0
Research Papers

Fracture Characterization of Human Cortical Bone Under Mode I Loading

[+] Author and Article Information
Filipe Silva

INEGI—Instituto de Engenharia
Mecânica e Gestão Industrial,
Rua Dr. Roberto Frias, 400,
Porto 4200-465, Portugal
e-mail: filipe_silva60@hotmail.com

Marcelo de Moura

Departamento de Engenharia Mecânica,
Faculdade de Engenharia da Universidade do Porto,
Rua Dr. Roberto Frias,
Porto 4200-465, Portugal
e-mail: mfmoura@fe.up.pt

Nuno Dourado

Centre for the Research and Technology of
Agro-Environmental and Biological Sciences,
CITAB,
University of Trás-os-Montes and Alto Douro,
Quinta de Prados,
Vila Real 5000-801, Portugal
e-mail: nunodou@gmail.com

José Xavier

INEGI—Instituto de Engenharia
Mecânica e Gestão Industrial,
Rua Dr. Roberto Frias, 400,
Porto 4200-465, Portugal
e-mail: jxavier@inegi.up.pt

Fábio Pereira

Centre for the Research and Technology of
Agro-Environmental and Biological Sciences,
CITAB,
University of Trás-os-Montes and Alto Douro,
Quinta de Prados,
Vila Real 5000-801, Portugal
e-mail: fampereira@gmail.com

José Morais

Centre for the Research and Technology of
Agro-Environmental and Biological Sciences,
CITAB,
University of Trás-os-Montes and Alto Douro,
Quinta de Prados,
Vila Real 5000-801, Portugal
e-mail: jmorais@utad.pt

Maria Dias

Centre for the Research and Technology of
Agro-Environmental and Biological Sciences,
CITAB,
University of Trás-os-Montes and Alto Douro,
Quinta de Prados,
Vila Real 5000-801, Portugal
e-mail: idias@utad.pt

Paulo Lourenço

Faculdade de Medicina da Universidade de Coimbra,
Banco de Tecidos Ósseos do Centro
Hospitalar e Universitário de Coimbra—CHUC, EPE,
Praceta Prof. Mota Pinto,
Coimbra 3030-396, Portugal
e-mail: paulol@sapo.pt

Fernando Judas

Faculdade de Medicina da Universidade de Coimbra,
Banco de Tecidos Ósseos do Centro
Hospitalar e Universitário de Coimbra—CHUC, EPE,
Praceta Prof. Mota Pinto,
Coimbra 3030-396, Portugal
e-mail: fernandojudas@gmail.com

1Corresponding author.

Manuscript received February 16, 2015; final manuscript received October 18, 2015; published online October 30, 2015. Assoc. Editor: Michael Detamore.

J Biomech Eng 137(12), 121004 (Oct 30, 2015) (9 pages) Paper No: BIO-15-1076; doi: 10.1115/1.4031846 History: Received February 16, 2015; Revised October 18, 2015

A miniaturized version of the double cantilever beam (DCB) test is used to determine the fracture energy in human cortical bone under pure mode I loading. An equivalent crack length based data-reduction scheme is used with remarkable advantages relative to classical methods. Digital image correlation (DIC) technique is employed to determine crack opening displacement at the crack tip being correlated with the evolution of fracture energy. A method is presented to obtain the cohesive law (trapezoidal bilinear softening) mimicking the mechanical behavior observed in bone. Cohesive zone modeling (CZM) (finite-element method) was performed to validate the procedure showing excellent agreement.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ritchie, R. O. , Nalla, R. K. , Kruzic, J. J. , Ager, J. W. , Balooch, G. , and Kinney, J. H. , 2006, “ Fracture and Ageing in Bone: Toughness and Structural Characterization,” Strain, 42(4), pp. 225–232. [CrossRef]
Norman, T. L. , Vashishth, D. , and Burr, D. B. , 1991, “ Mode I Fracture Toughness of Human Bone,” Adv. Bioeng., BED, 20, pp. 361–364.
Norman, T. L. , Vashishth, D. , and Burr, D. B. , 1995, “ Fracture Toughness of Human Bone Under Tension,” J. Biomech., 28(3), pp. 309–320. [CrossRef] [PubMed]
Norman, T. L. , Nivargikar, S. V. , and Burr, D. B. , 1996, “ Resistance to Crack Growth in Human Cortical Bone is Greater in Shear Than in Tension,” J. Biomech., 29(8), pp. 1023–1031. [CrossRef] [PubMed]
Yeni, Y. N. , Brown, C. U. , and Norman, T. L. , 1998, “ Influence of Bone Composition and Apparent Density on Fracture Toughness of the Human Femur and Tibia,” Bone, 22(1), pp. 79–84. [CrossRef] [PubMed]
Brown, C. U. , Yeni, Y. N. , and Norman, T. L. , 2000, “ Fracture Toughness is Dependent on Bone Location: A Study of the Femoral Neck, Femoral Shaft, and the Tibial Shaft,” J. Biomed. Mater. Res. A, 49(3), pp. 380–389. [CrossRef]
Ural, A. , and Mischinski, S. , 2013, “ Multiscale Modeling of Bone Fracture Using Cohesive Finite Elements,” Eng. Fract. Mech., 103, pp. 141–152. [CrossRef]
Vashishth, D. , Behiri, J. C. , and Bonfield, W. , 1997, “ Crack Growth Resistance in Cortical Bone: Concept of Microcrack Toughening,” J. Biomech., 30(8), pp. 763–769. [CrossRef] [PubMed]
Nalla, R. , Kinney, J. , and Ritchie, R. , 2003, “ Mechanistic Fracture Criteria for the Failure of Human Cortical Bone,” Nat. Mater., 2(3), pp. 164–168. [CrossRef] [PubMed]
Nalla, R. K. , Kruzic, J. J. , Kinney, J. H. , and Ritchie, R. O. , 2005, “ Mechanistic Aspects of Fracture and R-Curve Behaviour in Human Cortical Bone,” Biomaterials, 26(2), pp. 217–231. [CrossRef] [PubMed]
Koester, K. J. , Ager, J. W. , and Ritchie, R. O. , 2008, “ How Tough is Human Bone? In Situ Measurements on Realistically Short Cracks,” Nat. Mater., 7(8), pp. 672–677. [CrossRef] [PubMed]
Irwin, G. R. , 1960, Structural Mechanics, Pergamon Press, London, UK.
Krafft, J. M. , Sullivan, A. M. , and Boyle, R. W. , 1961, “ Effect of Dimensions on Fast Fracture Instability of Notched Sheets,” Proc. Crack Propag. Symp., 1, pp. 8–28.
Vashishth, D. , Behiri, J. C. , Tanner, K. E. , and Bordield, W. , 1996, “ Toughening Mechanisms in Cortical Bone,” 42nd Ann. Meeting ORS, Atlanta, GA, pp. 19–22.
Vashishth, D. , Behiri, J. C. , and Bonfield, W. , 1997, “ Crack Growth Resistance in Cortical Bone: Concept of Microcrack Toughening,” J. Biomech., 30(8), pp. 763–769. [CrossRef] [PubMed]
Zioupos, P. , 1998, “ Recent Developments in the Study of Failure of Solid Biomaterials and Bone: ‘Fracture’ and ‘Pre-Fracture’ Toughness,” Mater. Sci. Eng. C, 6(1), pp. 33–40. [CrossRef]
Yang, Q. D. , Cox, N. B. , Nalla, K. R. , and Ritchie, R. O. , 2006, “ Fracture Length Scales in Human Cortical Bone: The Necessity of Nonlinear Fracture Models,” Biomaterials, 27(9), pp. 2095–2113. [CrossRef] [PubMed]
Yan, J. , Clifton, K. B. , Mecholsky, J. J., Jr. , and Reep, R. L. , 2006, “ Fracture Toughness of Manatee Rib and Bovine Femur Using a Chevron-Notched Beam Test,” J. Biomech., 39(6), pp. 1066–1074. [CrossRef] [PubMed]
Wang, X. , and Agrawal, C. M. , 1996, “ Fracture Toughness of Bone Using a Compact Sandwich Specimen: Effects of Sampling Sites and Crack Orientations,” J. Biomed. Mater. Res., 33(1), pp. 13–21. [CrossRef] [PubMed]
Phelps, J. B. , Hubbard, G. B. , Wang, X. , and Agrawal, C. M. , 2000, “ Microstructural Heterogeneity and the Fracture Toughness of Bone,” J. Biomed. Mater. Res., 51(4), pp. 735–741. [CrossRef] [PubMed]
Zimmermann, E. A. , Gludovatz, B. , Schaible, E. , Busse, B. , and Ritchie, R. O. , 2014, “ Fracture Resistance of Human Cortical Bone Across Multiple Length-Scales at Physiological Strain Rates,” Biomaterials, 35(21), pp. 5472–5481. [CrossRef] [PubMed]
Morais, J. J. L. , de Moura, M. F. S. F. , Pereira, F. A. M. , Xavier, J. , Dourado, N. , Dias, M. I. R. , and Azevedo, J. M. T. , 2010, “ The Double Cantilever Beam Test Applied to Mode I Fracture Characterization of Cortical Bone Tissue,” J. Mech. Behav. Biomed. Mater., 3(6), pp. 446–453. [CrossRef] [PubMed]
de Moura, M. F. S. F. , Dourado, N. , and Morais, J. , 2010, “ Crack Equivalent Based Method Applied to Wood Fracture Characterization Using the Single Edge Notched-Three Point Bending Test,” Eng. Fract. Mech., 77(3), pp. 510–520. [CrossRef]
Xavier, J. , Oliveira, J. , Monteiro, P. , Morais, J. J. L. , and de Moura, M. F. S. F. , 2014, “ Direct Evaluation of Cohesive Law in Mode I of Pinus Pinaster by Digital Image Correlation,” Exp. Mech. 54(5), pp. 829–840.
GOM mbH, 2007, aramis dic 2D/3D Commercial Software 2007, aramis 6.0.2.
Xavier, J. , de Jesus, A. M. P. , Morais, J. J. L. , and Pinto, J. M. T. , 2012, “ Stereovision Measurements on Evaluating the Modulus of Elasticity of Wood by Compression Tests Parallel to the Grain,” Constr. Build. Mater., 26(1), pp. 207–215. [CrossRef]
Sousa, A. M. R. , Xavier, J. , Vaz, M. , Morais, J. J. L. , and Filipe, V. M. J. , 2011, “ Cross-Correlation and Differential Technique Combination to Determine Displacement Fields,” Strain, 47(Suppl. 2) pp. 87–98. [CrossRef]
Sousa, A. M. R. , Xavier, J. , Morais, J. J. L. , Filipe, V. M. J. , and Vaz, M. , 2011, “ Processing Discontinuous Displacement Fields by a Spatio-Temporal Derivative Technique,” Opt. Laser Eng., 49(12), pp. 1402–1412. [CrossRef]
Kaute, D. A. W. , Shercliff, H. R. , and Ashby, M. F. , 1993, “ Delamination, Fibre Bridging and Toughness of Ceramic Matrix Composites,” Acta Metall. Mater., 41(7), pp. 1959–1970. [CrossRef]
Koester, K. J. , Barth, H. D. , and Ritchie, R. O. , 2011, “ Effect of Aging on the Transverse Toughness of Human Cortical Bone: Evaluation by R-Curves,” J. Mech. Behav. Biomed., 4(7), pp. 1504–1513. [CrossRef]
Koester, K. J. , Ager, J. W. , and Ritchie, R. O. , 2008, “ The True Toughness of Human Cortical Bone Measured With Realistically Short Cracks,” Nat. Mater., 7(8), pp. 672–677. [CrossRef] [PubMed]
Wagermaier, W. , Gupta, H. S. , Gourrier, A. , Paris, O. , Roschger, P. , Burghammer, M. , Reikel, C. , and Fratzl, P. , 2007, “ Scanning Texture Analysis of Lamellar Bone Using Microbeam Synchrotron X-Ray Radiation,” J. Appl. Crystallogr., 40(1), pp. 115–120. [CrossRef]
ISO 15024:2001, 2002, Fibre-Reinforced Plastic Composites—Determination of Mode I Interlaminar Fracture Toughness, GIc, for Unidirectionally Reinforced Materials, BSI, Switzerland.
Park, K. , and Paulino, G. H. , 2011, “ Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces,” ASME Appl. Mech. Rev., 64(6), p. 060802.
Rice, J. R. , 1968, “ A Path Independent Method Integral and the Approximate Analysis of Strain Correlation by Notches and Cracks,” ASME J. Appl. Mech., 35(2), pp. 379–386. [CrossRef]
Lancaster, P. , and Salkauskas, K. , 1986, Curve and Surface Fitting: An Introduction, Academic Press, New York.
Wirtz, D. C. , Schiffers, N. , Pandorf, T. , Radermacher, K. , Weichert, D. , and Forst, R. , 2000, “ Critical Evaluation of Known Bone Material Properties to Realize Anisotropic FE-Simulation of the Proximal Femur,” J. Biomech., 33(10), pp. 1325–1330. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Segment showing the diaphysis of a human tibia with the position and orientation of the specimen and (b) sketch of the DCB test with its orthotropic directions (L—longitudinal and T—tangential)

Grahic Jump Location
Fig. 2

Introduction of the precrack with a sharp blade duly set in the test machine

Grahic Jump Location
Fig. 3

(a) A photograph showing a DCB test in human bone and a detail of the speckle pattern in the target area and (b) displacement field and corresponding values at the crack tip along the line A–A′ at the peak load (specimen 1)

Grahic Jump Location
Fig. 4

Detail showing damage mechanisms in the vicinity of the crack tip

Grahic Jump Location
Fig. 5

Photography of fracture surface obtained by SEM

Grahic Jump Location
Fig. 6

Evolution of strain energy as a function of crack opening displacement

Grahic Jump Location
Fig. 7

CZM for pure mode I loading

Grahic Jump Location
Fig. 8

Finite-element mesh used in the DCB specimen simulations

Grahic Jump Location
Fig. 9

Experimental and numerical R-curves

Grahic Jump Location
Fig. 10

Experimental and fitted numerical cohesive laws

Grahic Jump Location
Fig. 11

Experimental and numerical load–displacement curves

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In