0
Research Papers

An Effective Approach for Optimization of a Composite Intramedullary Nail for Treating Femoral Shaft Fractures

[+] Author and Article Information
Saeid Samiezadeh

Department of Mechanical
and Industrial Engineering,
Ryerson University,
350 Victoria Street,
Toronto, ON M5B 2K3, Canada
e-mail: saeid.samiezadeh@ryerson.ca

Pouria Tavakkoli Avval

Department of Mechanical and
Industrial Engineering,
Ryerson University,
350 Victoria Street,
Toronto, ON M5B 2K3, Canada
e-mail: ptavakko@ryerson.ca

Zouheir Fawaz

Department of Aerospace Engineering,
Ryerson University,
350 Victoria Street,
Toronto, ON M5B 2K3, Canada
e-mail: zfawaz@ryerson.ca

Habiba Bougherara

Department of Mechanical and
Industrial Engineering,
Ryerson University,
350 Victoria Street,
Toronto, ON M5B 2K3, Canada
e-mail: habiba.bougherara@ryerson.ca

1Corresponding author.

Manuscript received April 14, 2015; final manuscript received September 19, 2015; published online October 20, 2015. Assoc. Editor: David Corr.

J Biomech Eng 137(12), 121001 (Oct 20, 2015) (9 pages) Paper No: BIO-15-1178; doi: 10.1115/1.4031766 History: Received April 14, 2015; Revised September 19, 2015

The high stiffness of conventional intramedullary (IM) nails may result in stress shielding and subsequent bone loss following healing in long bone fractures. It can also delay union by reducing compressive loads at the fracture site, thereby inhibiting secondary bone healing. This paper introduces a new approach for the optimization of a fiber-reinforced composite nail made of carbon fiber (CF)/epoxy based on a combination of the classical laminate theory, beam theory, finite-element (FE) method, and bone remodeling model using irreversible thermodynamics. The optimization began by altering the composite stacking sequence and thickness to minimize axial stiffness, while maximizing torsional stiffness for a given range of bending stiffnesses. The selected candidates for the seven intervals of bending stiffness were then examined in an experimentally validated FE model to evaluate their mechanical performance in transverse and oblique femoral shaft fractures. It was found that the composite nail having an axial stiffness of 3.70 MN and bending and torsional stiffnesses of 70.3 and 70.9 Nm2, respectively, showed an overall superiority compared to the other configurations. It increased compression at the fracture site by 344.9 N (31%) on average, while maintaining fracture stability through an average increase of only 0.6 mm (49%) in fracture shear movement in transverse and oblique fractures when compared to a conventional titanium-alloy nail. The long-term results obtained from the bone remodeling model suggest that the proposed composite IM nail reduces bone loss in the femoral shaft from 7.9% to 3.5% when compared to a conventional titanium-alloy nail. This study proposes a number of practical guidelines for the design of composite IM nails.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Braten, M. , Terjesen, T. , and Rossvoll, I. , 1995, “ Femoral Shaft Fractures Treated by Intramedullary Nailing. A Follow-Up Study Focusing on Problems Related to the Method,” Injury, 26(6), pp. 379–383. [CrossRef] [PubMed]
Cheung, G. , Zalzal, P. , Bhandari, M. , Spelt, J. K. , and Papini, M. , 2004, “ Finite Element Analysis of a Femoral Retrograde Intramedullary Nail Subject to Gait Loading,” Med. Eng. Phys., 26(2), pp. 93–108. [CrossRef] [PubMed]
Wolff, J. , Maquet, P. , and Furlong, R. , 1986, The Law of Bone Remodelling, Springer-Verlag, Berlin.
Mantripragada, V. P. , Lecka-Czernik, B. , Ebraheim, N. A. , and Jayasuriya, A. C. , 2013, “ An Overview of Recent Advances in Designing Orthopedic and Craniofacial Implants,” J. Biomed. Mater. Res., Part A, 101(11), pp. 3349–3364.
Woo, S. L. , Lothringer, K. S. , Akeson, W. H. , Coutts, R. D. , Woo, Y. K. , Simon, B. R. , and Gomez, M. A. , 1984, “ Less Rigid Internal Fixation Plates: Historical Perspectives and New Concepts,” J. Orthop. Res., 1(4), pp. 431–449. [CrossRef] [PubMed]
Poitout, D. G. , 2004, Biomechanics and Biomaterials in Orthopedics, Springer, London.
Tayton, K. , Johnson-Nurse, C. , Mckibbin, B. , Bradley, J. , and Hastings, G. , 1982, “ The Use of Semi-Rigid Carbon-Fibre-Reinforced Plastic Plates for Fixation of Human Fractures. Results of Preliminary Trials,” J. Bone Jt. Surg., Br., 64(1), pp. 105–111.
Ali, M. S. , French, T. A. , Hastings, G. W. , Rae, T. , Rushton, N. , Ross, E. R. S. , and Wynn-Jones, C. H. , 1990, “ Carbon Fibre Composite Bone Plates. Development, Evaluation and Early Clinical Experience,” J. Bone Jt. Surg., Ser. B, 72(4), pp. 586–591.
Fujihara, K. , Huang, Z. M. , Ramakrishna, S. , Satknanantham, K. , and Hamada, H. , 2003, “ Performance Study of Braided Carbon/PEEK Composite Compression Bone Plates,” Biomaterials, 24(15), pp. 2661–2667. [CrossRef] [PubMed]
Metzinger, A. J. , Grant, S. R. , and Yambor, J. N. , 2009, “ Composite Intramedullary Nail,” U.S. Patent No. 2009/0088752 A1.
Morawska-Chochół, A. , Chłopek, J. , Domalik-Pyzik, P. , Szaraniec, B. , and Grzyśka, E. , 2014, “ Magnesium Alloy Wires as Reinforcement in Composite Intramedullary Nails,” Bio-Med. Mater. Eng., 24(2), pp. 1507–1515.
Samiezadeh, S. , Avval, P. T. , Fawaz, Z. , and Bougherara, H. , 2014, “ Biomechanical Assessment of Composite Versus Metallic Intramedullary Nailing System in Femoral Shaft Fractures: A Finite Element Study,” Clin. Biomech. (Bristol, Avon), 29(7), pp. 803–810. [CrossRef] [PubMed]
Bradley, J. S. , Hastings, G. W. , and Johnson-Nurse, C. , 1980, “ Carbon Fibre Reinforced Epoxy as a High Strength, Low Modulus Material for Internal Fixation Plates,” Biomaterials, 1(1), pp. 38–40. [CrossRef] [PubMed]
Bagheri, Z. S. , El Sawi, I. , Schemitsch, E. H. , Zdero, R. , and Bougherara, H. , 2013, “ Biomechanical Properties of an Advanced New Carbon/Flax/Epoxy Composite Material for Bone Plate Applications,” J. Mech. Behav. Biomed. Mater., 20, pp. 398–406. [CrossRef] [PubMed]
Bailie, J. A. , Ley, R. P. , and Pasricha, A. A. , 1997, “ Summary and Review of Composite Laminate Design Guidelines,” NASA Langley Research Center, Hampton, VA, Technical Report No. NASA, NAS1-19347.
Kollár, L. P. , and Springer, G. S. , 2003, Mechanics of Composite Structures, Cambridge University Press, Cambridge, UK.
Tayton, K. , and Bradley, J. , 1983, “ How Stiff Should Semi-Rigid Fixation of the Human Tibia be? A Clue to the Answer,” J. Bone Jt. Surg., Br., 65(3), pp. 312–315.
Papini, M. , Zdero, R. , Schemitsch, E. H. , and Zalzal, P. , 2007, “ The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs,” ASME J. Biomech. Eng., 129(1), pp. 12–19. [CrossRef]
Heiner, A. D. , 2008, “ Structural Properties of Fourth-Generation Composite Femurs and Tibias,” J. Biomech., 41(15), pp. 3282–3284. [CrossRef] [PubMed]
Montanini, R. , and Filardi, V. , 2010, “ In Vitro Biomechanical Evaluation of Antegrade Femoral Nailing at Early and Late Postoperative Stages,” Med. Eng. Phys., 32(8), pp. 889–897. [CrossRef] [PubMed]
Bitsakos, C. , Kerner, J. , Fisher, I. , and Amis, A. A. , 2005, “ The Effect of Muscle Loading on the Simulation of Bone Remodelling in the Proximal Femur,” J. Biomech., 38(1), pp. 133–139. [CrossRef] [PubMed]
Duda, G. N. , Schneider, E. , and Chao, E. Y. , 1997, “ Internal Forces and Moments in the Femur During Walking,” J. Biomech., 30(9), pp. 933–941. [CrossRef] [PubMed]
Frankel, V. H. , and Nordin, M. , 1980, Basic Biomechanics of the Skeletal System, Lea & Febiger, New York.
Avval, P. T. , Klika, V. , and Bougherara, H. , 2014, “ Predicting Bone Remodeling in Response to Total Hip Arthroplasty: Computational Study Using Mechanobiochemical Model,” ASME J. Biomech. Eng., 136(5), p. 051002. [CrossRef]
Li, M. G. , Rohrl, S. M. , Wood, D. J. , and Nivbrant, B. , 2007, “ Periprosthetic Changes in Bone Mineral Density in 5 Stem Designs 5 Years After Cemented Total Hip Arthroplasty. No Relation to Stem Migration,” J. Arthroplasty, 22(5), pp. 689–691. [CrossRef] [PubMed]
Aro, H. T. , Wahner, H. T. , and Chao, E. Y. , 1991, “ Healing Patterns of Transverse and Oblique Osteotomies in the Canine Tibia Under External Fixation,” J. Orthop. Trauma, 5(3), pp. 351–364. [CrossRef] [PubMed]
Wang, C. , Wang, L. Z. , and Fan, Y. B. , 2013, “ Long-Term Prediction of Bone Density Distribution for Retained Intramedullary Nail,” World Congress on Medical Physics and Biomedical Engineering, Beijing, May 26–31, 2012, pp. 161–164.
Allen, J. C., Jr. , Lindsey, R. W. , Hipp, J. A. , Gugala, Z. , Rianon, N. , and Leblanc, A. , 2008, “ The Effect of Retained Intramedullary Nails on Tibial Bone Mineral Density,” Clin. Biomech. (Bristol, Avon), 23(6), pp. 839–843. [CrossRef] [PubMed]
Eyres, K. S. , and Kanis, J. A. , 1995, “ Bone Loss After Tibial Fracture. Evaluated by Dual-Energy X-Ray Absorptiometry,” J. Bone Jt. Surg., Br., 77(3), pp. 473–478.
Kapp, W. , Lindsey, R. W. , Noble, P. C. , Rudersdorf, T. , and Henry, P. , 2000, “ Long-Term Residual Musculoskeletal Deficits After Femoral Shaft Fractures Treated With Intramedullary Nailing,” J. Trauma, 49(3), pp. 446–449. [CrossRef] [PubMed]
Sha, M. , Guo, Z. , Fu, J. , Li, J. , Yuan, C. F. , Shi, L. , and Li, S. J. , 2009, “ The Effects of Nail Rigidity on Fracture Healing in Rats With Osteoporosis,” Acta Orthop., 80(1), pp. 135–138. [CrossRef] [PubMed]
Kaiser, M. M. , Wessel, L. M. , Zachert, G. , Stratmann, C. , Eggert, R. , Gros, N. , Schulze-Hessing, M. , Kienast, B. , and Rapp, M. , 2011, “ Biomechanical Analysis of a Synthetic Femur Spiral Fracture Model: Influence of Different Materials on the Stiffness in Flexible Intramedullary Nailing,” Clin. Biomech., 26(6), pp. 592–597. [CrossRef]
Perez, A. , Mahar, A. , Negus, C. , Newton, P. , and Impelluso, T. , 2008, “ A Computational Evaluation of the Effect of Intramedullary Nail Material Properties on the Stabilization of Simulated Femoral Shaft Fractures,” Med. Eng. Phys., 30(6), pp. 755–760. [CrossRef] [PubMed]
Flinck, M. , von Heideken, J. , Janarv, P. M. , Wåtz, V. , and Riad, J. , 2014, “ Biomechanical Comparison of Semi-Rigid Pediatric Locking Nail Versus Titanium Elastic Nails in a Femur Fracture Model,” J. Child. Orthop., 9(1), pp. 77–84. [CrossRef] [PubMed]
Green, J. K. , Werner, F. W. , Dhawan, R. , Evans, P. J. , Kelley, S. , and Webster, D. A. , 2005, “ A Biomechanical Study on Flexible Intramedullary Nails Used to Treat Pediatric Femoral Fractures,” J. Orthop. Res., 23(6), pp. 1315–1320. [CrossRef] [PubMed]
Heffernan, M. J. , Gordon, J. E. , Sabatini, C. S. , Keeler, K. A. , Lehmann, C. L. , O'donnell, J. C. , Seehausen, D. A. , Luhmann, S. J. , and Arkader, A. , 2014, “ Treatment of Femur Fractures in Young Children: A Multicenter Comparison of Flexible Intramedullary Nails to Spica Casting in Young Children Aged 2 to 6 Years,” J. Pediatr. Orthop., 35(2), pp. 126–129. [CrossRef]
Kim, C. , and White, S. R. , 1996, “ Analysis of Thick Hollow Composite Beams Under General Loadings,” Compos. Struct., 34(3), pp. 263–277. [CrossRef]
Shadmehri, F. , Derisi, B. , and Hoa, S. V. , 2011, “ On Bending Stiffness of Composite Tubes,” Compos. Struct., 93(9), pp. 2173–2179. [CrossRef]
Vasiliev, V. V. , and Morozov, E. , 2013, Advanced Mechanics of Composite Materials and Structural Elements, Elsevier Science, Oxford, UK.

Figures

Grahic Jump Location
Fig. 1

Finite-element models of a femur with a transverse (a), PMDL oblique (b), and PLDM oblique (c) fracture, which was fixed with an IM nail

Grahic Jump Location
Fig. 2

Fracture opening (a) and shear movement (b) at the fracture site for transverse, PMDL oblique, and PLDM oblique midshaft fractures with the use of composite (C1–C7) and conventional metallic (C8) IM nails

Grahic Jump Location
Fig. 3

Nail ISF for composite IM nail candidates (C1–C7) and the metallic IM nail (C8) in transverse, PMDL oblique, and PLDM oblique midshaft fractures

Grahic Jump Location
Fig. 4

Compressive normal force at fracture (a) and average nodal stress in the bone at the vicinity of the fracture (b) for composite IM nail candidates (C1–C7) and the metallic IM nail (C8) in transverse, PMDL oblique, and PLDM oblique midshaft fractures

Grahic Jump Location
Fig. 5

Long-term average bone loss in the femoral shaft fixed with the composite IM nail candidates (C1–C7) and metallic IM nail (C8) (a). Percent change in femoral density in response to a typical IM nail candidate (b) as well as the metallic IM nail (c).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In