0
Research Papers

Hemodynamics in the Left Atrium and Its Effect on Ventricular Flow Patterns

[+] Author and Article Information
Vijay Vedula

Department of Mechanical Engineering,
Johns Hopkins University,
3400 N. Charles Street,
Baltimore, MD 21218

Richard George

Division of Cardiology,
Johns Hopkins University,
733 N. Broadway,
Baltimore, MD 21205

Laurent Younes

Department of Applied Mathematics
and Statistics,
Johns Hopkins University,
3400 N. Charles Street,
Baltimore, MD 21218

Rajat Mittal

Department of Mechanical Engineering,
Johns Hopkins University,
3400 N. Charles Street,
Baltimore, MD 21218
e-mail: mittal@jhu.edu

1Corresponding author.

Manuscript received April 1, 2015; final manuscript received August 22, 2015; published online September 16, 2015. Assoc. Editor: Ender A. Finol.

J Biomech Eng 137(11), 111003 (Sep 16, 2015) (8 pages) Paper No: BIO-15-1142; doi: 10.1115/1.4031487 History: Received April 01, 2015; Revised August 22, 2015

In the present study, we investigate the hemodynamics inside left atrium (LA) and understand its impact on the development of ventricular flow patterns. We construct the heart model using dynamic-computed tomographic images and perform simulations using an immersed boundary method based flow solver. We show that the atrial hemodynamics is characterized by a circulatory flow generated by the left pulmonary veins (LPVs) and a direct stream from the right pulmonary veins (RPVs). The complex interaction of the vortex rings formed from each of the PVs leads to vortex breakup and annihilation, thereby producing a regularized flow at the mitral annulus. A comparison of the ventricular flow velocities between the physiological and a simplified pipe-based atrium model shows that the overall differences are limited to about 10% of the peak mitral flow velocity. The implications of this finding on the functional morphology of the left heart as well the computational and experimental modeling of ventricular hemodynamics are discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Al-Saady, N. M. , Obel, O. A. , and Camm, A. J. , 1999, “ Left Atrial Appendage: Structure, Function, and Role in Thromboembolism,” Heart, 82(5), pp. 547–554. [CrossRef] [PubMed]
Stefanadis, C. , Dernellis, J. , and Toutouzas, P. , 2001, “ A Clinical Appraisal of Left Atrial Function,” Eur. Heart J., 22(1), pp. 22–36. [CrossRef] [PubMed]
Ho, S. Y. , Cabrera, J. A. , and Sánchez-Quintana, D. , 2012, “ Left Atrial Anatomy Revisited,” Circ: Arrhythmia Electrophysiol., 5(1), pp. 220–228. [CrossRef]
Agmon, Y. , Khandheria, B. K. , Gentile, F. , and Seward, J. B. , 1999, “ Echocardiographic Assessment of the Left Atrial Appendage,” J. Am. Coll. Cardiol., 34(7), pp. 1867–1877. [CrossRef] [PubMed]
Koizumi, R. , Funamoto, K. , Hayase, T. , Kanke, Y. , Shibata, M. , Shiraishi, Y. , and Yambe, T. , 2015, “ Numerical Analysis of Hemodynamic Changes in the Left Atrium Due to Atrial Fibrillation,” J. Biomech., 48(3), pp. 472–478. [CrossRef] [PubMed]
Appleton, C. P. , and Kovács, S. J. , 2009, “ The Role of Left Atrial Function in Diastolic Heart Failure,” Circ: Cardiovasc. Imaging, 2(1), pp. 6–9. [CrossRef] [PubMed]
Fyrenius, A. , Wigström, L. , Ebbers, T. , Karlsson, M. , Engvall, J. , and Bolger, A. F. , 2001. “ Three Dimensional Flow in the Human Left Atrium,” Heart, 86(4), pp. 448–455. [CrossRef] [PubMed]
Kilner, P. J. , Yang, G. Z. , Wilkes, A. J. , Mohiaddin, R. H. , Firmin, D. N. , and Yacoub, M. H. , 2000, “ Asymmetric Redirection of Flow Through the Heart,” Nature, 404(6779), pp. 759–761. [CrossRef] [PubMed]
Park, K.-H. , Son, J.-W. , Park, W.-J. , Lee, S.-H. , Kim, U. , Park, J.-S. , Shin, D.-G. , Kim, Y.-J. , Choi, J.-H. , Houle, H. , Vannan, M. A. , and Hong, G.-R. , 2013, “ Characterization of the Left Atrial Vortex Flow by Two-Dimensional Transesophageal Contrast Echocardiography Using Particle Image Velocimetry,” Ultrasound Med. Biol., 39(1), pp. 62–71. [CrossRef] [PubMed]
Mihalef, V. , Ionasec, R. I. , Sharma, P. , Georgescu, B. , Voigt, I. , Suehling, M. , and Comaniciu, D. , 2011, “ Patient-Specific Modeling of Whole Heart Anatomy, Dynamics and Haemodynamics From Four-Dimensional Cardiac CT Images,” J. R. Soc. Int. Focus, 1(3), pp. 286–296.
Domenichini, F. , Pedrizzetti, G. , and Baccani, B. , 2005, “ Three-Dimensional Filling Flow Into a Model Left Ventricle,” J. Fluid Mech., 539, pp. 179–198. [CrossRef]
Schenkel, T. , Malve, M. , Reik, M. , Markl, M. , Jung, B. , and Oertel, H. , 2009, “ MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart,” Ann. Biomed. Eng., 37(3), pp. 503–515. [CrossRef] [PubMed]
Krittian, S. , Schenkel, T. , Janoske, U. , and Oertel, H. , 2010, “ Partitioned Fluid–Solid Coupling for Cardiovascular Blood Flow: Validation Study of Pressure-Driven Fluid-Domain Deformation,” Ann. Biomed. Eng., 38(8), pp. 2676–2689. [CrossRef] [PubMed]
Le, T. B. , and Sotiropoulos, F. , 2012, “ On the Three-Dimensional Vortical Structure of Early Diastolic Flow in a Patient-Specific Left Ventricle,” Eur. J. Mech. B-Fluids, 35, pp. 20–24. [CrossRef] [PubMed]
Seo, J. H. , and Mittal, R. , 2013, “ Effect of Diastolic Flow Patterns on the Function of the Left Ventricle,” Phys. Fluids, 25(11), p. 110801. [CrossRef]
Doenst, T. , Spiegel, K. , Reik, M. , Markl, M. , Hennig, J. , Nitzsche, S. , Beyersdorf, F. , and Oertel, H. , 2009, “ Fluid-Dynamic Modeling of the Human Left Ventricle: Methodology and Application to Surgical Ventricular Reconstruction,” Ann. Throac. Surg., 87(11), pp. 1187–1195. [CrossRef]
Zheng, X. , Seo, J. H. , Vedula, V. , Abraham, T. , and Mittal, R. , 2012, “ Computational Modeling and Analysis of Intracardiac Flows in Simple Models of Left Ventricle,” Eur. J. Mech. B-Fluids, 35, pp. 31–39. [CrossRef]
Seo, J. H. , Vedula, V. , Abraham, T. , and Mittal, R. , 2013, “ Multiphysics Computational Models for Cardiac Flow and Virtual Cardiography,” Int. J. Numer. Methods Biomed. Eng., 29(8), pp. 850–869. [CrossRef]
Saber, N. R. , Wood, N. B. , Gosman, A. D. , Merrifield, R. D. , Yang, G. Z. , Charrier, C. L. , Gatehouse, P. D. , and Firmin, D. N. , 2003, “ Progress Towards Patient-Specific Computational Flow Modeling of the Left Heart Via Combination of Magnetic Resonance Imaging With Computational Fluid Dynamics,” Ann. Biomed. Eng., 31(1), pp. 42–52. [CrossRef] [PubMed]
Pasipoularides, A. D. , Shu, M. , Womack, M. S. , Shah, A. , Ramm, O. V. , and Glower, D. D. , 2003, “ RV Functional Imaging: 3D Echo-Derived Dynamic Geometry and Flow Field Simulations,” Am. J. Physiol. Heart Circ. Physiol., 284(1), pp. H56–H65. [CrossRef] [PubMed]
Long, Q. , Merrifield, R. , Yang, G. , Xu, X. , Kilner, P. , and Firmin, D. , 2003, “ The Influence of Inflow Boundary Conditions on Intra Left Ventricle Flow Predictions,” ASME J. Biomech. Eng., 125(6), pp. 922–927. [CrossRef]
Seo, J. H. , Vedula, V. , Abraham, T. , Lardo, A. , Dawoud, F. , Luo, H. , and Mittal, R. , 2014, “ Effect of the Mitral Valve on Diastolic Flow Patterns,” Phys. Fluids, 26(12), p. 121901. [CrossRef]
Ranganathan, N. , Lam, J. , Wigle, E. , and Silver, M. , 1970, “ Morphology of the Human Mitral Valve II—The Valve Leaflets,” Circulation, 41(3), pp. 459–467. [CrossRef] [PubMed]
Mittal, R. , Dong, H. , Bozkurttas, M. , Najjar, F. M. , Vargas, A. , and von Loebbecke, A. , 2008, “ A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries,” J. Comput. Phys., 227(10), pp. 4825–4852. [CrossRef] [PubMed]
Seo, J. H. , and Mittal, R. , 2011, “ A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations,” J. Comput. Phys., 230(19), pp. 7347–7363. [CrossRef] [PubMed]
Vedula, V. , Fortini, S. , Seo, J. H. , Querzoli, G. , and Mittal, R. , 2014, “ Computational Modeling and Validation of Intraventricular Flow in a Simple Model of the Left Ventricle,” Theor. Comput. Fluid Dyn., 28(6), pp. 589–604. [CrossRef]
Rangayyan, R. M. , 2004, Biomedical Image Analysis, CRC Press-Taylor & Francis Group, Boca Raton, FL.
Charonko, J. J. , Kumar, R. , Stewart, K. , Little, W. C. , and Vlachos, P. P. , 2013, “ Vortices Formed on Mitral Valve Tips Aid Normal Left Ventricular Filling,” Ann. Biomed. Eng., 41(5), pp. 1049–1061. [CrossRef] [PubMed]
Kulp, S. , Gao, M. , Zhang, S. , Qian, Z. , Voros, S. , Metaxas, D. , and Axel, L. , 2011, “ Using High Resolution Cardiac CT Data to Model and Visualize Patient-Specific Interactions Between Trabeculae and Blood Flow,” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011, Springer-Verlag, Berlin Heidelberg, pp. 468–475.
Upton, M. T. , Gibson, D. G. , and Brown, D. J. , 1976, “ Instantaneous Mitral Valve Leaflet Velocity and Its Relation to Left Ventricular Wall Movement in Normal Subjects,” Br. Heart J., 38(1), pp. 51–58. [CrossRef] [PubMed]
Beg, M. F. , Miller, M. I. , Trouvé, A. , and Younes, L. , 2005, “ Computing Large Deformation Metric Mappings Via Geodesic Flows of Diffeomorphisms,” Int. J. Comput. Vision, 61(2), pp. 139–157. [CrossRef]
Ardekani, S. , Jain, A. , Jain, S. , Abraham, T. , Abraham, M. , Zimmerman, S. , Winslow, R. , Miller, M. , and Younes, L. , 2012, “ Matching Sparse Sets of Cardiac Image Cross-Sections Using Large Deformation Diffeomorphic Metric Mapping Algorithm,” Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Challenges (Lecture Notes in Computer Science), O. Camara , E. Konukoglu , M. Pop , K. Rhode , M. Sermesant , and A. Young , eds., Vol. 7085, Springer, Berlin, pp. 234–243.
Timek, T. A. , and Miller, D. C. , 2001, “ Experimental and Clinical Assessment of Mitral Annular Area and Dynamics: What Are We Actually Measuring?” Ann. Thorac. Surg., 72(3), pp. 966–974. [CrossRef] [PubMed]
Chnafa, C. , Mendez, S. , and Nicoud, F. , 2014, “ Image-Based Large-Eddy Simulation in a Realistic Left Heart,” Comput. Fluids, 94, pp. 173–187. [CrossRef]
Mittal, R. , and Iaccarino, G. , 2005, “ Immersed Boundary Methods,” Ann. Rev. Fluid Mech., 37(1), pp. 239–261. [CrossRef]
Bowman, A. W. , and Kovacs, S. J. , 2005, “ Prediction and Assessment of the Time-Varying Effective Pulmonary Vein Area Via Cardiac MRI and Doppler Echocardiography,” Am. J. Physiol.—Heart Circ. Physiol., 288(5), pp. H280–H286. [PubMed]
Zhou, J. , Adrian, R. , Balachandar, S. , and Kendall, T. , 1999, “ Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow,” J. Fluid Mech., 387, pp. 353–396. [CrossRef]
Lim, T. T. , 1989, “ An Experimental Study of a Vortex Ring Interacting With an Inclined Wall,” Exp. Fluids, 7(7), pp. 453–463. [CrossRef]
Bellhouse, B. J. , 1972, “ Fluid Mechanics of a Mitral Valve and Left Ventricle,” Cardiovas. Res., 6(2), pp. 199–210. [CrossRef]
Töger, J. , Kanski, M. , Carlsson, M. , Kovács, S. J. , Söderlind, G. , Arheden, H. , and Heiberg, E. , 2012, “ Vortex Ring Formation in the Left Ventricle of the Heart: Analysis by 4D Flow MRI and Lagrangian Coherent Structures,” Ann. Biomed. Eng., 40(12), pp. 2652–2662. [CrossRef] [PubMed]
Pedrizzetti, G. , and Domenichini, F. , 2005, “ Nature Optimizes Swirling Flow in the Human Left Ventricle,” Phys. Rev. Lett., 95(10), p. 108101. [CrossRef] [PubMed]
Watanabe, H. , Sugiura, S. , and Hisada, T. , 2008, “ The Looped Heart Does Not Save Energy by Maintaining the Momentum of Blood Flowing in the Ventricle,” Am. J. Physiol. Heart Circ. Physiol., 294(5), pp. H2191–H2196. [CrossRef] [PubMed]
Kheradvar, A. , Houle, H. , Pedrizzetti, G. , Tonti, G. , Belcik, T. , Ashraf, M. , Lindner, J. R. , Gharib, M. , and Sahn, D. , 2010, “ Echocardiographic Particle Image Velocimetry: A Novel Technique for Quantification of Left Ventricular Blood Vorticity Pattern,” J. Am. Soc. Echocardiogr., 23(1), pp. 86–94. [CrossRef] [PubMed]
Sengupta, P. P. , Pedrizzetti, G. , Kilner, P. J. , Kheradvar, A. , Ebbers, T. , Tonti, G. , Fraser, A. G. , and Narula, J. , 2012, “ Emerging Trends in CV Flow Visualization,” JACC Cardiovasc. Imaging, 5(3), pp. 305–316. [CrossRef] [PubMed]
Mangual, J. O. , Kraigher-Krainer, E. , De Luca, A. , Toncelli, L. , Shah, A. , Solomon, S. , Galanti, G. , Domenichini, F. , and Pedrizzetti, G. , 2013, “ Comparative Numerical Study on Left Ventricular Fluid Dynamics After Dilated Cardiomyopathy,” J. Biomech., 46(10), pp. 1611–1617. [CrossRef] [PubMed]
Choi, Y. J. , Vedula, V. , and Mittal, R. , 2014, “ Computational Study of the Dynamics of a Bileaflet Mechanical Heart Valve in the Mitral Position,” Ann. Biomed. Eng., 42(8), pp. 1668–1680. [CrossRef] [PubMed]
Pasipoularides, A. , 2010, The Heart's Vortex: Intracardiac Blood Flow, PMPH, Shelton, CT.
Faludi, R. , Szulik, M. , D'hooge, J. , Herijgers, P. , Rademakers, F. , Pedrizzetti, G. , and Voigt, J.-U. , 2010, “ Left Ventricular Flow Patterns in Healthy Subjects and Patients With Prosthetic Mitral Valves: An In Vivo Study Using Echocardiographic Particle Image Velocimetry,” J. Thorac. Cardiovasc. Surg., 139(6), pp. 1501–1510. [CrossRef] [PubMed]
Hong, G.-R. , Pedrizzetti, G. , Tonti, G. , Li, P. , Wei, Z. , Kim, J. K. , Baweja, A. , Liu, S. , Chung, N. , Houle, H. , Narula, J. , and Vannan, M. A. , 2008, “ Characterization and Quantification of Vortex Flow in the Human Left Ventricle by Contrast Echocardiography Using Vector Particle Image Velocimetry,” JACC Cardiovasc. Imaging, 1(6), pp. 705–717. [CrossRef] [PubMed]
Thorning, C. , Hamady, M. , Liaw, J. V. P. , Juli, C. , Lim, P. B. , Dhawan, R. , Peters, N. S. , Davies, D. W. , Kanagaratnam, P. , O'Neill, M. D. , and Wright, A. R. , 2011, “ CT Evaluation of Pulmonary Venous Anatomy Variation in Patients Undergoing Catheter Ablation for Atrial Fibrillation,” Clin. Imaging, 35(1), pp. 1–9. [CrossRef] [PubMed]
Le, T. B. , Sotiropoulos, F. , Coffey, D. , and Keefe, D. , 2012, “ Vortex Formation and Instability in the Left Ventricle,” Phys. Fluids, 24(9), p. 091110. [CrossRef]
Vedula, V. , Seo, J. H. , Lardo, A. C. , and Mittal, R. , 2014, “ Effect of Trabeculae and Papillary Muscles on the Hemodynamics of the Left Ventricle,” Theor. Comp. Fluid Dyn., pp. 1–19.

Figures

Grahic Jump Location
Fig. 1

(a) Axial slice of contrast-enhanced CT data with highlighted chambers of left heart, (b) reconstructed chambers of the left heart model from the volume CT data with the indicated nomenclature, (c) time variation of LV volume (solid) and its time derivative (dotted) during the cardiac cycle, (d) 3D rendering and a flattened cylindrical projection of MV, and (e) measurement of MV leaflet angles with respect to the base or mitral annulus plane as shown in Figs. (a) and (b). LPVs/RPVs: left/right pulmonary veins; LA: left atrium; LAA: left atrial appendage; MV: mitral valve; AL: anterior leaflet; PL: posterior leaflet; LAL, LPL: maximum lengths of AL and PL; LV: left ventricle; Ao: Aorta; SV: stroke volume; and EF: ejection fraction.

Grahic Jump Location
Fig. 2

(a) Schematic of volume registration of each target cardiac phase with respect to the template using large deformation diffeomorphic metric mapping (LDDMM) method. (b) An example mapping of the end-systolic state (template, red) with the end-diastolic state (target, blue) using LDDMM. (See online version for color versions of all figures.)

Grahic Jump Location
Fig. 3

(a) Computational models used in the present study: (left) physiological left heart model with anatomically correct LA, LV, and Ao and (right) simplified atrium model where the filling into LV takes place from a pipe created by outward extrusion of MO along its axis. Both these models have identical MV configuration as highlighted. (b) Computational domain with the physiological model immersed into it. (c) Orthogonal cross-sectional planes (A-A and B-B) used for analysis of hemodynamic data together with transverse sections on B-B plane to probe velocity profiles. LA: left atrium; LV: left ventricle; MV: mitral valve; and Ao: Aorta.

Grahic Jump Location
Fig. 4

Streamlines visualization in LA during diastole (a) and (c) and systole (b) and (d) in two different views. Streams emanating from the LPVs and RPVs are highlighted for better visualization and understanding of LA flow patterns. LPVs/RPVs: left/right pulmonary veins; MO: mitral orifice; and LAA; left atrial appendage.

Grahic Jump Location
Fig. 5

Left atrial vortex dynamics and breakdown during ventricular systole. Instantaneous vortex structures are visualized using λci criterion [37] highlighted by the magnitude of velocity, and the numbers indicate nondimensional times during the third cardiac cycle.

Grahic Jump Location
Fig. 6

Vortex structures in the physiological model highlighted by the magnitude of velocity. Numbers indicate various nondimensional times during the third cardiac cycle.

Grahic Jump Location
Fig. 7

Same as Fig. 6 but for the simplified model

Grahic Jump Location
Fig. 8

Comparison of averaged flow field between physiological (top) and simplified (bottom) models. (a) and (d) Phase-averaged velocity fields along B-B plane during mid-diastole. (c)–(f) Phase-time-averaged velocity field during entire diastole along the indicated reference planes (A-A and B-B). See Fig.3(c) for plane configuration.

Grahic Jump Location
Fig. 9

Comparison of longitudinal velocity component profiles at various transverse sections (H1H12) of B-B plane during mid-diastole as shown in Fig. 3(c). The L1 norm of the difference in each profile is quantified as a percentage of peak mitral flow velocity (Up = 63 cm/s).

Grahic Jump Location
Fig. 10

Comparison of vortex structures during late diastole of the third cycle (t* = 2.4) between the physiological model with MV (a) and without MV (b)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In