Technical Brief

Shape Analysis of the Femoral Head: A Comparative Study Between Spherical, (Super)Ellipsoidal, and (Super)Ovoidal Shapes

[+] Author and Article Information
Daniel Simões Lopes

Visualization and Intelligent Multimodal Interfaces Group,
INESC ID Lisboa,
Rua Alves Redol, 9,
Lisbon 1000-029, Portugal
e-mail: daniel.lopes@inesc-id.pt

Richard R. Neptune

Department of Mechanical Engineering,
The University of Texas at Austin,
Austin, TX 78712
e-mail: rneptune@mail.utexas.edu

Artur A. Gonçalves

Instituto Superior Técnico,
Universidade de Lisboa,
Avenida Rovisco Pais 1,
Lisbon 1049-001, Portugal
e-mail: artur.goncalves@tecnico.ulisboa.pt

Jorge A. Ambrósio

Instituto Superior Técnico,
Universidade de Lisboa,
Avenida Rovisco Pais 1,
Lisbon 1049-001, Portugal
e-mail: jorge@dem.ist.utl.pt

Miguel T. Silva

Instituto Superior Técnico,
Universidade de Lisboa,
Avenida Rovisco Pais 1,
Lisbon 1049-001, Portugal
e-mail: MiguelSilva@ist.utl.pt

1Corresponding author.

Manuscript received April 10, 2015; final manuscript received September 13, 2015; published online October 1, 2015. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 137(11), 114504 (Oct 01, 2015) (8 pages) Paper No: BIO-15-1160; doi: 10.1115/1.4031650 History: Received April 10, 2015; Revised September 13, 2015

In this work, MacConaill's classification that the articular surface of the femoral head is better represented by ovoidal shapes rather than purely spherical shapes is computationally tested. To test MacConaill's classification, a surface fitting framework was developed to fit spheres, ellipsoids, superellipsoids, ovoids, and superovoids to computed tomography (CT) data of the femoral proximal epiphysis. The framework includes several image processing and computational geometry techniques, such as active contour segmentation and mesh smoothing, where implicit surface fitting is performed with genetic algorithms. By comparing the surface fitting error statistics, the results indicate that (super)ovoids fit femoral articular surfaces better than spherical or (super)ellipsoidal shapes.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Netter, F. H. , 2011, Atlas of Human Anatomy. Professional Edition, 5th ed., Elsevier, Saunders, Philadelphia, PA.
Agur, A. M. R. , and Dalley, A. F. , 2012, Grant's Atlas of Anatomy, 13th ed., Lippincott Williams & Wilkins, Philadelphia, PA.
Schuenke, M. , Schulte, E. , Schumacher, U. , Ross, L. M. , and Lamperti, E. D. , 2012, Atlas of Anatomy—General Anatomy and Musculoskeletal System, 1st ed., Thieme, Stuttgart, Germany.
Kang, M. J. , Sadri, H. , Stern, R. , Magnenat-Thalmann, N. , Hoffmeyer, P. , and Ji, H. S. , 2011, “ Determining the Location of Hip Joint Centre: Application of a Conchoid's Shape to the Acetabular Cartilage Surface of Magnetic Resonance Images,” Comput. Method Biomech. 14(1), pp. 65–71. [CrossRef]
Cerveri, P. , Marchente, M. , Chemello, C. , Confalonieri, N. , Manzotti, A. , and Baroni, G. , 2011, “ Advanced Computational Framework for the Automatic Analysis of the Acetabular Morphology From the Pelvic Bone Surface for Hip Arthroplasty Applications,” Ann. Biomed. Eng., 39(11), pp. 2791–2806. [CrossRef] [PubMed]
Anderson, A. E. , Ellis, B. J. , Maas, S. A. , and Weiss, J. A. , 2010, “ Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip,” J. Biomech., 43(7), pp. 1351–1357. [CrossRef] [PubMed]
Xi, J. , Hu, X. , and Jin, Y. , 2003, “ Shape Analysis and Parameterized Modelling of Hip Joint,” ASME J. Comput. Inf. Sci. Eng., 3(3), pp. 260–265. [CrossRef]
Gu, D. Y. , Chen, Y. Z. , Dai, K. R. , Zhang, S. , and Yuan, J. , 2008, “ The Shape of the Acetabular Cartilage Surface: A Geometric Morphometric Study Using Three-Dimensional Scanning,” Med. Eng. Phys., 30(8), pp. 1024–1031. [CrossRef] [PubMed]
Allaire, S. , Burdin, V. , Jacq, J.-J. , Moineau, G. , Stindel, E. , and Roux, C. , 2007, “ Robust Quadric Fitting and Mensuration Comparison in a Mapping Space Applied to 3D Morphological Characterization of Articular Surfaces,” 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2007), Arlington, VA, Apr. 12–15, pp. 972–975.
Allaire, S. , Jacq, J.-J. , Burdin, V. , and Roux, C. , 2007, “ Ellipsoid-Constrained Robust Fitting of Quadrics With Application to the 3D Morphological Characterization of Articular Surfaces,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007), Lyon, France, Aug. 22–26, pp. 5087–5090.
Jacq, J.-J. , Roux, C. , Stindel, É. , and Lefèvre, C. , 2000, “ Analytical Surface Recognition in Three-Dimensional (3D) Medical Images Using Genetic Matching: Application to the Extraction of Spheroidal Articular Surfaces in 3D Computed Tomography Data Sets,” Int. J. Imaging Syst. Technol., 11(1), pp. 30–43. [CrossRef]
Liu, B. , Hua, S. , Zhang, H. , Liu, Z. , Zhao, X. , Zhang, B. , and Yue, Z. , 2014, “ A Personalized Ellipsoid Modeling Method and Matching Error Analysis for the Artificial Femoral Head Design,” Comput. Aided Des., 56, pp. 88–103. [CrossRef]
Matsuura, Y. , Ogihara, N. , and Nakatsukasa, M. , 2010, “ A Method for Quantifying Articular Surface Morphology of Metacarpals Using Quadric Surface Approximation,” Int. J. Primatol., 31(2), pp. 263–274. [CrossRef]
Eckhoff, D. G. , Bach, J. M. , Spitzer, V. M. , Reinig, K. D. , Bagur, M. M. , Baldini, T. H. , Rubinstein, D. , and Humphries, S. , 2003, “ Three-Dimensional Morphology and Kinematics of the Distal Part of the Femur Viewed in Virtual Reality: Part II,” J. Bone Joint Surg. Am., 85(S4), pp. 97–104. [PubMed]
Menschik, F. , 1997, “ The Hip Joint as a Conchoids Shape,” J. Biomech., 30(9), pp. 971–973. [CrossRef] [PubMed]
Cerveri, P. , Manzotti, A. , and Baroni, G. , 2014, “ Patient Specific Acetabular Shape Modelling: Comparison Among Sphere, Ellipsoid and Conchoids Parameterisations,” Comput. Method Biomech., 17(5), pp. 560–567. [CrossRef]
MacConaill, M. A. , 1966, “ The Geometry and Algebra of Articular Kinematics,” Biomed. Eng., 1, pp. 205–212.
MacConaill, M. A. , 1973, “ A Structuro-Functional Classification of Synovial Articular Units,” Ir. J. Med. Sci., 142(1), pp. 19–26. [CrossRef] [PubMed]
MacConaill, M. A. , and Basmajian, J. V. , 1977, Muscles and Movements: A Basis for Human Kinesiology, Krieger Publishing Company, Huntington, NY.
Barr, A. H. , 1981, “ Superquadrics and Angle-Preserving Transformations,” IEEE Comput. Graphics Appl., 1(1), pp. 11–23. [CrossRef]
Todd, P. H. , and Smart, I . H. , 1984, “ The Shape of Birds' Eggs,” J. Theor. Biol., 106(2), pp. 239–243. [CrossRef] [PubMed]
Yushkevich, P. , and Gerig, G. , 2014, “ITK-SNAP: Semi-Automatic Segmentation Using Active Contour Methods,” accessed Apr. 10, 2015, http://www.itksnap.org/
Kitware, 2015, “ParaView: Open-Source, Multi-Platform Data Analysis and Visualization Application,” Kitware Inc., Clifton Park, NY, accessed Apr. 10, 2015, http://www.paraview.org/
Blender Foundation, 2015, “Blender: Open Source 3D Content Creation Suite,” Blender Foundation, Amsterdam, accessed Apr. 10, 2015, http://www.blender.org/
MathWorks, 2015, “matlab: The Language of Technical Computing,” The MathWorks Inc., Natick, MA, accessed Apr. 10, 2015, http://www.mathworks.com/products/matlab/
Harris, M. D. , Anderson, A. E. , Henak, C. R. , Ellis, B. J. , Peters, C. L. , and Weiss, J. A. , 2012, “ Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips,” J. Orthop. Res., 30(7), pp. 1133–1139. [CrossRef] [PubMed]
OsiriX: DICOM Viewer, 2014, “DICOM Sample Image Sets,” Pixmeo, Geneva, Switzerland, accessed Apr. 10, 2015, http://www.osirix-viewer.com/datasets/
Lorensen, W. E. , and Cline, H. E. , 1987, “ Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Comput. Graphics, 21(4), pp. 163–169. [CrossRef]
LaValle, S. M. , 2006, Planning Algorithms, Cambridge University Press, New York.
Ribeiro, N. S. , Fernandes, P. C. R. , Lopes, D. S. , Folgado, J. , and Fernandes, P. R. A. , 2009, “ Solid and Finite Element Modeling of Biomechanical Structures: A Software Pipeline,” 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, Sept. 7–11.
Lopes, D. S. , 2013, “ Smooth Convex Surfaces for Modeling and Simulating Multibody Systems With Compliant Contact Elements,” Ph.D. thesis, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.


Grahic Jump Location
Fig. 3

Three-dimensional views of the optimally fitted surfaces of a femoral head illustrating that the geometric primitives fit the data in a global fashion. Data points are represented based on the minimal signed Euclidean distances (in millimeter) calculated between each point and the idealized geometric primitive.

Grahic Jump Location
Fig. 2

Computational framework for information extraction and geometric modeling of spheroidal articular surfaces. An implicit shape model is fitted to medical image data, thus providing quantitative information regarding global geometric characteristics. File formats and software tools are shown. The software versions used are itk-snap 2.2.0, paraview 3.10.1, blender 2.43, and matlab® R2009b.

Grahic Jump Location
Fig. 1

Unit-sized superellipsoids and superovoids for varying exponent values



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In