. , and Fogelson, A. L. , 2001, “ Surface-Mediated Control of Blood Coagulation: The Role of Binding Site Densities and Platelet Deposition,” Biophys. J., 80(3), pp. 1050–1074. [CrossRef] [PubMed]
Ethier, C. R. , 2002, “ Computational Modeling of Mass Transfer and Links to Atherosclerosis,” Ann. Biomed. Eng., 30(4), pp. 461–471. [CrossRef] [PubMed]
Mantha, A. , Karmonik, C. , Benndorf, G. , Strother, C. , and Metcalfe, R. , 2006, “ Hemodynamics in a Cerebral Artery Before and After the Formation of an Aneurysm,” Am. J. Neuroradiol., 27(5), pp. 1113–1118.
Stalder, A. F. , Russe, M. F. , Frydrychowicz, A. , Bock, J. , Hennig, J. , and Markl, M. , 2008, “ Quantitative 2D and 3D Phase Contrast MRI: Optimized Analysis of Blood Flow and Vessel Wall Parameters,” Magn. Reson. Med., 60(5), pp. 1218–1231. [CrossRef] [PubMed]
Gallo, D. , Steinman, D. A. , Bijari, P. B. , and Morbiducci, U. , 2012, “ Helical Flow in Carotid Bifurcation as Surrogate Marker of Exposure to Disturbed Shear,” J. Biomech., 45(14), pp. 2398–2404. [CrossRef] [PubMed]
Liu, X. , Sun, A. , Fan, Y. , and Deng, X. , 2015, “ Physiological Significance of Helical Flow in the Arterial System and Its Potential Clinical Applications,” Ann. Biomed. Eng., 43(1), pp. 3–15. [CrossRef] [PubMed]
Poelma, C. , Watton, P. N. , and Ventikos, Y. , 2015, “ Transitional Flow in Aneurysms and the Computation of Haemodynamic Parameters,” J. R. Soc., Interface, 12(105), p. 20141394. [CrossRef]
Kataoka, N. , Ujita, S. , and Sato, M. , 1998, “ Effect of Flow Direction on the Morphological Responses of Cultured Bovine Aortic Endothelial Cells,” Med. Biol. Eng. Comput., 36(1), pp. 122–128. [CrossRef] [PubMed]
Peiffer, V. , Sherwin, S. J. , and Weinberg, P. D. , 2013, “ Does Low and Oscillatory Wall Shear Stress Correlate Spatially With Early Atherosclerosis? A Systematic Review,” Cardiovasc. Res., 99, pp. 242–250. [PubMed]
Cherubini, C. , Filippi, S. , Gizzi, A. , and Nestola, M. G. C. , 2015, “ On the Wall Shear Stress Gradient in Fluid Dynamics,” Commun. Comput. Phys., 17(3), pp. 808–821. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Unit vector field et is defined as the unit tangent vector that is most aligned with the centerline direction. The binormal vector eb is computed as the cross product of this unit tangent vector and the unit normal vector.

Grahic Jump Location
Fig. 2

Patient-specific models used in this study. The shaded region shows the aneurysmal region, where the WSS correlations were performed.

Grahic Jump Location
Fig. 3

Instantaneous complex WSS vectors, and the corresponding WSS streamlines for three patients. To improve visualization, the WSS vectors are scaled differently in each patient; however the same color mapping was used among all cases.

Grahic Jump Location
Fig. 4

WSS parameters for a representative case (patient 3). The anterior view is shown in this figure. All units are based on dynes/cm2 for WSS magnitude, radians for WSS angle, cm for spatial gradients, and seconds for time. OSI, Δ90 and mix parameters are dimensionless.

Grahic Jump Location
Fig. 5

WSS parameters for a representative case (patient 3). The posterior view is shown in this figure. All units are based on dynes/cm2 for WSS magnitude, rad for WSS angle, cm for spatial gradients, and seconds for time. OSI, Δ90 and mix parameters are dimensionless.

Grahic Jump Location
Fig. 6

Sum of WSS vectors in the tangent direction (∫0Tτtdt) for a representative case (patient 4). Positive values show regions with dominant forward near wall flow. Negative values show regions with dominant backward near wall flow. The colorbar range does not represent peak values.

Grahic Jump Location
Fig. 7

Sum of WSS vectors in the binormal direction (∫0Tτbdt) for two representative cases (patients 4 and 6). Anterior views are shown. Positive values show regions with dominant counterclockwise near wall rotating flow. Negative values show regions with dominant clockwise near wall rotating flow. The colorbar range does not represent peak values.

Grahic Jump Location
Fig. 8

(a) Changes in WSS angle can be computed wrong in regions near the transition of the coordinate (between 0 and 2π using the convention shown). (b) Quantification of changes in WSS angle can be achieved by computation of WSS angle with respect to two reference directions and taking the minimum of the two differences.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In