0
Research Papers

Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries

[+] Author and Article Information
E. Tamimi, D. C. Ardila, D. G. Haskett

Graduate Interdisciplinary Program
of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721

T. Doetschman

Department of Cellular and Molecular Medicine,
The University of Arizona,
Tucson, AZ 85721;
Sarver Heart Center,
The University of Arizona,
Tucson, AZ 85724;
BIO5 Institute for Biocollaborative Research,
The University of Arizona,
Tucson, AZ 85721

M. J. Slepian

Graduate Interdisciplinary Program
of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721;
Sarver Heart Center,
The University of Arizona,
Tucson, AZ 85724;
BIO5 Institute for Biocollaborative Research,
The University of Arizona,
Tucson, AZ 85721;
Department of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721;
ACABI, The Arizona Center for Accelerated
BioMedical Innovation,
The University of Arizona,
Tucson, AZ 85721

R. S. Kellar

Center for Bioengineering Innovation,
Northern Arizona University,
Flagstaff, AZ 86011;
Department of Mechanical Engineering,
Northern Arizona University,
Flagstaff, AZ 86011;
Department of Biological Sciences,
Northern Arizona University,
Flagstaff, AZ 86011

J. P. Vande Geest

Associate Professor
Graduate Interdisciplinary Program
of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721;
Department of Aerospace and Mechanical Engineering,
The University of Arizona,
Tucson, AZ 85721;
BIO5 Institute for Biocollaborative Research,
The University of Arizona,
Tucson, AZ 85721;
Department of Biomedical Engineering,
The University of Arizona,
Tucson, AZ 85721
e-mail: jpv1@email.arizona.edu

1Corresponding author.

Manuscript received March 30, 2015; final manuscript received October 15, 2015; published online November 13, 2015. Assoc. Editor: Sean S. Kohles.

J Biomech Eng 138(1), 011001 (Nov 13, 2015) (12 pages) Paper No: BIO-15-1133; doi: 10.1115/1.4031847 History: Received March 30, 2015; Revised October 15, 2015

Cardiovascular disease (CVD) is the leading cause of death for Americans. As coronary artery bypass graft surgery (CABG) remains a mainstay of therapy for CVD and native vein grafts are limited by issues of supply and lifespan, an effective readily available tissue-engineered vascular graft (TEVG) for use in CABG would provide drastic improvements in patient care. Biomechanical mismatch between vascular grafts and native vasculature has been shown to be the major cause of graft failure, and therefore, there is need for compliance-matched biocompatible TEVGs for clinical implantation. The current study investigates the biaxial mechanical characterization of acellular electrospun glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen cylindrical constructs, using a custom-made microbiaxial optomechanical device (MOD). Constructs crosslinked for 2, 8, and 24 hrs are compared to mechanically characterized porcine left anterior descending coronary (LADC) artery. The mechanical response data were used for constitutive modeling using a modified Fung strain energy equation. The results showed that constructs crosslinked for 2 and 8 hrs exhibited circumferential and axial tangential moduli (ATM) similar to that of the LADC. Furthermore, the 8-hrs experimental group was the only one to compliance-match the LADC, with compliance values of 0.0006±0.00018 mm Hg−1 and 0.00071±0.00027 mm Hg−1, respectively. The results of this study show the feasibility of meeting mechanical specifications expected of native arteries through manipulating GLUT vapor crosslinking time. The comprehensive mechanical characterization of cylindrical biopolymer constructs in this study is an important first step to successfully develop a biopolymer compliance-matched TEVG.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Go, A. S. , Mozaffarian, D. , Roger, V. L. , Benjamin, E. J. , Berry, J. D. , Blaha, M. J. , Dai, S. , Ford, E. S. , Fox, C. S. , Franco, S. , Fullerton, H. J. , Gillespie, C. , Hailpern, S. M. , Heit, J. A. , Howard, V. J. , Huffman, M. D. , Judd, S. E. , Kissela, B. M. , Kittner, S. J. , Lackland, D. T. , Lichtman, J. H. , Lisabeth, L. D. , Mackey, R. H. , Magid, D. J. , Marcus, G. M. , Marelli, A. , Matchar, D. B. , McGuire, D. K. , Mohler, E. R. , 3rd, Moy, C. S. , Mussolino, M. E. , Neumar, R. W. , Nichol, G. , Pandey, D. K. , Paynter, N. P. , Reeves, M. J. , Sorlie, P. D. , Stein, J. , Towfighi, A. , Turan, T. N. , Virani, S. S. , Wong, N. D. , Woo, D. , and Turner, M. B. , 2014, “ Heart Disease and Stroke Statistics—2014 Update: A Report From the American Heart Association,” Circulation, 129(3), pp. e28–e292. [CrossRef] [PubMed]
Kurobe, H. , Maxfield, M. W. , Breuer, C. K. , and Shinoka, T. , 2012, “ Concise Review: Tissue-Engineered Vascular Grafts for Cardiac Surgery: Past, Present, and Future,” Stem Cells Transl. Med., 1(7), pp. 566–571. [CrossRef] [PubMed]
Kannan, R. Y. , Salacinski, H. J. , Butler, P. E. , Hamilton, G. , and Seifalian, A. M. , 2005, “ Current Status of Prosthetic Bypass Grafts: A Review,” J. Biomed. Mater. Res. Part B, 74(1), pp. 570–581. [CrossRef]
Rocco, K. A. , Maxfield, M. W. , Best, C. A. , Dean, E. W. , and Breuer, C. K. , 2014, “ In Vivo Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review,” Tissue Eng. Part B, 20(6), pp. 628–640. [CrossRef]
He, J. , Qin, T. , Liu, Y. , Li, X. , Li, D. , and Jin, Z. , 2014, “ Electrospinning of Nanofibrous Scaffolds With Continuous Structure and Material Gradients,” Mater. Lett., 137, pp. 393–397. [CrossRef]
Hong, Y. , Ye, S. H. , Nieponice, A. , Soletti, L. , Vorp, D. A. , and Wagner, W. R. , 2009, “ A Small Diameter, Fibrous Vascular Conduit Generated From a Poly(Ester Urethane)Urea and Phospholipid Polymer Blend,” Biomaterials, 30(13), pp. 2457–2467. [CrossRef] [PubMed]
Nieponice, A. , Soletti, L. , Guan, J. , Deasy, B. M. , Huard, J. , Wagner, W. R. , and Vorp, D. A. , 2008, “ Development of a Tissue-Engineered Vascular Graft Combining a Biodegradable Scaffold, Muscle-Derived Stem Cells and a Rotational Vacuum Seeding Technique,” Biomaterials, 29(7), pp. 825–833. [CrossRef] [PubMed]
Soletti, L. , Hong, Y. , Guan, J. , Stankus, J. J. , El-Kurdi, M. S. , Wagner, W. R. , and Vorp, D. A. , 2010, “ A Bilayered Elastomeric Scaffold for Tissue Engineering of Small Diameter Vascular Grafts,” Acta Biomater., 6(1), pp. 110–122. [CrossRef] [PubMed]
Tai, N. R. , Salacinski, H. J. , Edwards, A. , Hamilton, G. , and Seifalian, A. M. , 2000, “ Compliance Properties of Conduits Used in Vascular Reconstruction,” Br. J. Surg., 87(11), pp. 1516–1524. [CrossRef] [PubMed]
McClure, M. J. , Sell, S. A. , Simpson, D. G. , Walpoth, B. H. , and Bowlin, G. L. , 2010, “ A Three-Layered Electrospun Matrix to Mimic Native Arterial Architecture Using Polycaprolactone, Elastin, and Collagen: A Preliminary Study,” Acta Biomater., 6(7), pp. 2422–2433. [CrossRef] [PubMed]
Merkle, V. , Zeng, L. , Teng, W. , Slepian, M. , and Wu, X. , 2013, “ Gelatin Shells Strengthen Polyvinyl Alcohol Core–Shell Nanofibers,” Polymer, 54(21), pp. 6003–6007. [CrossRef]
Merkle, V. M. , Zeng, L. , Slepian, M. J. , and Wu, X. , 2014, “ Core-Shell Nanofibers: Integrating the Bioactivity of Gelatin and the Mechanical Property of Polyvinyl Alcohol,” Biopolymers, 101(4), pp. 336–346. [CrossRef] [PubMed]
Stitzel, J. D. , Pawlowski, K. J. , Wnek, G. E. , Simpson, D. G. , and Bowlin, G. L. , 2001, “ Arterial Smooth Muscle Cell Proliferation on a Novel Biomimicking, Biodegradable Vascular Graft Scaffold,” J. Biomater. Appl., 16(1), pp. 22–33. [CrossRef] [PubMed]
Wise, S. G. , Byrom, M. J. , Waterhouse, A. , Bannon, P. G. , Weiss, A. S. , and Ng, M. K. , 2011, “ A Multilayered Synthetic Human Elastin/Polycaprolactone Hybrid Vascular Graft With Tailored Mechanical Properties,” Acta Biomater., 7(1), pp. 295–303. [CrossRef] [PubMed]
Bergmeister, H. , Seyidova, N. , Schreiber, C. , Strobl, M. , Grasl, C. , Walter, I. , Messner, B. , Baudis, S. , Fröhlich, S. , Marchetti-Deschmann, M. , Griesser, M. , di Franco, M. , Krssak, M. , Liska, R. , and Schima, H. , 2015, “ Biodegradable, Thermoplastic Polyurethane Grafts for Small Diameter Vascular Replacements,” Acta Biomater., 11, pp. 104–113. [CrossRef] [PubMed]
Catto, V. , Fare, S. , Cattaneo, I. , Figliuzzi, M. , Alessandrino, A. , Freddi, G. , Remuzzi, A. , and Tanzi, M. C. , 2015, “ Small Diameter Electrospun Silk Fibroin Vascular Grafts: Mechanical Properties, Ex Vivo Biodegradability, and In Vivo Biocompatibility,” Mater. Sci. Eng. C: Mater. Biol. Appl., 54, pp. 101–111. [CrossRef] [PubMed]
Hu, Z.-J. , Li, Z.-L. , Hu, L.-Y. , He, W. , Liu, R.-M. , Qin, Y.-S. , and Wang, S.-M. , 2012, “ The In Vivo Performance of Small-Caliber Nanofibrous Polyurethane Vascular Grafts,” BMC Cardiovasc. Disord., 12(1), p. 115. [CrossRef] [PubMed]
Matsumura, G. , Isayama, N. , Matsuda, S. , Taki, K. , Sakamoto, Y. , Ikada, Y. , and Yamazaki, K. , 2013, “ Long-Term Results of Cell-Free Biodegradable Scaffolds for In Situ Tissue Engineering of Pulmonary Artery in a Canine Model,” Biomaterials, 34(27), pp. 6422–6428. [CrossRef] [PubMed]
Udelsman, B. V. , Khosravi, R. , Miller, K. S. , Dean, E. W. , Bersi, M. R. , Rocco, K. , Yi, T. , Humphrey, J. D. , and Breuer, C. K. , 2014, “ Characterization of Evolving Biomechanical Properties of Tissue Engineered Vascular Grafts in the Arterial Circulation,” J. Biomech., 47(9), pp. 2070–2079. [CrossRef] [PubMed]
Zhang, L. , Zhou, J. , Lu, Q. , Wei, Y. , and Hu, S. , 2008, “ A Novel Small-Diameter Vascular Graft: in vivo Behavior of Biodegradable Three-Layered Tubular Scaffolds,” Biotechnol. Bioeng., 99(4), pp. 1007–1015. [CrossRef] [PubMed]
Shinoka, T. , Shum-Tim, D. , Ma, P. X. , Tanel, R. E. , Isogai, N. , Langer, R. , Vacanti, J. P. , and Mayer, J. E., Jr. , 1998, “ Creation of Viable Pulmonary Artery Autografts Through Tissue Engineering,” J. Thorac. Cardiovasc. Surg., 115(3), pp. 536–546. [CrossRef] [PubMed]
Wang, S. , Mo, X. M. , Jiang, B. J. , Gao, C. J. , Wang, H. S. , Zhuang, Y. G. , and Qiu, L. J. , 2013, “ Fabrication of Small-Diameter Vascular Scaffolds by Heparin-Bonded P(LLA-CL) Composite Nanofibers to Improve Graft Patency,” Int. J. Nanomed., 8, pp. 2131–2139. [CrossRef]
Catto, V. , Fare, S. , Freddi, G. , and Tanzi, M. C. , 2014, “ Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration,” ISRN Vasc. Med., 2014, p. 923030.
Nemeno-Guanzon, J. G. , Lee, S. , Berg, J. R. , Jo, Y. H. , Yeo, J. E. , Nam, B. M. , Koh, Y.-G. , and Lee, J. I. , 2012, “ Trends in Tissue Engineering for Blood Vessels,” J. Biomed. Biotechnol., 2012, p. 956345. [CrossRef] [PubMed]
Salles, C. A. , Buffolo, E. , Andrade, J. C. , Palma, J. H. , Silva, R. R. , Santiago, R. , Casagrande, I. S. , and Moreira, M. C. , 1998, “ Mitral Valve Replacement With Glutaraldehyde Preserved Aortic Allografts,” Eur. J. Cardio-Thorac. Surg., 13(2), pp. 135–143. [CrossRef]
Huang, Z.-M. , Zhang, Y. Z. , Ramakrishna, S. , and Lim, C. T. , 2004, “ Electrospinning and Mechanical Characterization of Gelatin Nanofibers,” Polymer, 45(15), pp. 5361–5368. [CrossRef]
Kumar, V. A. , Caves, J. M. , Haller, C. A. , Dai, E. , Liu, L. , Grainger, S. , and Chaikof, E. L. , 2013, “ Acellular Vascular Grafts Generated From Collagen and Elastin Analogs,” Acta Biomater., 9(9), pp. 8067–8074. [CrossRef] [PubMed]
L'Heureux, N. , Paquet, S. , Labbe, R. , Germain, L. , and Auger, F. A. , 1998, “ A Completely Biological Tissue-Engineered Human Blood Vessel,” FASEB J., 12(1), pp. 47–56. [PubMed]
Matthews, J. A. , Wnek, G. E. , Simpson, D. G. , and Bowlin, G. L. , 2002, “ Electrospinning of Collagen Nanofibers,” Biomacromolecules, 3(2), pp. 232–238. [CrossRef] [PubMed]
McManus, M. C. , Boland, E. D. , Koo, H. P. , Barnes, C. P. , Pawlowski, K. J. , Wnek, G. E. , Simpson, D. G. , and Bowlin, G. L. , 2006, “ Mechanical Properties of Electrospun Fibrinogen Structures,” Acta Biomater., 2(1), pp. 19–28. [CrossRef] [PubMed]
Nivison-Smith, L. , Rnjak, J. , and Weiss, A. S. , 2010, “ Synthetic Human Elastin Microfibers: Stable Crosslinked Tropoelastin and Cell Interactive Constructs for Tissue Engineering Applications,” Acta Biomater., 6(2), pp. 354–359. [CrossRef] [PubMed]
Perumcherry, S. R. , Chennazhi, K. P. , Nair, S. V. , Menon, D. , and Afeesh, R. , 2011, “ A Novel Method for the Fabrication of Fibrin-Based Electrospun Nanofibrous Scaffold for Tissue-Engineering Applications,” Tissue Eng. Part C, 17(11), pp. 1121–1130. [CrossRef]
Boland, E. D. , Matthews, J. A. , Pawlowski, K. J. , Simpson, D. G. , Wnek, G. E. , and Bowlin, G. L. , 2004, “ Electrospinning Collagen and Elastin: Preliminary Vascular Tissue Engineering,” Front. Biosci.: J. Virtual Library, 9, pp. 1422–1432. [CrossRef]
McClure, M. J. , Sell, S. , Simpson, D. , and Bowlin, G. , 2009, “ Electrospun Polydioxanone, Elastin, and Collagen Vascular Scaffolds: Uniaxial Cyclic Distension,” J. Eng. Fibers Fabr., 4(2), pp. 18–25.
Wong, C. S. , Liu, X. , Xu, Z. , Lin, T. , and Wang, X. , 2013, “ Elastin and Collagen Enhances Electrospun Aligned Polyurethane as Scaffolds for Vascular Graft,” J. Mater. Sci. Mater. Med., 24(8), pp. 1865–1874. [CrossRef] [PubMed]
Zeugolis, D. I. , Khew, S. T. , Yew, E. S. , Ekaputra, A. K. , Tong, Y. W. , Yung, L. Y. , Hutmacher, D. W. , Sheppard, C. , and Raghunath, M. , 2008, “ Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin?” Biomaterials, 29(15), pp. 2293–2305. [CrossRef] [PubMed]
McClure, M. J. , Sell, S. , Barnes, C. , Bowen, W. , and Bowlin, G. , 2008, “ Cross-Linking Electrospun Polydioxanone-Soluble Elastin Blends: Material Characterization,” J. Eng. Fibers Fabr., 3(1), pp. 1–10.
Zhang, S. , Huang, Y. , Yang, X. , Mei, F. , Ma, Q. , Chen, G. , Ryu, S. , and Deng, X. , 2009, “ Gelatin Nanofibrous Membrane Fabricated by Electrospinning of Aqueous Gelatin Solution for Guided Tissue Regeneration,” J. Biomed. Mater. Res. Part A, 90(3), pp. 671–679. [CrossRef]
Sell, S. A. , Wolfe, P. S. , Garg, K. , McCool, J. M. , Rodriguez, I. A. , and Bowlin, G. L. , 2010, “ The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues,” Polymers, 2(4), pp. 522–553. [CrossRef]
Grover, C. N. , Gwynne, J. H. , Pugh, N. , Hamaia, S. , Farndale, R. W. , Best, S. M. , and Cameron, R. E. , 2012, “ Crosslinking and Composition Influence the Surface Properties, Mechanical Stiffness and Cell Reactivity of Collagen-Based Films,” Acta Biomater., 8(8), pp. 3080–3090. [CrossRef] [PubMed]
Rose, J. , Pacelli, S. , Haj, A. , Dua, H. , Hopkinson, A. , White, L. , and Rose, F. , 2014, “ Gelatin-Based Materials in Ocular Tissue Engineering,” Materials, 7(4), pp. 3106–3135. [CrossRef]
Gorgieva, S. , and Kokol, V. , 2011, “Collagen-vs. Gelatine-Based Biomaterials and Their Biocompatibility: Review and Perspectives,” Biomaterials Applications for Nanomedicine, R. Pignatello, ed., INTECH, Rijeka, Croatia.
Balasubramanian, P. , Prabhakaran, M. P. , Kai, D. , and Ramakrishna, S. , 2013, “ Human Cardiomyocyte Interaction With Electrospun Fibrinogen/Gelatin Nanofibers for Myocardial Regeneration,” J. Biomater. Sci. Polym. Ed., 24(14), pp. 1660–1675. [CrossRef] [PubMed]
Ardila, D. C. , Tamimi, E. , Danford, F. L. , Haskett, D. G. , Kellar, R. S. , Doetschman, T. , and Vande Geest, J. P. , 2014, “ TGFbeta2 Differentially Modulates Smooth Muscle Cell Proliferation and Migration in Electrospun Gelatin-Fibrinogen Constructs,” Biomaterials, 37C, pp. 164–173.
Ghista, D. , and Kabinejadian, F. , 2013, “ Coronary Artery Bypass Grafting Hemodynamics and Anastomosis Design: A Biomedical Engineering Review,” Biomed. Eng. Online, 12(1), p. 129. [CrossRef] [PubMed]
Amoroso, N. J. , D'Amore, A. , Hong, Y. , Rivera, C. P. , Sacks, M. S. , and Wagner, W. R. , 2012, “ Microstructural Manipulation of Electrospun Scaffolds for Specific Bending Stiffness for Heart Valve Tissue Engineering,” Acta Biomater., 8(12), pp. 4268–4277. [CrossRef] [PubMed]
Liu, S. , Dong, C. , Lu, G. , Lu, Q. , Li, Z. , Kaplan, D. L. , and Zhu, H. , 2013, “ Bilayered Vascular Grafts Based on Silk Proteins,” Acta Biomater., 9(11), pp. 8991–9003. [CrossRef] [PubMed]
Naito, Y. , Lee, Y. U. , Yi, T. , Church, S. N. , Solomon, D. , Humphrey, J. D. , Shin'oka, T. , and Breuer, C. K. , 2014, “ Beyond Burst Pressure: Initial Evaluation of the Natural History of the Biaxial Mechanical Properties of Tissue-Engineered Vascular Grafts in the Venous Circulation Using a Murine Model,” Tissue Eng. Part A, 20(1–2), pp. 346–355. [CrossRef] [PubMed]
Wang, F. , Mohammed, A. , Li, C. , Ge, P. , Wang, L. , and King, M. W. , 2014, “ Degradable/Non-Degradable Polymer Composites for In-Situ Tissue Engineering Small Diameter Vascular Prosthesis Application,” Biomed. Mater. Eng., 24(6), pp. 2127–2133. [PubMed]
Chung, J. , and Li, J. K. , 2004, “ Hemodynamic Simulation of Vascular Prosthesis Altering Pulse Wave Propagation,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (IEMBS '04), Sept. 1–5, Vol. 5, pp. 3678–3680.
Keyes, J. T. , Lockwood, D. R. , Utzinger, U. , Montilla, L. G. , Witte, R. S. , and Vande Geest, J. P. , 2013, “ Comparisons of Planar and Tubular Biaxial Tensile Testing Protocols of the Same Porcine Coronary Arteries,” Ann. Biomed. Eng., 41(7), pp. 1579–1591. [CrossRef] [PubMed]
Haskett, D. , Speicher, E. , Fouts, M. , Larson, D. , Azhar, M. , Utzinger, U. , and Vande Geest, J. P. , 2012, “ The Effects of Angiotensin II on the Coupled Microstructural and Biomechanical Response of C57BL/6 Mouse Aorta,” J. Biomech., 45(2), pp. 722–729.
Haskett, D. G. , Azhar, M. , Utzinger, U. , and Vande Geest, J. P. , 2013, “ Progressive Alterations in Microstructural Organization and Biomechanical Response in the apoE Mouse Model of Aneurysm,” Biomatter, 3(2), p. e24648. [CrossRef] [PubMed]
Haskett, D. G. , Doyle, J. , Gard, C. , Chen, H. , Ball, C. , Estabrook, M. A. , Encinas, A. C. , Dietz, H. C. , Utzinger, U. , Vande Geest, J. P. , and Axzhar, M. , 2012, “ Altered Tissue Behavior of Non-Aneurysmal Descending Thoracic Aorta in the Mouse Model of Marfan Syndrome,” Cell Tissue Res., 347(1), pp. 267–277. [CrossRef] [PubMed]
Keyes, J. T. , Borowicz, S. M. , Rader, J. H. , Utzinger, U. , Azhar, M. , and Vande Geest, J. P. , 2011, “ Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues With Two-Photon Microscopy,” Microsc. Microanal., 17(2), pp. 167–175. [CrossRef] [PubMed]
Keyes, J. T. , Utzinger, U. , and Vande Geest, J. P. , 2011, “ Adaptation of a Two-Photon-Microscope-Interfacing Planar Biaxial Testing Device for the Microstructural and Macroscopic Characterization of Small Tubular Tissue Specimens,” ASME J. Biomech. Eng., 133(7), p. 075001. [CrossRef]
Hearn, E. J. , 1997, “ Thick Cylinders,” Mechanics of Materials 1, 3rd ed., E. J. Hearn , ed., Butterworth-Heinemann, Oxford, pp. 215–253.
Haskett, D. , Johnson, G. , Zhou, A. , Utzinger, U. , and Vande Geest, J. , 2010, “ Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location,” Biomech. Model. Mechanobiol., 9(6), pp. 725–736. [CrossRef] [PubMed]
Mitra, T. , Sailakshmi, G. , Gnanamani, A. , and Mandal, A. B. , 2011, “ Cross-Linking With Acid Chlorides Improves Thermal and Mechanical Properties of Collagen Based Biopolymer Material,” Thermochim. Acta, 525(1–2), pp. 50–55. [CrossRef]
Dong, B. , Arnoult, O. , Smith, M. E. , and Wnek, G. E. , 2009, “ Electrospinning of Collagen Nanofiber Scaffolds From Benign Solvents,” Macromol. Rapid Commun., 30(7), pp. 539–542. [CrossRef] [PubMed]
Caulk, A. W. , Nepiyushchikh, Z. V. , Shaw, R. , Dixon, J. B. , and Gleason, R. L. , 2015, “ Quantification of the Passive and Active Biaxial Mechanical Behaviour and Microstructural Organization of Rat Thoracic Ducts,” J. R. Soc. Interface, 12(108), p. 20150280. [CrossRef] [PubMed]
Wan, W. , Dixon, J. B. , and Gleason, J., Jr. , and Rudolph, L. , 2012, “ Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters,” Biophys. J., 102(12), pp. 2916–2925. [CrossRef] [PubMed]
Keyes, J. T. , Lockwood, D. R. , Simon, B. R. , and Vande Geest, J. P. , 2013, “ Deformationally Dependent Fluid Transport Properties of Porcine Coronary Arteries Based on Location in the Coronary Vasculature,” J. Mech. Behav. Biomed Mater., 17, pp. 296–306. [CrossRef] [PubMed]
Dahl, S. L. M. , Vaughn, M. E. , Hu, J.-J. , Driessen, N. J. B. , Baaijens, F. P. T. , Humphrey, J. D. , and Niklason, L. E. , 2008, “ A Microstructurally Motivated Model of the Mechanical Behavior of Tissue Engineered Blood Vessels,” Ann. Biomed. Eng., 36(11), pp. 1782–1792. [CrossRef] [PubMed]
Zaucha, M. T. , Gauvin, R. , Auger, F. A. , Germain, L. , and Gleason, R. L. , 2011, “ Biaxial Biomechanical Properties of Self-Assembly Tissue-Engineered Blood Vessels,” J. R. Soc. Interface, 8(55), pp. 244–256. [CrossRef] [PubMed]
Mandru, M. , Ionescu, C. , and Chirita, M. , 2009, “ Modelling Mechanical Properties in Native and Biomimetically Formed Vascular Grafts,” J. Bionic Eng., 6(4), pp. 371–377. [CrossRef]
Telemeco, T. A. , Ayres, C. , Bowlin, G. L. , Wnek, G. E. , Boland, E. D. , Cohen, N. , Baumgarten, C. M. , Mathews, J. , and Simpson, D. G. , 2005, “ Regulation of Cellular Infiltration Into Tissue Engineering Scaffolds Composed of Submicron Diameter Fibrils Produced by Electrospinning,” Acta Biomater., 1(4), pp. 377–385. [CrossRef] [PubMed]
Chauvaud, S. , Jebara, V. , Chachques, J. C. , el Asmar, B. , Mihaileanu, S. , Perier, P. , Dreyfus, G. , Relland, J. , Couetil, J. P. , and Carpentier, A. , 1991, “ Valve Extension With Glutaraldehyde-Preserved Autologous Pericardium. Results in Mitral Valve Repair,” J. Thorac. Cardiovasc. Surg., 102(2), pp. 171–177; Discussion 177–178. [PubMed]
Hunziker, E. B. , Lippuner, K. , and Shintani, N. , 2014, “ How Best to Preserve and Reveal the Structural Intricacies of Cartilaginous Tissue,” Matrix Biol., 39, pp. 33–43. [CrossRef] [PubMed]
Ramesh, R. , Kumar, N. , Sharma, A. K. , Maiti, S. K. , and Singh, G. R. , 2003, “ Acellular and Glutaraldehyde-Preserved Tendon Allografts for Reconstruction of Superficial Digital Flexor Tendon in Bovines: Part I—Clinical, Radiological and Angiographical Observations,” J. Vet. Med., 50(10), pp. 511–519. [CrossRef]
Gough, J. E. , Scotchford, C. A. , and Downes, S. , 2002, “ Cytotoxicity of Glutaraldehyde Crosslinked Collagen/Poly(Vinyl Alcohol) Films is by the Mechanism of Apoptosis,” J. Biomed. Mater. Res., 61(1), pp. 121–130. [CrossRef] [PubMed]
Jayakrishnan, A. , and Jameela, S. R. , 1996, “ Glutaraldehyde as a Fixative in Bioprostheses and Drug Delivery Matrices,” Biomaterials, 17(5), pp. 471–484. [CrossRef] [PubMed]
Schmidt, C. E. , and Baier, J. M. , 2000, “ Acellular Vascular Tissues: Natural Biomaterials for Tissue Repair and Tissue Engineering,” Biomaterials, 21(22), pp. 2215–2231. [CrossRef] [PubMed]
Zhai, W. , Zhang, H. , Wu, C. , Zhang, J. , Sun, X. , Zhang, H. , Zhu, Z. , and Chang, J. , 2014, “ Crosslinking of Saphenous Vein ECM by Procyanidins for Small Diameter Blood Vessel Replacement,” J. Biomed. Mater. Res. Part B, 102(6), pp. 1190–1198. [CrossRef]
Tillman, B. W. , Yazdani, S. K. , Lee, S. J. , Geary, R. L. , Atala, A. , and Yoo, J. J. , 2009, “ The In Vivo Stability of Electrospun Polycaprolactone-Collagen Scaffolds in Vascular Reconstruction,” Biomaterials, 30(4), pp. 583–588. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(Left) Electrospinning setup which includes a syringe pump setup with a syringe loaded with the gelatin/fibrinogen solution. The rotating translating mandrel is enclosed in an acrylic housing. (Right) Electrospun constructs after being removed from mandrel before being placed in the cross-linking chamber.

Grahic Jump Location
Fig. 2

(Left) Representative construct images. (Right) Average thickness of 2, 8, and24 hrs crosslinked constructs with error bars indicating standard deviation. Double asterisks indicate p value < 0.01 (n = 3).

Grahic Jump Location
Fig. 3

Gelatin/fibrinogen tubular construct loaded into the MOD

Grahic Jump Location
Fig. 4

Averaged circumferential stress–strain curves for gelatin/fibrinogen constructs at 0, 10, and 30 g of axial load for constructs crosslinked for 2, 8, and 24 hrs and for the distal section of LADC. Error bars represent one standard deviation.

Grahic Jump Location
Fig. 5

Averaged axial stress–strain curves at 0, 70, and 120 mm Hg for gelatin/fibrinogen constructs crosslinked for 2, 8, and 24 hrs and for the distal section of LADCs. Error bars represent one standard deviation.

Grahic Jump Location
Fig. 6

CTM comparison between experimental groups and the LADC at 0, 70, and 120 mm Hg. The asterisks indicate statistical significance of the difference between each constructs experimental group and the LADC at the respective pressures, with a single asterisk indicating a p value < 0.01 and double asterisks indicating a p value < 0.001.

Grahic Jump Location
Fig. 7

Axial tangential modulus comparison between experimental groups and the LADC at axial Green strain values of 0, 0.05, 0.1, and 0.15. The asterisks indicate statistical significance of the difference between each constructs experimental group and the LADC at the respective axial Green strains, with a single asterisk indicating a p value < 0.05 and double asterisks indicating a p value < 0.001.

Grahic Jump Location
Fig. 8

Compliance comparison between experimental groups and the LADC. The asterisks indicate statistical significance of the difference between each constructs experimental group and the LADC at the respective axial Green strains, with double asterisks indicating a p value < 0.001.

Grahic Jump Location
Fig. 9

Circumferential stress–strain fitted Fung equation surface plots for each experimental group plotted against data points from all three replicates displayed for fit evaluation and visualization. The surface plots and data points are shown only for strain ranges that overlap between all three replicates.

Grahic Jump Location
Fig. 10

Axial stress–strain fitted Fung equation surface plots for each experimental group plotted against data points from all three replicates displayed for fit evaluation and visualization. The surface plots and data points are shown only for strain ranges that overlap between all three replicates.

Grahic Jump Location
Fig. 11

Representative MIP images obtained from multiphoton imaging (top), and fiber orientation distribution histograms (bottom) of the constructs crosslinked for 2, 8, and 24 hrs. Ninety degree angles correspond to fibers oriented in the circumferential direction and 0 deg and 180 deg angles correspond to fibers oriented in the axial direction.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In