0
Research Papers

Allometry of the Tendon Enthesis: Mechanisms of Load Transfer Between Tendon and Bone

[+] Author and Article Information
Alix C. Deymier-Black

Mem. ASME
Department of Orthopaedic Surgery,
Washington University,
St. Louis, MO 63110
e-mail: Alix.c.black@gmail.com

Jill D. Pasteris

Department of Earth and Planetary Sciences,
Washington University,
St. Louis, MO 63110
e-mail: pasteris@levee.wustl.edu

Guy M. Genin

Mem. ASME
Department of Mechanical Engineering and
Materials Science,
Washington University,
St. Louis, MO 63110
e-mail: Genin@wustl.edu

Stavros Thomopoulos

Mem. ASME
Department of Orthopedic Surgery,
Columbia University,
New York, NY 10032;
Department of Biomedical Engineering,
Columbia University,
New York, NY 10032
e-mail: sat2@columbia.edu

Manuscript received January 13, 2015; final manuscript received September 1, 2015; published online September 23, 2015. Assoc. Editor: Silvia Blemker.

J Biomech Eng 137(11), 111005 (Sep 23, 2015) (8 pages) Paper No: BIO-15-1012; doi: 10.1115/1.4031571 History: Received January 13, 2015; Revised September 01, 2015

Several features of the tendon-to-bone attachment were examined allometrically to determine load transfer mechanisms. The humeral head diameter increased geometrically with animal mass. Area of the attachment site exhibited a near isometric increase with muscle physiological cross section. In contrast, the interfacial roughness as well as the mineral gradient width demonstrated a hypoallometric relationship with physiologic cross-sectional area (PCSA). The isometric increase in attachment area indicates that as muscle forces increase, the attachment area increases accordingly, thus maintaining a constant interfacial stress. Due to the presence of constant stresses at the attachment, the micrometer-scale features may not need to vary with increasing load.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Genin, G. M. , Kent, A. , Birman, V. , Wopenka, B. , Pasteris, J. D. , Marquez, P. J. , and Thomopoulos, S. , 2009, “ Functional Grading of Mineral and Collagen in the Attachment of Tendon to Bone,” Biophys. J., 97(4), pp. 976–985. [CrossRef] [PubMed]
Liu, Y. , Thomopoulos, S. , Chen, C. , Birman, V. , Buehler, M. J. , and Genin, G. M. , 2014, “ Modelling the Mechanics of Partially Mineralized Collagen Fibrils, Fibres and Tissue,” J. R. Soc. Interface, 11(92), p. 20130835. [CrossRef] [PubMed]
Liu, Y. X. , Thomopoulos, S. , Birman, V. , Li, J. S. , and Genin, G. M. , 2012, “ Bi-Material Attachment Through a Compliant Interfacial System at the Tendon-to-Bone Insertion Site,” Int. J. Mech. Mater., 44, pp. 83–92. [CrossRef]
Thomopoulos, S. , Marquez, J. P. , Weinberger, B. , Birman, V. , and Genin, G. M. , 2006, “ Collagen Fiber Orientation at the Tendon to Bone Insertion and Its Influence on Stress Concentrations,” J. Biomech., 39(10), pp. 1842–1851. [CrossRef] [PubMed]
Hu, Y. , Birman, V. , Demyier-Black, A. , Schwartz, A. G. , Thomopoulos, S. , and Genin, G. M. , 2015, “ Stochastic Interdigitation as a Toughening Mechanism at the Interface Between Tendon and Bone,” Biophys. J., 108(2), pp. 431–437. [CrossRef] [PubMed]
Suresh, S. , 2001, “ Graded Materials for Resistance to Contact Deformation and Damage,” Science, 292(5526), pp. 2447–2451. [CrossRef] [PubMed]
Galatz, L. M. , Ball, C. M. , Teefey, S. A. , Middleton, W. D. , and Yamaguchi, K. , 2004, “ The Outcome and Repair Integrity of Completely Arthroscopically Repaired Large and Massive Rotator Cuff Tears,” J. Bone Jt. Surg. Am., 86(2), pp. 219–224.
Harryman, D. , Mack, L. , Wang, K. , Jackins, S. , Richardson, M. , and Matsen, F. , 1991, “ Repairs of the Rotator Cuff: Correlation of Functional Results With Integrity of the Cuff,” J. Bone Jt. Surg., 73(7), pp. 982–989.
Wopenka, B. , Kent, A. , Pasteris, J. D. , Yoon, Y. , and Thomopoulos, S. , 2008, “ The Tendon-to-Bone Transition of the Rotator Cuff: A Preliminary Raman Spectroscopic Study Documenting the Gradual Mineralization Across the Insertion in Rat Tissue Samples,” Appl. Spectrosc., 62(12), pp. 1285–1294. [CrossRef] [PubMed]
Shoval, O. , Sheftel, H. , Shinar, G. , Hart, Y. , Ramote, O. , Mayo, A. , Dekel, E. , Kavanagh, K. , and Alon, U. , 2012, “ Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space,” Science, 336(6085), pp. 1157–1160. [CrossRef] [PubMed]
Galilei, G. , 2001, Dialogues Concerning Two New Sciences, William Andrew Publishing, Norwich, NY.
Huxley, J. S. , and Teissier, G. , 1936, “ Terminology of Relative Growth,” Nature, 137(3471), pp. 780–781. [CrossRef]
Alexander, R. M. , 2005, “ Models and the Scaling of Energy Costs for Locomotion,” J. Exp. Biol., 208(9), pp. 1645–1652. [CrossRef] [PubMed]
Franz, R. , Hummel, J. , Kienzle, E. , Kölle, P. , Gunga, H.-C. , and Clauss, M. , 2009, “ Allometry of Visceral Organs in Living Amniotes and Its Implications for Sauropod Dinosaurs,” Proc. R. Soc. B: Biol. Sci., 276(1662), pp. 1731–1736. [CrossRef]
Gayon, J. , 2000, “ History of the Concept of Allometry,” Am. Zool., 40(5), pp. 748–758.
Gould, S. J. , 1971, “ Geometric Similarity in Allometric Growth: A Contribution to the Problem of Scaling in the Evolution of Size,” Am. Nat., 105(942), pp. 113–136. [CrossRef]
Champy, C. , 1924, Les Caractères Sexuels Considérés Comme Phénomènes de Développement et Dans Leurs Rapports Avec l'hormone Sexuelle, G. Doin , Paris.
McMahon, T. A. , 1975, “ Using Body Size to Understand Structural Design of Animals-Quadrupedal Locomotion,” J. Appl. Physiol., 39(4), pp. 619–627. [PubMed]
Shingleton, A. , 2010, “ Allometry: The Study of Biological Scaling,” Nat. Educ. Knowl., 3(10), p. 2.
Fang, Q. , and Boas, D. A. , 2009, “ Tetrahedral Mesh Generation From Volumetric Binary and Grayscale Images,” Sixth IEEE International Conference on Symposium on Biomedical Imaging: From Nano to Macro (ISBI '09), Boston, MA, June 28–July 1, pp. 1142–1145.
Schwartz, A. G. , Lipner, J. H. , Pasteris, J. D. , Genin, G. M. , and Thomopoulos, S. , 2013, “ Muscle Loading is Necessary for the Formation of a Functional Tendon Enthesis,” Bone, 55(1), pp. 44–51. [CrossRef] [PubMed]
Schwartz, A. G. , Pasteris, J. D. , Genin, G. M. , Daulton, T. L. , and Thomopoulos, S. , 2012, “ Mineral Distributions at the Developing Tendon Enthesis,” PLoS One, 7(11), p. e48630.
Mathewson, M. A. , Kwan, A. , Eng, C. M. , Lieber, R. L. , and Ward, S. R. , 2013, “ Comparison of Rotator Cuff Muscle Architecture Among Humans and Selected Vertebrate Species,” J. Exp. Biol., 217(Pt. 2), pp. 261–273. [PubMed]
Bodine, S. C. , Roy, R. R. , Meadows, D. A. , Zernicke, R. F. , Sacks, R. D. , Fournier, M. , and Edgerton, V. R. , 1982, “ Architectural, Histochemical, and Contractile Characteristics of a Unique Biarticular Muscle: The Cat Semitendinosus,” J. Neurophysiol., 48(1), pp. 192–201. [PubMed]
Lieber, R. L. , and Friden, J. , 2000, “ Functional and Clinical Significance of Skeletal Muscle Architecture,” Muscle Nerve, 23(11), pp. 1647–1666. [CrossRef] [PubMed]
Powell, P. L. , Roy, R. R. , Kanim, P. , Bello, M. A. , and Edgerton, V. R. , 1984, “ Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs,” J. Appl. Physiol.: Respir., Environ. Exercise Physiol., 57(6), pp. 1715–1721.
Doube, M. , Conroy, A. W. , Christiansen, P. , Hutchinson, J. R. , and Shefelbine, S. , 2009, “ Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry,” PLoS One, 4(3), p. e4742. [CrossRef] [PubMed]
Di Masso, R. J. , Celoria, G. C. , and Font, M. T. , 1998, “ Morphometric Skeletal Traits, Femoral Measurements, and Bone Mineral Deposition in Mice With Agonistic Selection for Body Conformation,” Bone, 22(5), pp. 539–543. [CrossRef] [PubMed]
Alexander, R. M. , Jayes, A. S. , Maloiy, G. M. O. , and Wathuta, E. M. , 1979, “ Allometry of the Limb Bones of Mammals From Shrews (Sorex) to Elephant (Loxodonta),” J. Zool., 189(3), pp. 305–314. [CrossRef]
Brianza, S. Z. M. , D'Amelio, P. , Pugno, N. , Delise, M. , Bignardi, C. , and Isaia, G. , 2007, “ Allometric Scaling and Biomechanical Behavior of the Bone Tissue: An Experimental Intraspecific Investigation,” Bone, 40(6), pp. 1635–1642. [CrossRef] [PubMed]
Biewener, A. A. , 1983, “ Allometry of Quadrupedal Locomotion: The Scaling of Duty Factor, Bone Curvature and Limb Orientation to Body Size,” J. Exp. Biol., 105(1), pp. 147–171. [PubMed]
Christiansen, P. , 2002, “ Mass Allometry of the Appendicular Skeleton in Terrestrial Mammals,” J. Morphol., 251(2), pp. 195–209. [CrossRef] [PubMed]
Doube, M. , Klosowski, M. M. , Wiktorowicz-Conroy, A. M. , Hutchinson, J. R. , and Shefelbine, S. J. , 2011, “ Trabecular Bone Scales Allometrically in Mammals and Birds,” Proc. R. Soc. B, 278(1721), pp. 3067–3073. [CrossRef]
Ryan, T. M. , and Shaw, C. N. , 2013, “ Trabecular Bone Microstructure Scales Allometrically in the Primate Humerus and Femur,” Proc. R. Soc. B, 280(1758), p. 20130172. [CrossRef]
Swartz, S. M. , Parker, A. , and Huo, C. , 1998, “ Theoretical and Empirical Scaling Patterns and Topological Homology in Bone Trabeculae,” J. Exp. Biol., 201(4), pp. 573–590. [PubMed]
Barak, M. M. , Lieberman, D. E. , and Hublin, J. J. , 2013, “ Of Mice, Rats and Men: Trabecular Bone Architecture in Mammals Scales to Body Mass With Negative Allometry,” J. Struct. Biol., 183(2), pp. 123–131. [CrossRef] [PubMed]
Alexander, R. M. , 2002, “ Tendon Elasticity and Muscle Function,” Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol., 133(4), pp. 1001–1011. [CrossRef]
Biewener, A. A. , 2005, “ Biomechanical Consequences of Scaling,” J. Exp. Biol., 208(Pt. 9), pp. 1665–1676. [CrossRef] [PubMed]
Cutts, A. , Alexander, R. M. , and Ker, R. F. , 1991, “ Ratios of Cross-Sectional Areas of Muscles and Their Tendons in a Healthy Human Forearm,” J Anat., 176, pp. 133–137. [PubMed]
Ker, R. F. , Alexander, R. M. , and Bennett, M. B. , 1988, “ Why Are Mammalian Tendons So Thick?,” J. Zool., 216(2), pp. 309–324. [CrossRef]
Pollock, C. M. , and Shadwick, R. E. , 1994, “ Allometry of Muscle, Tendon, and Elastic Energy Storage Capacity in Mammals,” Am. J. Physiol., 266(3 Pt. 2), pp. R1022–R1031. [PubMed]
Hu, Y. , Birman, V. , Deymier-Black, A. , Schwartz, A. , Thomopoulos, S. , and Genin, G. M. , 2015, “ Stochastic Interdigitation as a Toughening Mechanism at the Interface Between Tendon and Bone,” Biophys. J., 108(2), pp. 431–437. [CrossRef] [PubMed]
Thomopoulos, S. , Birman, V. , and Genin, G. M. , 2013, Structural Interfaces and Attachments in Biology, Springer, New York.
Miserez, A. , Schneberk, T. , Sun, C. J. , Zok, F. W. , and Waite, J. H. , 2008, “ The Transition From Stiff to Compliant Materials in Squid Beaks,” Science, 319(5871), pp. 1816–1819. [CrossRef] [PubMed]
Sun, C. , and Waite, J. H. , 2005, “ Mapping Chemical Gradients Within and Along a Fibrous Structural Tissue, Mussel Byssal Threads,” J. Biol. Chem., 280(47), pp. 39332–39336. [CrossRef] [PubMed]
Khanarian, N. T. , Boushell, M. K. , Spalazzi, J. P. , Pleshko, N. , Boskey, A. L. , and Lu, H. H. , 2014, “ FTIR-I Compositional Mapping of the Cartilage-to-Bone Interface as a Function of Tissue Region and Age,” J. Bone Miner. Res., 29(12), pp. 2643–2652. [CrossRef] [PubMed]
Spalazzi, J. P. , Boskey, A. L. , Pleshko, N. , and Lu, H. H. , 2013, “ Quantitative Mapping of Matrix Content and Distribution Across the Ligament-to-Bone Insertion,” PLoS One, 8(9), p. e74349. [CrossRef] [PubMed]
Abraham, A. C. , Pauly, H. M. , and Haut Donahue, T. L. , 2014, “ Deleterious Effects of Osteoarthritis on the Structure and Function of the Meniscal Enthesis,” Osteoarthritis Cartilage, 22(2), pp. 275–283. [CrossRef] [PubMed]
Hauch, K. N. , Oyen, M. L. , Odegard, G. M. , and Haut Donahue, T. L. , 2009, “ Nanoindentation of the Insertional Zones of Human Meniscal Attachments Into Underlying Bone,” J. Mech. Behav. Biomed. Mater., 2(4), pp. 339–347. [CrossRef] [PubMed]
Lu, H. H. , and Thomopoulos, S. , 2013, “ Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering,” Annu. Rev. Biomed. Eng., 15(1), pp. 201–226. [CrossRef] [PubMed]
Alexander, R. M. , 1995, “ Big Flies Have Bigger Cells,” Nature, 375(6526), p. 20. [CrossRef] [PubMed]
Stevenson, R. D. , Hill, M. F. , and Bryant, P. J. , 1995, “ Organ and Cell Allometry in Hawaiian Drosophila: How to Make a Big Fly,” Proc. R. Soc. London, Ser. B, 259(1355), pp. 105–110. [CrossRef]
D'Emic, M. D. , and Benson, R. B. J. , 2013, “ Measurement, Variation, and Scaling of Osteocyte Lacunae: A Case Study in Birds,” Bone, 57(1), pp. 300–310. [CrossRef] [PubMed]
Breur, G. J. , VanEnkevort, B. A. , Farnum, C. E. , and Wilsman, N. J. , 1991, “ Linear Relationship Between the Volume of Hypertrophic Chondrocytes and the Rate of Longitudinal Bone Growth in Growth Plates,” J. Orthop. Res., 9(3), pp. 348–359. [CrossRef] [PubMed]
McMahon, T. , 1973, “ Size and Shape in Biology,” Science, 179(4079), pp. 1201–1204. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Multiscale structures of the tendon-to-bone enthesis. At the macroscale (left), the tendon attaches to the bone with a splayed geometry leading to a large insertion area. The microscale interface (right) is characterized by gradients in cell geometry (open circles, ovals, and diamonds), mineralization (high mineralization is gray and unmineralized is white), collagen orientation (thin lines) and composition. Of interest to this study is the gradient in mineralization between the mineralized and unmineralized fibrocartilage as well as the waviness of this interface.

Grahic Jump Location
Fig. 4

Millimeter-scale features: (a) plot of humeral head diameter as a function of animal mass. The scaling factor was 0.38, indicating a near isometric relationship. Isometry of α = 0.33 is shown as a dotted line. (b) Plot of insertion area as a function of PCSA. The scaling factor was 0.84, indicating near isometric behavior. Isometry of α = 1 is shown as a dotted line. Ninety-five percent of confidence intervals are shown as dashed lines.

Grahic Jump Location
Fig. 5

Micrometer-scale features: (a) plot of A/λ as a function of PCSA. The insets show A and λ independently as a function of PCSA. Isometry of α = 0.5 is shown as dotted lines in the inset. The small scaling factors for A, λ, and A/λ indicate hypoallometry of the roughness. (b) Plot of the standard deviation of A/λ as a function of PCSA. The insets show standard deviations of A and λ independently as a function of PCSA. Isometry of α = 0.5 is shown as dotted lined in the inset. The small scaling factors of the standard deviation of A, λ, and A/λ indicate a hypoallometric relationship. (c) Plot of width of the mineralization gradient as a function of PCSA. The scaling factor was 0.12, indicating a hypoallometric relationship compared to the isometry (dotted line) of α = 0.5. Ninety-five percent of confidence intervals are shown as dashed lines.

Grahic Jump Location
Fig. 3

(a) μCT of the humeral head and supraspinatus tendon of a rabbit. The attachment area is highlighted in the dark opaque region. Thearrow indicates the measured humeral head diameter. (b) von Kossa stained histological section of the tendon-to-bone attachment. The interfacial roughness, which is highlighted by the dashed line, is measured by the peak height, 2A, and peak width, λ. (c) Plot of the 960/1003 Raman peak height ratio (representing relative concentration of mineral to collagen) as a function of position from the interface between mineralized and unmineralized fibrocartilage in a rat. The gradient in mineralization is approximately 30 μm long.

Grahic Jump Location
Fig. 2

Posterior view of representative supraspinatus–humerus complexes for all of the species studied. Shown is the supraspinatus muscle attaching to the humerus via the supraspinatus tendon and humeral head.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In