Research Papers

Comparison of Pedicle Screw Loosening Mechanisms and the Effect on Fixation Strength

[+] Author and Article Information
Hedayeh Mehmanparast

Mechanical Engineering Department,
École de Technologie Superieure,
1100 Notre-Dame Street,
West Montreal, QC H3C 1K3, Canada;
Research Center,
Hôpital Sacré-Coeur de Montréal,
5400 Gouin Boulevard,
West Montreal, QC H4J 1C5, Canada
e-mail: hedayeh.mehmanparast-nodehi.1@ens.etsmtl.ca

Yvan Petit

Mechanical Engineering Department,
École de Technologie Superieure,
1100 Notre-Dame Street,
West Montreal, QC H3C 1K3, Canada;
Research Center,
Hôpital Sacré-Coeur de Montréal,
5400 Gouin Boulevard,
West Montreal, QC H4J 1C5, Canada
e-mail: yvan.petit@etsmtl.ca

Jean-Marc Mac-Thiong

Research Center,
Hôpital Sacré-Coeur de Montréal,
5400 Gouin Boulevard,
West Montreal, QC H4J 1C5, Canada;
Department of Surgery,
Université de Montréal,
2900 Éduard-Montpetit Boulevard,
Montreal, QC H3T 1C5, Canada
e-mail: macthiong@gmail.com

1Corresponding author.

Manuscript received April 2, 2015; final manuscript received October 12, 2015; published online October 27, 2015. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 137(12), 121003 (Oct 27, 2015) (7 pages) Paper No: BIO-15-1144; doi: 10.1115/1.4031821 History: Received April 02, 2015; Revised October 12, 2015

Screw loosening is a common complication in spinal fixation using pedicle screws which may lead to loss of correction and revision surgery. The mechanisms of pedicle screw loosening are not well understood. The purpose of this study was to compare the pedicle screw pullout force and stiffness subsequent or not to multidirectional cyclic bending load (toggling). Pedicle screws inserted into porcine lumbar vertebrae underwent toggling in craniocaudal (CC), mediolateral (ML) directions, and no toggling (NT) before pullout. This study suggests that toggling and in particular CC toggling should be included in biomechanical evaluation of pedicle screw fixation strength.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Vaccaro, A. R. , Kim, D. H. , Brodke, D. S. , Harris, M. , Chapman, J. , Schildhauer, T. , Routt, M. C. , and Sasso, R. C. , 2003, “ Diagnosis and Management of Thoracolumbar Spine Fractures,” Instr. Course Lect., 53, pp. 359–373.
Sanderson, P. , Fraser, R. D. , Hall, D. J. , Cain, C. M. J. , Osti, O. L. , and Potter, G. , 1999, “ Short Segment Fixation of Thoracolumbar Burst Fractures Without Fusion,” Eur. Spine J., 8(6), pp. 495–500. [CrossRef] [PubMed]
Cheung, W. Y. , Lenke, L. G. , and Luk, K. D. , 2010, “ Prediction of Scoliosis Correction With Thoracic Segmental Pedicle Screw Constructs Using Fulcrum Bending Radiographs,” Spine, 35(5), pp. 557–561. [CrossRef] [PubMed]
Dickman, C. A. , Fessler, R. G. , MacMillan, M. , and Haid, R. W. , 1992, “ Transpedicular Screw-Rod Fixation of the Lumbar Spine: Operative Technique and Outcome in 104 Cases,” J. Neurosurg., 77(6), pp. 860–870. [CrossRef] [PubMed]
Esses, S. I. , Sachs, B. L. , and Dreyzin, V. , 1993, “ Complications Associated With the Technique of Pedicle Screw Fixation. A Selected Survey of ABS Members,” Spine, 18(15), pp. 2231–2238. [CrossRef] [PubMed]
Sanden, B. , Olerud, C. , Petren-Mallmin, M. , Johansson, C. , and Larsson, S. , 2004, “ The Significance of Radiolucent Zones Surrounding Pedicle Screws, Definition of Screw Loosening in Spinal Instrumentation,” J. Bone Jt. Surg., Br., 86(3), pp. 457–461. [CrossRef]
Katonis, P. , Christoforakis, J. , Aligizakis, A. C. , Papadopoulos, C. , Sapkas, G. , and Hadjipavlou, A. , 2003, “ Complications and Problems Related to Pedicle Screw Fixation of the Spine,” Clin. Orthop. Relat. Res., 411, pp. 86–94. [CrossRef] [PubMed]
Sandén, B. , Olerud, C. , Petren-Mallmin, M. , and Larsson, S. , 2002, “ Hydroxyapatite Coating Improves Fixation of Pedicle Screws. A Clinical Study,” J. Bone Jt. Surg., Br., 84(3), pp. 387–391. [CrossRef]
Kwok, A. W. L. , Finkelstein, J. A. , Woodside, T. , Hearn, T. C. , and Hu, R. W. , 1996, “ Insertional Torque and Pull-Out Strengths of Conical and Cylindrical Pedicle Screws in Cadaveric Bone,” Spine, 21(21), pp. 2429–2434. [CrossRef] [PubMed]
Cook, S. D. , Salkeld, S. L. , Stanley, T. , Faciane, A. , and Miller, S. D. , 2004, “ Biomechanical Study of Pedicle Screw Fixation in Severely Osteoporotic Bone,” Spine J., 4(4), pp. 402–408. [CrossRef] [PubMed]
Cook, S. D. , Barbera, J. , Rubi, M. , Salkeld, S. L. , and Whitecloud, T. S., III , 2001, “ Lumbosacral Fixation Using Expandable Pedicle Screws: An Alternative in Reoperation and Osteoporosis,” Spine J., 1(2), pp. 109–114. [CrossRef] [PubMed]
Mehta, H. , Santos, E. , Ledonio, C. , Sembrano, J. , Ellingson, A. , Pare, P. , Murrell, B. , and Nuckley, D. J. , 2012, “ Biomechanical Analysis of Pedicle Screw Thread Differential Design in an Osteoporotic Cadaver Model,” Clin. Biomech., 27(3), pp. 234–240. [CrossRef]
Pfeiffer, M. , Gilbertson, L. G. , Goel, V. K. , Griss, P. , Keller, J. C. , Ryken, T. C. , and Hoffman, H. E. , 1996, “ Effect of Specimen Fixation Method on Pullout Tests of Pedicle Screws,” Spine, 21(9), pp. 1037–1044. [CrossRef] [PubMed]
Abshire, B. B. , McLain, R. F. , Valdevit, A. , and Kambic, H. E. , 2001, “ Characteristics of Pullout Failure in Conical and Cylindrical Pedicle Screws After Full Insertion and Back-Out,” Spine J., 1(6), pp. 408–414. [CrossRef] [PubMed]
Halvorson, T. L. , Kelley, L. A. , Thomas, K. A. , Whitecloud, T. S., III , and Cook, S. D. , 1994, “ Effects of Bone Mineral Density on Pedicle Screw Fixation,” Spine, 19(21), pp. 2415–2420. [CrossRef] [PubMed]
Soshi, S. , Shiba, R. , Kondo, H. , and Murota, K. , 1991, “ An Experimental Study on Transpedicular Screw Fixation in Relation to Osteoporosis of the Lumbar Spine,” Spine, 16(11), pp. 1335–1341. [CrossRef] [PubMed]
Wittenberg, R. H. , Lee, K. S. , Shea, M. , White, A. A., III , and Hayes, W. C. , 1993, “ Effect of Screw Diameter, Insertion Technique, and Bone Cement Augmentation of Pedicular Screw Fixation Strength,” Clin. Orthop. Relat. Res., 296, pp. 278–287. [PubMed]
Brantley, A. G. , Mayfield, J. K. , Koeneman, J. B. , and Clark, K. R. , 1994, “ The Effects of Pedicle Screw Fit: An In Vitro Study,” Spine, 19(15), pp. 1752–1758. [CrossRef] [PubMed]
Hirano, T. , Hasegawa, K. , Takahashi, H. E. , Uchiyama, S. , Hara, T. , Washio, T. , Sugiura, T. , Yokaichiya, M. , and Ikeda, M. , 1997, “ Structural Characteristics of the Pedicle and Its Role in Screw Stability,” Spine, 22(21), pp. 2504–2510. [CrossRef] [PubMed]
Kumano, K. , Hirabayashi, S. , Ogawa, Y. , and Aota, Y. , 1994, “ Pedicle Screws and Bone Mineral Density,” Spine, 19(10), pp. 1157–1161. [CrossRef] [PubMed]
Kim, Y.-Y. , Choi, W.-S. , and Rhyu, K.-W. , 2012, “ Assessment of Pedicle Screw Pullout Strength Based on Various Screw Designs and Bone Densities—An Ex Vivo Biomechanical Study,” Spine J., 12(2), pp. 164–168. [CrossRef] [PubMed]
Hashemi, A. , Bednar, D. , and Ziada, S. , 2009, “ Pullout Strength of Pedicle Screws Augmented With Particulate Calcium Phosphate: An Experimental Study,” Spine J., 9(5), pp. 404–410. [CrossRef] [PubMed]
Patel, P. S. D. , Shepherd, D. E. T. , and Hukins, D. W. L. , 2010, “ The Effect of Screw Insertion Angle and Thread Type on the Pullout Strength of Bone Screws in Normal and Osteoporotic Cancellous Bone Models,” Med. Eng. Phys., 32(8), pp. 822–828. [CrossRef] [PubMed]
McLain, R. F. , McKinley, T. O. , Yerby, S. A. , Smith, T. S. , and Sarigul-Klijn, N. , 1997, “ The Effect of Bone Quality on Pedicle Screw Loading in Axial Instability: A Synthetic Model,” Spine, 22(13), pp. 1454–1460. [CrossRef] [PubMed]
Paik, H. , Dmitriev, A. E. , Lehman, R. A. , Gaume, R. E. , Ambati, D. V. , Kang, D. G. , and Lenke, L. G. , 2012, “ The Biomechanical Effect of Pedicle Screw Hubbing on Pullout Resistance in the Thoracic Spine,” Spine J., 12(5), pp. 417–424. [CrossRef] [PubMed]
Johnston, T. L. , Karaikovic, E. E. , Lautenschlager, E. P. , and Marcu, D. , 2006, “ Cervical Pedicle Screws vs Lateral Mass Screws: Uniplanar Fatigue Analysis and Residual Pullout Strengths,” Spine J., 6(6), pp. 667–672. [CrossRef] [PubMed]
Zindrick, M. R. , Wiltse, L. L. , Widell, E. H. , Thomas, J. C. , Holland, W. R. , Field, B. T. , and Spencer, C. W. , 1986, “ A Biomechanical Study of Intrapeduncular Screw Fixation in the Lumbosacral Spine,” Clin. Orthop. Relat. Res., 203, pp. 99–112. [PubMed]
Okuyama, K. , Sato, K. , Abe, E. , Inaba, H. , Shimada, Y. , and Murai, H. , 1993, “ Stability of Transpedicle Screwing for the Osteoporotic Spine: An In Vitro Study of the Mechanical Stability,” Spine, 18(15), pp. 2240–2245. [CrossRef] [PubMed]
Lotz, J. C. , Hu, S. S. , Chiu, D. F. M. , Yu, M. , Colliou, O. , and Poser, R. D. , 1997, “ Carbonated Apatite Cement Augmentation of Pedicle Screw Fixation in the Lumbar Spine,” Spine, 22(23), pp. 2716–2723. [CrossRef] [PubMed]
Zdeblick, T. A. , Kunz, D. N. , Cooke, M. E. , and McCabe, R. , 1993, “ Pedicle Screw Pullout Strength: Correlation With Insertional Torque,” Spine, 18(12), pp. 1673–1676. [CrossRef] [PubMed]
Myers, B. S. , Belmont, P. J. , Richardson, W. J. , Yu, J. R. , Harper, K. D. , and Nightingale, R. W. , 1996, “ The Role of Imaging and In Situ Biomechanical Testing in Assessing Pedicle Screw Pull-Out Strength,” Spine, 21(17), pp. 1962–1968. [CrossRef] [PubMed]
İnceoğlu, S. , Ehlert, M. , Akbay, A. , and McLain, R. F. , 2006, “ Axial Cyclic Behavior of the Bone–Screw Interface,” Med. Eng. Phys., 28(9), pp. 888–893. [CrossRef] [PubMed]
Mehmanparast, H. N. , Mac-Thiong, J.-M. , and Petit, Y. , 2015, “ In Vitro Evaluation of Pedicle Screw Loosening Mechanism: A Preliminary Study on Animal Model,” Scoliosis, 10(Suppl 1), p. O25. [CrossRef]
Aerssens, J. , Boonen, S. , Lowet, G. , and Dequeker, J. , 1998, “ Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for In Vivo Bone Research 1,” Endocrinology, 139(2), pp. 663–670. [PubMed]
Dath, R. , Ebinesan, A. , Porter, K. , and Miles, A. , 2007, “ Anatomical Measurements of Porcine Lumbar Vertebrae,” Clin. Biomech., 22(5), pp. 607–613. [CrossRef]
McLain, R. F. , Yerby, S. A. , and Moseley, T. A. , 2002, “ Comparative Morphometry of L4 Vertebrae: Comparison of Large Animal Models for the Human Lumbar Spine,” Spine, 27(8), pp. E200–E206. [CrossRef] [PubMed]
Aslani, F. J. , Hukins, D. W. , and Shepherd, D. E. , 2012, “ Applicability of Sheep and Pig Models for Cancellous Bone in Human Vertebral Bodies,” Proc. Inst. Mech. Eng., Part H, 226(1), pp. 76–78. [CrossRef]
Zindrick, M. R. , Wiltse, L. L. , Doornik, A. , Widell, E. H. , Knight, G. W. , Patwardhan, A. G. , Thomas, J. C. , Rothman, S. L. , and Fields, B. , 1987, “ Analysis of the Morphometric Characteristics of the Thoracic and Lumbar Pedicles,” Spine, 12(2), pp. 160–166. [CrossRef] [PubMed]
Levasseur, A. , Ploeg, H.-L. , and Petit, Y. , 2012, “ Comparison of the Influences of Structural Characteristics on Bulk Mechanical Behaviour: Experimental Study Using a Bone Surrogate,” Med. Biol. Eng. Comput., 50(1), pp. 61–67. [CrossRef] [PubMed]
ASTM, 2007, “ Standard Specification and Test Methods for Metallic Medical Bone Screws,” American Society for Testing and Materials, West Conshohocken, PA, Standard No. F543-07.


Grahic Jump Location
Fig. 1

Toggling test setup. Each specimen was secured in a custom fixture using polyester resin allowing change of orientation for (a) CC and (b) ML toggling.

Grahic Jump Location
Fig. 2

Pullout test setup. Each specimen was embedded in polyester resin and secured into custom fixture allowing alignment of pedicle screw head with the shackle gripped by the material testing system shaft for pullout.

Grahic Jump Location
Fig. 3

Pareto charts of the standardized effect of toggling mode and vertebral level on the pedicle screw: (a) pullout force and (b) stiffness. Vertical lines define the thresholds for significant effects (p < 0.05).

Grahic Jump Location
Fig. 4

Two-dimensional contour plot for (a) pullout force and (b) stiffness as a function of toggling modes and vertebral levels. The maximum pullout force was observed at L1 for NT mode whereas the minimum pullout force is shown at L3 for CC mode. The stiffness increased from L1 to L3 levels and from CC to NT modes.

Grahic Jump Location
Fig. 5

Comparison of pedicle screw: (a) pullout force and (b) stiffness between CC, ML, and NT toggling modes. Significant differences (P < 0.05) are shown by an asterisk (*). Error bars represent the standard deviations.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In