Technical Brief

The Effect of Quantitative Computed Tomography Acquisition Protocols on Bone Mineral Density Estimation

[+] Author and Article Information
Hugo Giambini

Biomechanics Laboratory,
Division of Orthopedic Research,
Mayo Clinic,
Rochester, MN 55905
e-mail: giambini.hugo@mayo.edu

Dan Dragomir-Daescu

Division of Engineering,
Mayo Clinic College of Medicine,
Mayo Clinic,
Rochester, MN 55905
e-mail: dragomirdaescu.dan@mayo.edu

Paul M. Huddleston

Biomechanics Laboratory,
Division of Orthopedic Research,
Department of Orthopedic Surgery,
Mayo Clinic,
Rochester, MN 55905
e-mail: huddleston.paul@mayo.edu

Jon J. Camp

Biomedical Imaging Resource,
Department of Radiology,
Mayo Clinic College of Medicine,
Rochester, MN 55905
e-mail: camp.jon@mayo.edu

Kai-Nan An

Biomechanics Laboratory,
Division of Orthopedic Research,
Mayo Clinic,
Rochester, MN 55905
e-mail: an.kainan@mayo.edu

Ahmad Nassr

Biomechanics Laboratory,
Division of Orthopedic Research,
Department of Orthopedic Surgery,
Mayo Clinic,
Rochester, MN 55905
e-mail: nassr.ahmad@mayo.edu

Manuscript received April 8, 2015; final manuscript received September 8, 2015; published online September 30, 2015. Assoc. Editor: Joel D. Stitzel.

J Biomech Eng 137(11), 114502 (Sep 30, 2015) (6 pages) Paper No: BIO-15-1155; doi: 10.1115/1.4031572 History: Received April 08, 2015; Revised September 08, 2015; Accepted September 09, 2015

Osteoporosis is characterized by bony material loss and decreased bone strength leading to a significant increase in fracture risk. Patient-specific quantitative computed tomography (QCT) finite element (FE) models may be used to predict fracture under physiological loading. Material properties for the FE models used to predict fracture are obtained by converting grayscale values from the CT into volumetric bone mineral density (vBMD) using calibration phantoms. If there are any variations arising from the CT acquisition protocol, vBMD estimation and material property assignment could be affected, thus, affecting fracture risk prediction. We hypothesized that material property assignments may be dependent on scanning and postprocessing settings including voltage, current, and reconstruction kernel, thus potentially having an effect in fracture risk prediction. A rabbit femur and a standard calibration phantom were imaged by QCT using different protocols. Cortical and cancellous regions were segmented, their average Hounsfield unit (HU) values obtained and converted to vBMD. Estimated vBMD for the cortical and cancellous regions were affected by voltage and kernel but not by current. Our study demonstrated that there exists a significant variation in the estimated vBMD values obtained with different scanning acquisitions. In addition, the large noise differences observed utilizing different scanning parameters could have an important negative effect on small subregions containing fewer voxels.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Kayanja, M. M. , Ferrara, L. A. , and Lieberman, I. H. , 2004, “ Distribution of Anterior Cortical Shear Strain after a Thoracic Wedge Compression Fracture,” Spine J., 4(1), pp. 76–87. [CrossRef] [PubMed]
Melton, L. J., III , and Kallmes, D. F. , 2006, “ Epidemiology of Vertebral Fractures: Implications for Vertebral Augmentation,” Acad. Radiol., 13(5), pp. 538–545. [CrossRef] [PubMed]
Homminga, J. , Weinans, H. , Gowin, W. , Felsenberg, D. , and Huiskes, R. , 2001, “ Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk of Fracture But Not the Vertebral Load Distribution,” Spine, 26(14), pp. 1555–1561. [CrossRef] [PubMed]
Imai, K. , Ohnishi, I. , Matsumoto, T. , Yamamoto, S. , and Nakamura, K. , 2009, “ Assessment of Vertebral Fracture Risk and Therapeutic Effects of Alendronate in Postmenopausal Women Using a Quantitative Computed Tomography-Based Nonlinear Finite Element Method,” Osteoporosis Int., 20(5), pp. 801–810. [CrossRef]
McDonnell, P. , McHugh, P. E. , and O'Mahoney, D. , 2007, “ Vertebral Osteoporosis and Trabecular Bone Quality,” Ann. Biomed. Eng., 35(2), pp. 170–189. [CrossRef] [PubMed]
Cann, C. E. , Genant, H. K. , Kolb, F. O. , and Ettinger, B. , 1985, “ Quantitative Computed Tomography for Prediction of Vertebral Fracture Risk,” Bone, 6(1), pp. 1–7. [CrossRef] [PubMed]
Genant, H. K. , Ettinger, B. , Cann, C. E. , Reiser, U. , Gordan, G. S. , and Kolb, F. O. , 1985, “ Osteoporosis: Assessment by Quantitative Computed Tomography,” Orthop. Clin. N. Am., 16(3), pp. 557–568.
Cann, C. E. , 1987, “ Quantitative CT Applications: Comparison of Current Scanners,” Radiology, 162(1 Pt 1), pp. 257–261. [CrossRef] [PubMed]
Cann, C. E. , 1988, “ Quantitative CT for Determination of Bone Mineral Density: A Review,” Radiology, 166(2), pp. 509–522. [CrossRef] [PubMed]
Biggemann, M. , Hilweg, D. , Seidel, S. , Horst, M. , and Brinckmann, P. , 1991, “ Risk of Vertebral Insufficiency Fractures in Relation to Compressive Strength Predicted by Quantitative Computed Tomography,” Eur. J. Radiol., 13(1), pp. 6–10. [CrossRef] [PubMed]
Lang, T. F. , Li, J. , Harris, S. T. , and Genant, H. K. , 1999, “ Assessment of Vertebral Bone Mineral Density Using Volumetric Quantitative CT,” J. Comput. Assisted Tomogr., 23(1), pp. 130–137. [CrossRef]
Dragomir-Daescu, D. , Op Den Buijs, J. , Mceligot, S. , Dai, Y. , Entwistle, R. C. , Salas, C. , Melton, L. J., III , Bennet, K. E. , Khosla, S. , and Amin, S. , 2011, “ Robust QCT/FEA Models of Proximal Femur Stiffness and Fracture Load During a Sideways Fall on the Hip,” Ann. Biomed. Eng., 39(2), pp. 742–755. [CrossRef] [PubMed]
Homminga, J. , Van-Rietbergen, B. , Lochmuller, E. M. , Weinans, H. , Eckstein, F. , and Huiskes, R. , 2004, “ The Osteoporotic Vertebral Structure is Well Adapted to the Loads of Daily Life, But Not to Infrequent ‘Error’ Loads,” Bone, 34(3), pp. 510–516. [CrossRef] [PubMed]
Imai, K. , Ohnishi, I. , Bessho, M. , and Nakamura, K. , 2006, “ Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site,” Spine, 31(16), pp. 1789–1794. [CrossRef] [PubMed]
Snyder, S. M. , and Schneider, E. , 1991, “ Estimation of Mechanical Properties of Cortical Bone by Computed Tomography,” J. Orthop. Res., 9(3), pp. 422–431. [CrossRef] [PubMed]
Kato, N. , Koshino, T. , Saito, T. , and Takeuchi, R. , 1998, “ Estimation of Young's Modulus in Swine Cortical Bone Using Quantitative Computed Tomography,” Bull. Hosp. Jt. Dis., 57(4), pp. 183–186. [PubMed]
Anderson, D. E. , Demissie, S. , Allaire, B. T. , Bruno, A. G. , Kopperdahl, D. L. , Keaveny, T. M. , Kiel, D. P. , and Bouxsein, M. L. , 2014, “ The Associations Between QCT-Based Vertebral Bone Measurements and Prevalent Vertebral Fractures Depend on the Spinal Locations of Both Bone Measurement and Fracture,” Osteoporosis Int., 25(2), pp. 559–566. [CrossRef]
Morgan, E. F. , Bayraktar, H. H. , and Keaveny, T. M. , 2003, “ Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site,” J. Biomech., 36(7), pp. 897–904. [CrossRef] [PubMed]
Keller, T. S. , 1994, “ Predicting the Compressive Mechanical Behavior of Bone,” J. Biomech., 27(9), pp. 1159–1168. [CrossRef] [PubMed]
Kopperdahl, D. L. , Morgan, E. F. , and Keaveny, T. M. , 2002, “ Quantitative Computed Tomography Estimates of the Mechanical Properties of Human Vertebral Trabecular Bone,” J. Orthop. Res., 20(4), pp. 801–805. [CrossRef] [PubMed]
Dragomir-Daescu, D. , Salas, C. , Uthamaraj, S. , and Rossman, T. , 2015, “ Quantitative Computed Tomography-Based Finite Element Analysis Predictions of Femoral Strength and Stiffness Depend on Computed Tomography Settings,” J. Biomech., 48(1), pp. 153–161. [CrossRef] [PubMed]
Levi, C. , Gray, J. E. , McCullough, E. C. , and Hattery, R. R. , 1982, “ The Unreliability of CT Numbers as Absolute Values,” Am. J. Roentgenol., 139(3), pp. 443–447. [CrossRef]
Bessho, M. , Ohnishi, I. , Matsuyama, J. , Matsumoto, T. , Imai, K. , and Nakamura, K. , 2007, “ Prediction of Strength and Strain of the Proximal Femur by a CT-Based Finite Element Method,” J. Biomech., 40(8), pp. 1745–1753. [CrossRef] [PubMed]
Buckley, J. M. , Cheng, L. , Loo, K. , Slyfield, C. , and Xu, Z. , 2007, “ Quantitative Computed Tomography-Based Predictions of Vertebral Strength in Anterior Bending,” Spine, 32(9), pp. 1019–1027. [CrossRef] [PubMed]
Matsumoto, T. , Ohnishi, I. , Bessho, M. , Imai, K. , Ohashi, S. , and Nakamura, K. , 2009, “ Prediction of Vertebral Strength Under Loading Conditions Occurring in Activities of Daily Living Using a Computed Tomography-Based Nonlinear Finite Element Method,” Spine, 34(14), pp. 1464–1469. [CrossRef] [PubMed]
Mirzaei, M. , Keshavarzian, M. , and Naeini, V. , 2014, “ Analysis of Strength and Failure Pattern of Human Proximal Femur Using Quantitative Computed Tomography (QCT)-Based Finite Element Method,” Bone, 64, pp. 108–114. [CrossRef] [PubMed]
Mirzaei, M. , Zeinali, A. , Razmjoo, A. , and Nazemi, M. , 2009, “ On Prediction of the Strength Levels and Failure Patterns of Human Vertebrae Using Quantitative Computed Tomography (QCT)-Based Finite Element Method,” J. Biomech., 42(11), pp. 1584–1591. [CrossRef] [PubMed]
Wang, X. , Sanyal, A. , Cawthon, P. M. , Palermo, L. , Jekir, M. , Christensen, J. , Ensrud, K. E. , Cummings, S. R. , Orwoll, E. , Black, D. M. , and Keaveny, T. M. , 2012, “ Prediction of New Clinical Vertebral Fractures in Elderly Men Using Finite Element Analysis of CT Scans,” J. Bone Miner. Res., 27(4), pp. 808–816. [CrossRef] [PubMed]
Jang, K. , Kweon, D. , Lee, J. , Choi, J. , Goo, E. , Dong, K. , Lee, J. , Jin, G. , and Seo, S. , 2011, “ Measurement of Image Quality in CT Images Reconstructed With Different Kernels,” J. Korean Phys. Soc., 58(2), pp. 334–342. [CrossRef]


Grahic Jump Location
Fig. 3

Sample regression curves used for vBMD estimation obtained from the different QCT scanning acquisitions

Grahic Jump Location
Fig. 2

Segmented image showing the masked femur and a three-dimensional representation of the cancellous and cortical volumetric regions. Individual rods from the calibration phantom are also shown.

Grahic Jump Location
Fig. 1

Computed tomography images showing the calibration phantom and the femur using two different acquisition protocols. (a) B70 kernel, 0.6 mm isotropic slice thickness, 450 mAs, and 140 kVp. (b) B30 kernel, 0.6 mm isotropic slice thickness, 110 mAs, and 80 kVp.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In