0
Technical Brief

The Role of Shape and Heart Rate on the Performance of the Left Ventricle

[+] Author and Article Information
Zeying Song

Mechanical and Aerospace Engineering Department,
University at Buffalo,
State University of New York,
Buffalo, NY 14260

Iman Borazjani

Mechanical and Aerospace Engineering Department,
University at Buffalo,
State University of New York,
Buffalo, NY 14260
e-mail: iman@buffalo.edu

1Corresponding author.

Manuscript received October 30, 2014; final manuscript received August 21, 2015; published online September 16, 2015. Assoc. Editor: Alison Marsden.

J Biomech Eng 137(11), 114501 (Sep 16, 2015) (6 pages) Paper No: BIO-14-1542; doi: 10.1115/1.4031468 History: Received October 30, 2014; Revised August 21, 2015

The left ventricle function is to pump the oxygenated blood through the circulatory system. Ejection fraction is the main noninvasive parameter for detecting heart disease (healthy >55%), and it is thought to be the main parameter affecting efficiency. However, the effects of other parameters on efficiency have yet to be investigated. We investigate the effect of heart rate and left ventricle shape by carrying out 3D numerical simulations of a left ventricle at different heart rates and perturbed geometries under constant, normal ejection fraction. The simulation using the immersed boundary method provide the 3D flow and pressure fields, which enable direct calculation of a new hemodynamic efficiency (H-efficiency) parameter, which does not depend on any reference pressure. The H-efficiency is defined as the ratio of flux of kinetic energy (useful power) to the total cardiac power into the left ventricle control volume. Our simulations show that H-efficiency is not that sensitive to heart rate but is maximized at around normal heart rate (72 bpm). Nevertheless, it is more sensitive to the shape of the left ventricle, which affects the H-efficiency by as much as 15% under constant ejection fraction.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pedrizzetti, G. , and Domenichini, F. , 2005, “ Nature Optimizes the Swirling Flow in the Human Left Ventricle,” Phys. Rev. Lett., 95(10), pp. 108101–108104. [CrossRef] [PubMed]
Gharib, M. , Rambod, E. , Kheradvar, A. , Sahn, D. J. , and Dabiri, J. O. , 2006, “ Optimal Vortex Formation as an Index of Cardiac Health,” Proc. Natl. Acad. Sci., 103(16), pp. 6305–6308. [CrossRef]
Belohlavek, M. , Jiamsripong, P. , Calleja, A. M. , McMahon, E. M. , Maarouf, C. L. , Kokjohn, T. A. , Chaffin, T. L. , Vedders, L. J. , Garami, Z. , Beach, T. G. , Sabbagh, M. N. , and Roher, A. E. , 2009, “ Patients With Alzheimer Disease Have Altered Transmitral Flow Echocardiographic Analysis of the Vortex Formation Time,” J. Ultrasound Med., 28(11), pp. 1493–1500. [PubMed]
Jiamsripong, P. , Alharthi, M. S. , Calleja, A. M. , McMahon, E. M. , Katayama, M. , Westerdale, J. , Milano, M. , Heys, J. J. , Mookadam, F. , and Belohlavek, M. , 2010, “ Impact of Pericardial Adhesions on Diastolic Function as Assessed by Vortex Formation Time, a Parameter of Transmitral Flow Efficiency,” Cardiovasc. Ultrasound, 8(1), p. 42. [CrossRef] [PubMed]
Kheradvar, A. , Assadi, R. , Falahatpisheh, A. , and Sengupta, P. P. , 2012, “ Assessment of Transmitral Vortex Formation in Patients With Diastolic Dysfunction,” J. Am. Soc. Echocardiograph., 25(2), pp. 220–227. [CrossRef]
Gharib, M. , Rambod, E. , and Shariff, K. , 1998, “ A Universal Timescale for Vortex Ring Formation,” J. Fluid Mech., 360, pp. 121–140. [CrossRef]
Stewart, K. C. , Charonko, J. C. , Niebel, C. L. , Little, W. C. , and Vlachos, P. P. , 2012, “ Left Ventricular Vortex Formation is Unaffected by Diastolic Impairment,” Am. J. Physiol.-Heart Circul. Physiol., 303(10), pp. H1255–H1262. [CrossRef]
Eriksson, J. , Dyverfeldt, P. , Engvall, J. , Bolger, A. F. , Ebbers, T. , and Carlhäll, C. J. , 2011, “ Quantification of Presystolic Blood Flow Organization and Energetics in the Human Left Ventricle,” Am. J. Physiol.-Heart Circul. Physiolo., 300(6), pp. H2135–H2141. [CrossRef]
Eriksson, J. , Bolger, A. F. , Ebbers, T. , and Carlhäll, C.-J. , 2013, “ Four-Dimensional Blood Flow-Specific Markers of LV Dysfunction in Dilated Cardiomyopathy,” Eur. Heart J.—Cardiovasc. Imag., 14(5), pp. 417–424. [CrossRef]
Peskin, C. , 1977, “ Numerical Analysis of Blood Flow in the Heart,” J. Comput. Phys., 25(3), pp. 220–252. [CrossRef]
Nakamura, M. , Wada, S. , Mikami, T. , Kitabatake, A. , Karino, T. , and Yamaguchi, T. , 2004, “ Effect of Flow Disturbances Remaining at the Beginning of Diastole on Intraventricular Diastolic Flow and Colour M-Mode Doppler Echocardiograms,” Med. Biol. Eng. Comput., 42(4), pp. 509–515. [CrossRef] [PubMed]
Boffi, D. , Gastaldi, L. , Heltai, L. , and Peskin, C. , 2008, “ On the Hyper-Elastic Formulation of the Immersed Boundary Method,” Comput. Methods Appl. Mech. Eng., 197(25), pp. 2210–2231. [CrossRef]
Domenichini, F. , Pedrizzetti, G. , and Baccani, B. , 2005, “ Three-Dimensional Filling Flow Into a Model Left Ventricle,” J. Fluid Mech., 539, pp. 179–198. [CrossRef]
Domenichini, F. , and Pedrizzetti, G. , 2011, “ Intraventricular Vortex Flow Changes in the Infarcted Left Ventricle: Numerical Results in an Idealised 3D Shape,” Comput. Methods Biomechan. Biomed. Eng., 14(01), pp. 95–101. [CrossRef]
Pedrizzetti, G. , Domenichini, F. , and Tonti, G. , 2010, “ On the Left Ventricular Vortex Reversal After Mitral Valve Replacement,” Ann. Biomed, Eng., 38(3), pp. 769–773. [CrossRef]
Mangual, J. O. , Kraigher-Krainer, E. , De Luca, A. , Toncelli, L. , Shah, A. , Solomon, S. , Galanti, G. , Domenichini, F. , and Pedrizzetti, G. , 2013, “ Comparative Numerical Study on Left Ventricular Fluid Dynamics After Dilated Cardiomyopathy,” J. Biomech., 46(11), pp. 1611–1617. [CrossRef] [PubMed]
Saber, N. , Gosman, A. , Wood, N. , Kilner, P. , Charrier, C. , and Firmin, D. , 2001, “ Computational Flow Modeling of the Left Ventricle Based on In Vivo MRI Data: Initial Experience,” Ann. Biomed. Eng., 29(4), pp. 275–283. [CrossRef] [PubMed]
Schenkel, T. , Malve, M. , Reik, M. , Markl, M. , Jung, B. , and Oertel, H. , 2009, “ MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart,” Ann. Biomed. Eng., 37(3), pp. 503–515. [CrossRef] [PubMed]
Sotiropoulos, F. , and Borazjani, I. , 2009, “ A Review of State-of-the-Art Numerical Methods for Simulating Flow Through Mechanical Heart Valves,” Med. Biol. Eng. Comput., 47(3), pp. 245–256. [CrossRef] [PubMed]
Kerfoot, E. , Lamata, P. , Niederer, S. , Hose, R. , Spaan, J. , and Smith, N. , 2013, “ Share and Enjoy: Anatomical Models Database Generating and Sharing Cardiovascular Model Data Using Web Services,” Med. Biol. Eng. Comput., 51(11), pp. 1181–1190. [CrossRef] [PubMed]
Weese, J. , Groth, A. , Nickisch, H. , Barschdorf, H. , Weber, F. M. , Velut, J. , Castro, M. , Toumoulin, C. , Coatrieux, J.-L. , De Craene, M. , Piella, G. , Tobón-Gomez, C. , Frangi, A. F. , Barber, D. C. , Valverde, I. , Shi, Y. , Staicu, C. , Brown, A. , Beerbaum, P. , and Hose, D. R. , 2013, “ Generating Anatomical Models of the Heart and the Aorta From Medical Images for Personalized Physiological Simulations,” Med. Biol. Eng. Comp., 51(11), pp. 1209–1219. [CrossRef]
Le, T. B. , and Sotiropoulos, F. , 2013, “ Fluid-Structure Interaction of an Aortic Heart Valve Prosthesis Driven by an Animated Anatomic Left Ventricle,” J. Comput. Phys., 244, p. 4162. [CrossRef]
Borazjani, I. , Ge, L. , Le, T. , and Sotiropoulos, F. , 2013, “ A Parallel Overset-Curvilinear-Immersed Boundary Framework for Simulating Complex 3D Incompressible Flows,” Comput. Fluids, 77, pp. 76–96. [CrossRef] [PubMed]
Borazjani, I. , Westerdale, J. , McMahon, E. , Rajaraman, P. K. , Heys, J. , and Belohlavek, M. , 2013, “ Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound,” Comput. Math. Methods Med., Special Issue: Comput. Anal. Coronary Ventric. Hemodynam., 2013, p. 395081.
Bermejo, J. , Martínez-Legazpi, P. , and del Álamo, J. C. , 2015, “ The Clinical Assessment of Intraventricular Flows,” Ann. Rev. Fluid Mechan., 47(1), pp. 315–342. [CrossRef]
Pedrizzetti, G. , and Domenichini, F. , 2015, “ Left Ventricular Fluid Mechanics: The Long Way From Theoretical Models to Clinical Applications,” Ann. Biomed. Eng., 43(1), pp. 26–40. [CrossRef] [PubMed]
Gilmanov, A. , and Sotiropoulos, F. , 2005, “ A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies,” J. Comput. Phys., 207(2), pp. 457–492. [CrossRef]
Ge, L. , and Sotiropoulos, F. , 2007, “ A Numerical Method for Solving the 3D Unsteady Incompressible Navier--Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries,” J. Comput. Phys., 225(2), pp. 1782–1809. [CrossRef] [PubMed]
Borazjani, I. , Ge, L. , and Sotiropoulos, F. , 2008, “ Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies,” J. Comput. Phys., 227(16), pp. 7587–7620. [CrossRef] [PubMed]
Behara, S. , Borazjani, I. , and Sotiropoulos, F. , 2011, “ Vortex-Induced Vibrations of an Elastically Mounted Sphere With Three Degrees of Freedom at Re = 300: Hysteresis and Vortex Shedding Modes,” J. Fluid Mech., 686, pp. 426–450. [CrossRef]
Borazjani, I. , and Sotiropoulos, F. , 2009, “ Vortex-Induced Vibrations of Two Cylinders in Tandem Arrangement in the Proximity–Wake Interference Region,” J. Fluid Mech., 621, pp. 321–364. [CrossRef] [PubMed]
Borazjani, I. , 2013, “ The Functional Role of Caudal and Anal/Dorsal Fins During the C-Start of a Bluegill Sunfish,” J. Exp. Biol., 216(9), pp. 1658–1669. [CrossRef] [PubMed]
Borazjani, I. , and Daghooghi, M. , 2013, “ The Fish Tail Motion Forms an Attached Leading Edge Vortex,” Proc. R. Soc. B, 280(1756), p. 20122071. [CrossRef]
Borazjani, I. , and Sotiropoulos, F. , 2010, “ On the Role of Form and Kinematics on the Hydrodynamics of Self-Propelled Body/Caudal Fin Swimming,” J. Exp. Biol., 213(1), pp. 89–107. [CrossRef] [PubMed]
Borazjani, I. , and Sotiropoulos, F. , 2009, “ Numerical Investigation of the Hydrodynamics of Anguilliform Swimming in the Transitional and Inertial Flow Regimes,” J. Exp. Biol., 212(4), pp. 576–592. [CrossRef] [PubMed]
Borazjani, I. , and Sotiropoulos, F. , 2008, “ Numerical Investigation of the Hydrodynamics of Carangiform Swimming in the Transitional and Inertial Flow Regimes,” J. Exp. Biol., 211(10), pp. 1541–1558. [CrossRef] [PubMed]
Borazjani, I. , Sotiropoulos, F. , Tytell, E. D. , and Lauder, G. V. , 2012, “ Hydrodynamics of the Bluegill Sunfish C-Start Escape Response: Three-Dimensional Simulations and Comparison With Experimental Data,” J. Exp. Biol., 215(4), pp. 671–684. [CrossRef] [PubMed]
Borazjani, I. , Sotiropoulos, F. , Malkiel, E. , and Katz, J. , 2010, “ On the Role of Copepod Antenna in the Production of Hydrodynamic Force During Hopping,” J. Exp. Biol., 213(17), pp. 3019–3035. [CrossRef] [PubMed]
Borazjani, I. , 2013, “ Fluid–Structure Interaction, Immersed Boundary-Finite Element Method Simulations of Bio-Prosthetic Heart Valves,” Comput. Methods Appl. Mech. Eng., 257, pp. 103–116. [CrossRef]
Borazjani, I. , Ge, L. , and Sotiropoulos, F. , 2010, “ High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta,” Ann. Biomed. Eng., 38(2), pp. 326–344. [CrossRef] [PubMed]
Borazjani, I. , and Sotiropoulos, F. , 2010, “ The Effect of Implantation Orientation of a Bi-Leaflet Mechanical Heart Valve on Kinematics and Hemodynamics in an Anatomic Aorta,” ASME J. Biomech. Eng., 132(11), p. 111005. [CrossRef]
Mangual, J. , Domenichini, F. , and Pedrizzetti, G. , 2012, “ Describing the Highly Three Dimensional Right Ventricle Flow,” Ann. Biomed. Eng., 40(8), pp. 1790–1801. [CrossRef] [PubMed]
Rideout, V. C. , 1991, Mathematical and Computer Modeling of Physiological Systems, Prentice Hall, Englewood Cliffs, NJ.
Osranek, M. , Eisenach, J. H. , Khandheria, B. K. , Chandrasekaran, K. , Seward, J. B. , and Belohlavek, M. , 2008, “ Arterioventricular Coupling and Ventricular Efficiency After Antihypertensive Therapy: A Noninvasive Prospective Study,” Hypertension, 51(2), pp. 275–281. [CrossRef] [PubMed]
Bing, R. , Hammond, M. , Handelsman, J. , Powers, S. , Spencer, F. , Eckenhoff, J. , Goodale, W. , Hafkenschiel, J. , and Kety, S. , 1949, “ The Measurement of Coronary Blood Flow, Oxygen Consumption, and Efficiency of the Left Ventricle in Man,” Am. Heart J., 38(1), pp. 1–24. [CrossRef] [PubMed]
Kassab, G. S. , Algranati, D. , and Lanir, Y. , 2013, “ Myocardial-Vessel Interaction: Role of LV Pressure and Myocardial Contractility,” Med. Biol. Eng. Comput., 51(7), pp. 729–739. [CrossRef] [PubMed]
Shwartz, L. , Ben-Haim, S. , Elami, A. , Hassan, A. , and Edoute, Y. , 1991, “ Algorithm for Calculating Left Ventricular Mechanical and Energetic Characteristics,” Med. Biol. Eng. Comput., 29(3), pp. 318–323. [CrossRef] [PubMed]
Hunt, J. , Wray, A. , and Moin, P. , 1988, “ Eddies, Streams, and Convergence Zones in Turbulent Flows,” Summer Program, pp. 193–208.
Douglas, P. S. , Morrow, R. , Ioli, A. , and Reichek, N. , 1989, “ Left Ventricular Shape, Afterload and Survival in Idiopathic Dilated Cardiomyopathy,” J. Am. College Cardiol., 13(2), pp. 311–315. [CrossRef]
Mitchell, G. F. , Lamas, G. A. , Vaughan, D. E. , and Pfeffer, M. A. , 1992, “ Left Ventricular Remodeling in the Year After First Anterior Myocardial Infarction: A Quantitative Analysis of Contractile Segment Lengths and Ventricular Shape,” J. Am. College Cardiol., 19(6), pp. 1136–1144. [CrossRef]
Salgo, I. S. , Tsang, W. , Ackerman, W. , Ahmad, H. , Chandra, S. , Cardinale, M. , and Lang, R. M. , 2012, “ Geometric Assessment of Regional Left Ventricular Remodeling by Three-Dimensional Echocardiographic Shape Analysis Correlates With Left Ventricular Function,” J. Am. Soc. Echocardiogr., 25(1), pp. 80–88. [CrossRef] [PubMed]
Rajan, N. K. , Song, Z. , Hoffmann, K. R. , Belohlavek, M. , McMahon, E. R. , and Borazjani, I. , 2014, “ 3D Reconstruction of the Left Ventricle From Four Echocardiographic Projections,” ASME Paper No. pp. DETC2014-34463.
Li, G. , and He, B. , 2004, “ Non-Invasive Estimation of Myocardial Infarction by Means of a Heart-Model-Based Imaging Approach: A Simulation Study,” Med. Biol. Eng. Comput., 42(1), pp. 128–136. [CrossRef] [PubMed]
Perl, M. , Horowitz, A. , and Sideman, S. , 1986, “ Comprehensive Model for the Simulation of Left Ventricle Mechanics,” Med. Biol. Eng. Comput., 24(2), pp. 145–149. [CrossRef] [PubMed]
Long, Q. , Merrifield, R. , Yang, G. , Xu, X. , Kilner, P. , and Firmin, D. , 2003, “ The Influence of Inflow Boundary Conditions on Intra Left Ventricle Flow Predictions,” ASME J. Biomech. Eng., 125(6), pp. 922–927. [CrossRef]
Chung, C. S. , Karamanoglu, M. , and Kovács, S. J. , 2004, “ Duration of Diastole and its Phases as a Function of Heart Rate During Supine Bicycle Exercise,” Am. J. Physiol. Heart Circul. Physiol., 287(5), pp. H2003–H2008. [CrossRef]
Acharya, U. R. , Joseph, K. P. , Kannathal, N. , Lim, C. M. , and Suri, J. S. , 2006, “ Heart Rate Variability: A Review,” Med. Biol. Eng. Comput., 44(12), pp. 1031–1051. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The computational setup: The LV and the mitral opening are discretized with triangular elements required for the immersed boundary method. The LV does not move above S0, and completely moves below S1. The motion is constrained between S0 and S1 for a smooth transition between fixed and fully moving sections.

Grahic Jump Location
Fig. 2

The volume of the LV from the lumped parameter model and the he nondimensional flow rate (nondimensionalized by Q0=UD2=5.019×10−4 m3/s =30.1 L/min) for different flow rates during one cycle. The positive values denote the flow out of the LV during systole, and negative values denote the flow into the LV during diastole. The flow during diastole shows two peaks: an early peak (E-wave) and a later peak (A-wave).

Grahic Jump Location
Fig. 3

The H-efficiency is plotted against the heart rate for 40, 72, and 120 bpm. Simulations at 72 bpm show that global geometric perturbation of the left ventricle (LV) can affect the hydrodynamic efficiency (while ejection fraction and VFT remains unchanged).

Grahic Jump Location
Fig. 4

The 3D vortical structures are visualized at different time instants in the cycle (marked on Fig. 2) using the iso-surfaces of q-criteria for heart rates 40, 72, and 120 bpm and the LVs with perturbed geometries at 72 bpm

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In