Research Papers

Automated Three-Dimensional Reconstruction of the Left Ventricle From Multiple-Axis Echocardiography

[+] Author and Article Information
Navaneetha Krishnan Rajan, Zeying Song

Department of Mechanical and
Aerospace Engineering,
University at Buffalo,
SUNY, Buffalo, NY 14260

Kenneth R. Hoffmann

Department of Neurosurgery,
University at Buffalo,
SUNY, Buffalo, NY 14214

Marek Belohlavek, Eileen M. McMahon

Division of Cardiovascular Diseases,
Department of Internal Medicine,
Mayo Clinic,
Scottsdale, AZ 85259

Iman Borazjani

Department of Mechanical and
Aerospace Engineering,
University at Buffalo,
SUNY, Buffalo, NY 14260
e-mail: iman@buffalo.edu

1Corresponding author.

Manuscript received April 3, 2015; final manuscript received October 30, 2015; published online November 23, 2015. Assoc. Editor: Alison Marsden.

J Biomech Eng 138(1), 011003 (Nov 23, 2015) (12 pages) Paper No: BIO-15-1146; doi: 10.1115/1.4031977 History: Received April 03, 2015; Revised October 30, 2015

Two-dimensional echocardiography (echo) is the method of choice for noninvasive evaluation of the left ventricle (LV) function owing to its low cost, fast acquisition time, and high temporal resolution. However, it only provides the LV boundaries in discrete 2D planes, and the 3D LV geometry needs to be reconstructed from those planes to quantify LV wall motion, acceleration, and strain, or to carry out flow simulations. An automated method is developed for the reconstruction of the 3D LV endocardial surface using echo from a few standard cross sections, in contrast with the previous work that has used a series of 2D scans in a linear or rotational manner for 3D reconstruction. The concept is based on a generalized approach so that the number or type (long-axis (LA) or short-axis (SA)) of sectional data is not constrained. The location of the cross sections is optimized to minimize the difference between the reconstructed and measured cross sections, and the reconstructed LV surface is meshed in a standard format. Temporal smoothing is implemented to smooth the motion of the LV and the flow rate. This software tool can be used with existing clinical 2D echo systems to reconstruct the 3D LV geometry and motion to quantify the regional akinesis/dyskinesis, 3D strain, acceleration, and velocities, or to be used in ventricular flow simulations.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Kono, T. , Sabbah, H. N. , Rosman, H. , Alam, M. , Jafri, S. , and Goldstein, S. , 1992, “ Left Ventricular Shape Is the Primary Determinant of Functional Mitral Regurgitation in Heart Failure,” J. Am. Coll. Cardiol., 20(7), pp. 1594–1598. [CrossRef] [PubMed]
Rankin, J. S. , McHale, P. A. , Arentzen, C. E. , Ling, D. , Greenfield, J. , and Anderson, R. W. , 1976, “ The Three-Dimensional Dynamic Geometry of the Left Ventricle in the Conscious Dog,” Circ. Res., 39(3), pp. 304–313. [CrossRef] [PubMed]
Adhyapak, S. M. , and Parachuri, V. R. , 2010, “ Architecture of the Left Ventricle: Insights for Optimal Surgical Ventricular Restoration,” Heart Fail. Rev., 15(1), pp. 73–83. [CrossRef] [PubMed]
Buckberg, G. D. , 2006, “ Form Versus Disease: Optimizing Geometry During Ventricular Restoration,” Eur. J. Cardiothorac. Surg., 29S(1), pp. S238–S244. [CrossRef]
D'Cruz, I. A. , Shroff, S. G. , Janicki, J. S. , Jain, A. , Reddy, H. K. , and Lakier, J. B. , 1989, “ Differences in the Shape of the Normal, Cardiomyopathic, and Volume Overloaded Human Left Ventricle,” J. Am. Soc. Echocardiogr., 2(6), pp. 408–414. [CrossRef] [PubMed]
Tomlinson, C. W. , 1987, “ Left Ventricular Geometry and Function in Experimental Heart Failure,” Can. J. Cardiol., 3(6), pp. 305–310. [PubMed]
Linzbach, A. J. , 1960, “ Heart Failure From the Point of View of Quantitative Anatomy,” Am. J. Cardiol., 5(3), pp. 370–382. [CrossRef] [PubMed]
Mandinov, L. , Eberli, F. R. , Seiler, C. , and Hess, O. M. , 2000, “ Diastolic Heart Failure,” Cardiovasc. Res., 45(4), pp. 813–825. [CrossRef] [PubMed]
McMurray, J. J. V. , 2010, “ Systolic Heart Failure,” N. Engl. J. Med., 362(3), pp. 228–238. [CrossRef] [PubMed]
Blessberger, H. , and Binder, T. , 2010, “ Two Dimensional Speckle Tracking Echocardiography: Basic Principles,” Heart, 96(9), pp. 716–722. [CrossRef] [PubMed]
Ammar, M. , Mahmoudi, S. , and Chikh, M. A. , 2012, “ Endocardial Border Detection in Cardiac Magnetic Resonance Images Using Level Set Method,” J. Digit. Imaging, 25(2), pp. 294–306. [CrossRef] [PubMed]
Pettigrew, R. , and Oshinski, J. , 1999, “ MRI Techniques for Cardiovascular Imaging,” J. Magn. Reson. Imaging, 10(5), pp. 590–601. [CrossRef] [PubMed]
Conti, C. , Votta, E. , Corsi, C. , De Marchi, D. , Tarroni, G. , Stevanella, M. , Lombardi, M. , Parodi, O. , Caiani, E. , and Redaelli, A. , 2011, “ Left Ventricular Modelling: A Quantitative Functional Assessment Tool Based on Cardiac Magnetic Resonance Imaging,” Interface Focus, 1(3), pp. 384–395. [CrossRef] [PubMed]
Saber, N. , Gosman, A. , Wood, N. , Kilner, P. , Charrier, C. , and Firmin, D. , 2001, “ Computational Flow Modeling of the Left Ventricle Based on In Vivo MRI Data: Initial Experience,” Ann. Biomed. Eng., 29(4), pp. 275–283. [CrossRef] [PubMed]
Schenkel, T. , Malve, M. , Reik, M. , Markl, M. , Jung, B. , and Oertel, H. , 2009, “ MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart,” Ann. Biomed. Eng., 37(3), pp. 503–515. [CrossRef] [PubMed]
Khankirawatana, B. , Khankirawatana, S. , Lof, J. , and Porter, T. R. , 2002, “ Left Atrial Volume Determination by Three-dimensional Echocardiography Reconstruction: Validation and Application of a Simplified Technique,” J. Am. Soc. Echocardiogr., 15(10), pp. 1051–1056. [CrossRef] [PubMed]
Mangual, J. O. , Luca, A. D. , Toncelli, L. , Domenichini, F. , Galanti, G. , and Pedrizzetti, G. , 2012, “ Three-Dimensional Reconstruction of the Functional Straight-Line Pattern in the Left Ventricle From 3-Dimensional Echocardiography,” Circ. Cardiovasc. Imaging, 5(6), pp. 808–809. [CrossRef] [PubMed]
Lang, R. M. , Badano, L. P. , Tsang, W. , Adams, D. H. , Agricola, E. , Buck, T. , Faletra, F. F. , Franke, A. , Hung, J. , de Isla, L. P. , Kamp, O. , Kasprzak, J. D. , Lancellotti, P. , Marwick, T. H. , McCulloch, M. L. , Monaghan, M. J. , Nihoyannopoulos, P. , Pandian, N. G. , Pellikka, P. A. , Pepi, M. , Roberson, D. A. , Shernan, S. K. , Shirali, G. S. , Sugeng, L. , Ten Cate, F. J. , Vannan, M. A. , Zamorano, J. L. , and Zoghbi, W. A. , 2012, “ EAE/ASE Recommendations for Image Acquisition and Display Using Three-Dimensional Echocardiography,” J. Am. Soc. Echocardiogr., 25(1), pp. 3–46. [CrossRef] [PubMed]
Pourmorteza, A. , Schuleri, K. H. , Herzka, D. A. , Lardo, A. C. , and McVeigh, E. R. , 2012, “ A New Method for Cardiac Computed Tomography Regional Function Assessment: Stretch Quantifier for Endocardial Engraved Zones (SQUEEZ),” Circ. Cardiovasc. Imaging, 5(2), pp. 243–250. [CrossRef] [PubMed]
Mangual, J. O. , Kraigher-Krainer, E. , and Luca, A. D. , 2013, “ Comparative Numerical Study on Left Ventricular Fuid Dynamics After Dilated Cardiomyopathy,” J. Biomech., 46(10), pp. 1611–1617. [CrossRef] [PubMed]
Sengupta, P. P. , Pedrizzetti, G. , Kilner, P. J. , Kheradvar, A. , Ebbers, T. , Tonti, G. , Fraser, A. G. , and Narula, J. , 2012, “ Emerging Trends in CV Flow Visualization,” J. Am. Coll. Cardiol., 5(3), pp. 305–316. [CrossRef]
Borazjani, I. , Westerdale, J. , McMahon, E. M. , Rajaramanan, P. K. , Heys, J. J. , and Belohlavek, M. , 2013, “ Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound,” Comput. Math. Methods Med., 2013, p. 395081. [CrossRef] [PubMed]
Yodwut, C. , Weinert, L. , Klas, B. , Lang, R. M. , and Mor-Avi, V. , 2012, “ Effects of Frame Rate on Three-Dimensional Speckle-Tracking-Based Measurements of Myocardial Deformation,” J. Am. Soc. Echocardiogr., 25(9), pp. 978–985. [CrossRef] [PubMed]
Hoffmann, R. , and Altiok, E. , 2009, “ Echokardiographische Diagnostik bei Interventioneller Mitralklappen-Rekonstruktion,” Herz, 34(6), pp. 426–434. [CrossRef] [PubMed]
Sapin, P. M. , Schrder, K. M. , Gopal, A. S. , Smith, M. D. , Demaria, A. N. , and King, D. L. , 1994, “ Comparison of Two- and Three-Dimensional Echocardiography With Cineventriculography for Measurement of Left Ventricular Volume in Patients,” J. Am. Coll. Cardiol., 24(4), pp. 1054–1063. [CrossRef] [PubMed]
Devlin, A. M. , Moore, N. R. , and Ostman-Smith, I. , 1999, “ A Comparison of MRI and Echocardiography in Hypertrophic Cardiomyopathy,” Br. J. Radiol., 72(855), pp. 258–264. [CrossRef] [PubMed]
Dekker, D. L. , Piziali, R. L. , and Dong, E. , 1974, “ A System for Ultrasonically Imaging the Human Heart in Three Dimensions,” Comput. Biomed. Res., 7(6), pp. 544–553. [CrossRef] [PubMed]
Raichlen, J. S. , Trivedi, S. S. , Herman, G. T. , John Sutton, M. G. , and Reicher, N. , 1986, “ Dynamic Three-Dimensional Reconstruction of the Left Ventricle From Two-Dimensional Echocardiograms,” J. Am. Coll. Cardiol., 8(2), pp. 364–370. [CrossRef] [PubMed]
Schroeder, W. , and Martin, K. , 2003, The Visualization Toolkit, 3rd ed., Kitware, Inc., Clifton Park, NY.
Hafizah, M. , Kok, T. , and Spriyanto, E. , 2010, “ 3D Ultrasound Image Reconstruction Based on VTK,” 9th WSEAS International Conference on Signal Processing, Athens, Greece, Dec. 29–31, pp. 102–106.
Borazjani, I. , Ge, L. , Le, T. , and Sotiropoulos, F. , 2013, “ A Parallel Overset-Curvilinear-Immersed Boundary Framework for Simulating Complex 3D Incompressible Flows,” Comput. Fluids, 77, pp. 76–96. [CrossRef] [PubMed]
Borazjani, I. , 2013, “ Fluid-Structure Interaction, Immersed Boundary-Finite Element Method Simulations of Bio-Prosthetic Heart Valves,” Comput. Methods Appl. Mech. Eng., 257, pp. 103–116. [CrossRef]
Borazjani, I. , Ge, L. , and Sotiropoulos, F. , 2008, “ Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies,” J. Comput. Phys., 227(16), pp. 7587–7620. [CrossRef] [PubMed]
Rajan, N. K. , Song, Z. , Hoffmann, K. R. , Belohlavek, M. , McMahon, E. M. , and Borazjani, I. , 2014, “ 3D Reconstruction of the Left Ventricle From Multiple-Axis Echocardiography Images,” ASME Paper No. DETC2014-34463.
Crick, S. J. , Sheppard, M. N. , Ho, S. Y. , Gebstein, L. , and Anderson, R. H. , 1998, “ Anatomy of the Pig Heart: Comparisons With Normal Human Cardiac Structure,” J. Anat., 193(Pt. 1), pp. 105–119. [CrossRef] [PubMed]
Bradski, G. , 2000, “ The OpenCV Library,” Dr. Dobb's J. Software Tools, epub.
de Boor, C. , 1978, A Practical Guide to Splines, Springer-Verlag, New York.
Hall, C. A. , 1973, “ Natural Cubic and Bicubic Spline Interpolation,” SIAM J. Numer. Anal., 10(6), pp. 1055–1060. [CrossRef]
Ueberhuber, C. W. , 1997, Numerical Computation, Vol. 1, Springer-Verlag, Berlin.
Lang, R. M. , Bierig, M. , Devereux, R. B. , Flachskampf, F. A. , Foster, E. , Pellikka, P. A. , Picard, M. H. , Roman, M. J. , Seward, J. , Shanewise, J. , Solomon, S. , Spencer, K. T. , Sutton, M. S. J. , and Stewart, W. , 2005, “ Recommendations for Chamber Quantification: A Report From the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction With the European Association of Echocardiography, a Branch of the European Society of Cardiology,” J. Am. Soc. Echocardiogr., 18(12), pp. 1440–1463. [CrossRef] [PubMed]
Bernstein, S. N. , 1952, Collected Works, Vol. 1, Atomic Energy Commission, Springfield, VA.
Bernstein, S. N. , 1954, Collected Works, Vol. 2, Atomic Energy Commission, Springfield, VA.
Galassi, M. , Davies, J. , Theiler, J. , Gough, B. , Jungman, G. , Alken, P. , Booth, M. , Rossi, F. , and Ulerich, R. , 2009, GNU Scientific Library Reference Manual, 3rd ed., Network Theory Ltd., London.
Schlosser, T. , Pagonidis, K. , Herborn, C. U. , Hunold, P. , Waltering, K.-U. , Lauenstein, T. C. , and Barkhausen, J. , 2005, “ Assessment of Left Ventricular Parameters Using 16-MDCT and New Software for Endocardial and Epicardial Border Delineation,” Am. J. Roentgenol., 184(3), pp. 765–773. [CrossRef]
Duhamel, P. , 1990, “ Fast Fourier Transforms: A Tutorial Review and a State of the Art,” Signal Process., 19(4), pp. 259–299. [CrossRef]


Grahic Jump Location
Fig. 1

Echo cross sections of a pig heart are obtained over an entire cardiac cycle for standard projections. LA (apical) projections: (a) three-chamber, (b) two-chamber, and (c) four-chamber. SA projections: (d) apical, (e) mid, and (f) basal. All projections are shown for one time instant at end-diastole. Epicardial and endocardial borders are interactively delineated and automatically divided into standardized segments [40] by a commercial speckle tracking algorithm; however, only endocardial delineations are used in our study.

Grahic Jump Location
Fig. 2

Overview of the steps for the developed method

Grahic Jump Location
Fig. 6

Data transformation for the bivariate spatial interpolation: (a) long-axis (LAi) and short-axis (SAi) sectional data in cylindrical coordinates, (b) long-axis (LAi) and short-axis (SAi) sectional data on the z–θs plane, and (c) SA radial measurements transformed as scaling ratios (ei). Radius at the point P is evaluated as the product of radius interpolated from the LA sections (LAi) and scaling ratio interpolated from the SA sections (ei).

Grahic Jump Location
Fig. 7

Surface points interpolated from the available cross-sectional data.

Grahic Jump Location
Fig. 5

Overview of the steps for sectional scaling and the optimization of orientation and position (LA, long-axis and SA, short-axis)

Grahic Jump Location
Fig. 4

Extracted and smoothened boundaries at an instant of the A3C section

Grahic Jump Location
Fig. 3

LV segmentation, definition of angular orientation [40], and the spherical coordinate system. Standardized LA A2C, A3C, and A4C, as well as SA basal, mid, and apical sections of the LV are shown.

Grahic Jump Location
Fig. 15

Multiple views of the LV endocardial surface reconstructed after AMI. End-diastole: (a) longitudinal and (b) basal views and end-systole: (c) longitudinal and (d) basal views. Unlike the healthy LV in Fig. 9, the shape of the LV is not preserved when contracted due to the infarction. Notice the bulging anterior wall marked by the dotted line.

Grahic Jump Location
Fig. 16

Comparison of (a) volume and (b) flow rate of an LV with acute myocardial infarction reconstructed from varying number of sections

Grahic Jump Location
Fig. 8

Generated triangular surface mesh—close up. The LV surface is divided into slices of fixed angular resolution, Δθs, and layers of fixed thickness, Δz.

Grahic Jump Location
Fig. 9

Multiple views of the LV endocardial surface reconstructed at baseline. End-diastole: (a) longitudinal and (b) basal views and end-systole: (c) longitudinal and (d) basal views. In a healthy LV, the overall shape is preserved even under stress from contraction.

Grahic Jump Location
Fig. 10

Volume (mL) of the LV during one cardiac cycle withvarying cutoff frequency, ns, for the temporal smoothing (number of time steps = 100)

Grahic Jump Location
Fig. 11

Comparison of models reconstructed from three long-axis sections, and from six cross sections at (a) basal, (b) mid, and (c) apical locations at the same instant. Assuming the model reconstructed from six cross sections as reference, the difference between the curves shows the interpolation error.

Grahic Jump Location
Fig. 12

Comparison of (a) volume, and (b) flow rate of models reconstructed from varying number of sections. (c) Percentage difference in volume and (d) absolute difference in flow rate, assuming the model with all the six sections as reference.

Grahic Jump Location
Fig. 13

Sensitivity of (a) volume and (b) flow rate of reconstructed models with angular perturbation. Sensitivity of (c) volume and (d) flow rate of reconstructed models with longitudinal perturbation.

Grahic Jump Location
Fig. 14

Volume change of models reconstructed based on different temporal resolution of the original echo data. In the models reconstructed at 100 and 2500 steps/cycle from the original high-resolution 46 fps echo data the volume curves are identical and all the cardiac phases can be distinctly identified. However, the model reconstructed from the echo data at 23 fps (by using every other frame of the original echo data) fails to capture the systolic peak and the diastasis (∼0.55–0.65 s) effectively.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In