0
Research Papers

Adaptation of the AnyBody™ Musculoskeletal Shoulder Model to the Nonconforming Total Shoulder Arthroplasty Context

[+] Author and Article Information
Lauranne Sins

Laboratoire de recherche
en imagerie et orthopédie,
Centre de recherche du CHUM,
Montréal, QC H2X 0A9, Canada;
École de technologie supérieure,
Montréal, QC H3C 1K3, Canada
e-mail: lauranne.sins@gmail.com

Patrice Tétreault

Orthopaedics Surgery Department,
Centre Hospitalier de l'Université de Montréal,
Notre-Dame Hospital,
Local DR-1118-16,
Montréal, QC H2L 4M1, Canada;
Laboratoire de recherche
en imagerie et orthopédie,
Centre de recherche du CHUM,
Montréal, QC H2X 0A9, Canada
e-mail: p.tetreault.md@gmail.com

Nicola Hagemeister

Department of GPA,
École de technologie supérieure,
Montréal, QC H3C 1K3, Canada;
Laboratoire de recherche
en imagerie et orthopédie,
Centre de recherche du CHUM,
Montréal, QC H2X 0A9, Canada
e-mail: nicola.hagemeister@etsmtl.ca

Natalia Nuño

Department of GPA,
École de technologie supérieure,
Montréal, QC H3C 1K3 Canada;
Laboratoire de recherche
en imagerie et orthopédie,
Centre de recherche du CHUM,
Montréal, QC H2X 0A9, Canada
e-mail: natalia.nuno@etsmtl.ca

Manuscript received July 29, 2014; final manuscript received July 18, 2015; published online September 2, 2015. Assoc. Editor: Guy M. Genin.

J Biomech Eng 137(10), 101006 (Sep 02, 2015) (7 pages) Paper No: BIO-14-1346; doi: 10.1115/1.4031330 History: Received July 29, 2014; Revised July 18, 2015

Current musculoskeletal inverse dynamics shoulder models have two limitations to use in the context of nonconforming total shoulder arthroplasty (NC-TSA). First, the ball and socket glenohumeral (GH) joint simplification avoids any humeral head translations. Second, there is no contact at the GH joint to compute the contact area and the center of pressure (COP) between the two components of NC-TSA. In this paper, we adapted the AnyBody™ shoulder model by introducing humeral head translations and contact between the two components of an NC-TSA. Abduction in the scapular plane was considered. The main objective of this study was to adapt the AnyBody™ shoulder model to a NC-TSA context and to compare the results of our model (translations, COP, contact area, GH joint reaction forces (GH-JRFs), and muscular forces) with previous numerical, experimental, and clinical studies. Humeral head translations and contact were successfully introduced in our adapted shoulder model with strong support for our findings by previous studies.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Favre, P. , Snedeker, J. G. , and Gerber, C. , 2009, “ Numerical Modelling of the Shoulder for Clinical Applications,” Philos. Trans. R. Soc., A, 367(1895), pp. 2095–2118. [CrossRef]
Quental, C. , Folgado, J. A. , Ambrósio, J. , and Monteiro, J. , 2012, “ A Multibody Biomechanical Model of the Upper Limb Including the Shoulder Girdle,” Multibody Syst. Dyn., 28(1–2), pp. 83–108. [CrossRef]
Charlton, I. W. , and Johnson, G. R. , 2006, “ A Model for the Prediction of the Forces at the Glenohumeral Joint,” Proc. Inst. Mech. Eng., Part H, 220(8), pp. 801–812. [CrossRef]
Masjedi, M. , Lovell, C. , and Johnson, G. R. , 2011, “ Comparison of Range of Motion and Function of Subjects With Reverse Anatomy Bayley-Walker Shoulder Replacement With Those of Normal Subjects,” Hum. Mov. Sci., 30(6), pp. 1062–1071. [CrossRef] [PubMed]
Karlsson, D. , and Peterson, B. , 1992, “ Towards a Model for Force Predictions in the Human Shoulder,” J. Biomech., 25(2), pp. 189–199. [CrossRef] [PubMed]
Nikooyan, A. A. , Veeger, D. H. E. J. , Chadwick, E. K. J. , Praagman, M. , and van der Helm, F. C. T. , 2011, “ Development of a Comprehensive Musculoskeletal Model of the Shoulder and Elbow,” Med. Biol. Eng. Comput., 49(12), pp. 1425–1435. [CrossRef] [PubMed]
Rasmussen, J. , de Zee, M. , Torholm, S. , and Damsgaard, M. , 2007, “ Comparison of a Musculoskeletal Shoulder Model With In Vivo Joint Forces,” J. Biomech., 40(Supplement 2), pp. S67. [CrossRef]
Lemieux, P.-O. , Nuño, N. , Hagemeister, N. , and Tétreault, P. , 2012, “ Mechanical Analysis of Cuff Tear Arthropathy During Multiplanar Elevation With the AnyBody Shoulder Model,” Clin. Biomech., 27(8), pp. 801–806. [CrossRef]
Lemieux, P. O. , Tétreault, P. , Hagemeister, N. , and Nuño, N. , 2013, “ Influence of Prosthetic Humeral Head Size and Medial Offset on the Mechanics of the Shoulder With Cuff Tear Arthropathy: A Numerical Study,” J. Biomech., 46(4), pp. 806–812. [CrossRef] [PubMed]
Bergmann, G. , Graichen, F. , Bender, A. , Kääb, M. , Rohlmann, A. , and Westerhoff, P. , 2007, “ In Vivo Glenohumeral Contact Forces—Measurements in the First Patient 7 Months Postoperatively,” J. Biomech., 40(10), pp. 2139–2149. [CrossRef] [PubMed]
van der Helm, F. C. T. , 1994, “ A Finite Element Musculoskeletal Model of the Shoulder Mechanism,” J. Biomech., 27(5), pp. 551–569. [CrossRef] [PubMed]
Nikooyan, A. A. , Veeger, D. H. E. J. , Westerhoff, P. , Graichen, F. , Bergmann, G. , and Van der Helm, F. C. T. , 2010, “ Validation of the Delft Shoulder and Elbow Model Using In-Vivo Glenohumeral Joint Contact Forces,” J. Biomech., 43(15), pp. 3007–3014. [CrossRef] [PubMed]
Terrier, A. , Vogel, A. , Capezzali, M. , and Farron, A. , 2008, “ An Algorithm to Allow Humerus Translation in the Indeterminate Problem of Shoulder Abduction,” Med. Eng. Phys., 30(6), pp. 710–716. [CrossRef] [PubMed]
Karduna, A. R. , Williams, G. R. , Williams, J. L. , and Iannotti, J. P. , 1997, “ Glenohumeral Joint Translations Before and After Total Shoulder Arthroplasty. A Study in Cadavera,” J. Bone Jt. Surg., Am., 79(8), pp. 1166–1174.
Franklin, J. L. , Barrett, W. P. , Jackins, S. E. , and Matsen, F. A. , 1988, “ Glenoid Loosening in Total Shoulder Arthroplasty. Association With Rotator Cuff Deficiency,” J. Arthroplasty, 3(1), pp. 39–46. [CrossRef] [PubMed]
Terrier, A. , Aeberhard, M. , Michellod, Y. , Mullhaupt, P. , Gillet, D. , Farron, A. , and Pioletti, D. P. , 2010, “ A Musculoskeletal Shoulder Model Based on Pseudo-Inverse and Null-Space Optimization,” Med. Eng. Phys., 32(9), pp. 1050–1056. [CrossRef] [PubMed]
Larrea, X. , Farron, A. , Pioletti, D. P. , and Terrier, A. , 2011, “ Shoulder Muscle Forces During Abduction With Subscapularis Deficiency After Total Shoulder Arthroplasty,” Comput. Methods Biomech. Biomed. Eng., 14(Suppl. 1), pp. 19–20. [CrossRef]
Terrier, A. , Merlini, F. , Pioletti, D. P. , and Farron, A. , 2009, “ Total Shoulder Arthroplasty: Downward Inclination of the Glenoid Component to Balance Supraspinatus Deficiency,” J. Shoulder Elbow Surg., 18(3), pp. 360–365. [CrossRef] [PubMed]
Terrier, A. , Larrea, X. , Malfroy Camine, V. , Pioletti, D. P. , and Farron, A. , 2013, “ Importance of the Subscapularis Muscle After Total Shoulder Arthroplasty,” Clin. Biomech., 28(2), pp. 146–150. [CrossRef]
van der Helm, F. C. T. , and Veenbaas, R. , 1991, “ Modelling the Mechanical Effect of Muscles With Large Attachment Sites: Application to the Shoulder Mechanism,” J. Biomech., 24(12), pp. 1151–1163. [CrossRef] [PubMed]
Walch, G. , Edwards, T. B. , Boulahia, A. , Boileau, P. , Molé, D. , and Adeleine, P. , 2002, “ The Influence of Glenohumeral Prosthetic Mismatch on Glenoid Radiolucent Lines: Results of a Multicenter Study,” J. Bone Jt. Surg., Am. 84(12), pp. 2186–2191.
Zajac, F. E. , 1989, “ Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control,” Crit. Rev. Biomed. Eng., 17(4), pp. 359–411. [PubMed]
Damsgaard, M. , Rasmussen, J. , Christensen, S. R. T. R. , Surma, E. , and de Zee, M. , 2006, “ Analysis of Musculoskeletal Systems in the AnyBody Modeling System,” Simul. Modell. Pract. Theory, 14(8), pp. 1100–1111. [CrossRef]
Wu, G. , Van der Helm, F. C. T. , Veeger, D. H. E. J. , Makhsous, M. , Van Roy, P. , Anglin, C. , Nagels, J. , Karduna, A. R. , McQuade, K. , Wang, X. , Werner, F. W. , and Buchholz, B. , 2005, “ ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand,” J. Biomech., 38(5), pp. 981–992. [CrossRef] [PubMed]
de Groot, J. H. , Brand, R. , and Groot, J. H. , 2001, “ A Three-Dimensional Regression Model of the Shoulder Rhythm,” Clin. Biomech., 16(9), pp. 735–743. [CrossRef]
Carbes, S. , 2011, “ Shoulder Rhythm,” AnyBody Technology A/S, Aalborg, Denmark, Technical Report No. 26367042.
van der Helm, F. C. T. , Veeger, D. H. E. J. , Pronk, G. M. , van der Woude, L. H. , and Rozendal, R. H. , 1992, “ Geometry Parameters for Musculoskeletal Modelling of the Shoulder System,” J. Biomech., 25(2), pp. 129–144. [CrossRef] [PubMed]
Veeger, D. H. E. J. , van der Helm, F. C. T. , van der Woude, L. H. , Pronk, G. M. , and Rozendal, R. H. , 1991, “ Inertia and Muscle Contraction Parameters for Musculoskeletal Modelling of the Shoulder Mechanism,” J. Biomech., 24(7), pp. 615–629. [CrossRef] [PubMed]
Veeger, D. H. E. J. , Yu, B. , An, K.-N. , and Rozendal, R. H. , 1997, “ Parameters for Modeling the Upper Extremity,” J. Biomech., 30(6), pp. 647–652. [CrossRef] [PubMed]
Andersen, M. S. , Marra, M. , Vanheule, V. , Fluit, R. , Verdonschot, N. , and Rasmussen, J. , 2014, “ Patient-Specific Musculoskeletal Modelling of Total Knee Arthroplasty Using Force-Dependent Kinematics,” 7th World Congress of Biomechanics, Boston, July 4–11.
Andersen, M. S. , Damsgaard, M. , and Rasmussen, J. , 2011, “ Force-Dependent Kinematics: A New Analysis Method for Non-Conforming Joints,” XIII International Symposium on Computer Simulation in Biomechanics, Leuven, Belgium, June 30–July 2, pp. 2–3.
Bitter, J. , 2013, “ Effects of the Glenohumeral Joint Center on the Role of the Middle Deltoid: Implications for Reverse Total Shoulder Arthroplasty,” M.Sc. thesis, Faculty of Baylor University, Waco, TX.
Bigliani, L. U. , Pollock, R. G. , Soslowsky, L. J. , Flatow, E. L. , Pawluk, R. J. , and Mow, V. C. , 1992, “ Tensile Properties of the Inferior Glenohumeral Ligament,” J. Orthop. Res., 10(2), pp. 187–197. [CrossRef] [PubMed]
Warner, J. P. , Debski, R. E. , Wong, E. K. K. , Woo, S. L. Y. , and Fu, F. H. , 1999, “ An Analytical Approach to Determine the In Situ Forces in the Glenohumeral Ligaments,” ASME J. Biomech. Eng., 121(3), pp. 311–315. [CrossRef]
Massimini, D. F. , Boyer, P. J. , Papannagari, R. , Gill, T. J. , Warner, J. P. , and Li, G. , 2012, “ In-Vivo Glenohumeral Translation and Ligament Elongation During Abduction and Abduction With Internal and External Rotation,” J. Orthop. Surg. Res., 7(1), p. 29. [CrossRef] [PubMed]
Motzkin, N. E. E. , Itoi, E. , Morrey, B. F. , and An, K.-N. , 1998, “ Contribution of Capsuloligamentous Structures to Passive Static Inferior Glenohumeral Stability,” Clin. Biomech., 13(1), pp. 54–61. [CrossRef]
Urayama, M. , Itoi, E. , Hatakeyama, Y. , Pradhan, R. L. , and Sato, K. , 2001, “ Function of the 3 Portions of the Inferior Glenohumeral Ligament: A Cadaveric Study,” J. Shoulder Elbow Surg., 10(6), pp. 207–213. [CrossRef]
Lin, M. C. , and Otaduy, M. , 2008, Haptic Rendering: Foundations, Algorithms, and Applications, CRC Press, Boca Raton, FL.
Johnson, K. , 1985, Contact Mechanics, Cambridge University Press, New York.
Hopkins, A. R. , Hansen, U. N. , Amis, A. A. , Knight, L. , Taylor, M. , Levy, O. , and Copeland, S. A. , 2007, “ Wear in the Prosthetic Shoulder: Association With Design Parameters,” ASME J. Biomech. Eng., 129(2), pp. 223–230.
Terrier, A. , Merlini, F. , Pioletti, D. P. , and Farron, A. , 2009, “ Comparison of Polyethylene Wear in Anatomical and Reversed Shoulder Prostheses,” J. Bone Jt. Surg., Br., 91(7), pp. 977–982. [CrossRef]
Poppen, N. , and Walker, P. S. , 1978, “ Forces at the Glenohumeral Joint in Abduction,” Clin. Orthop. Relat. Res., 135, pp. 165–170. [PubMed]
Karduna, A. R. , Williams, G. R. , Williams, J. L. , and Iannotti, J. P. , 1997, “ Joint Stability After Total Shoulder Arthroplasty in a Cadaver Model,” J. Shoulder Elbow Surg., 6(6), pp. 506–511. [CrossRef] [PubMed]
Lund, M. E. , de Zee, M. , Andersen, M. S. , and Rasmussen, J. , 2012, “ On Validation of Multibody Musculoskeletal Models,” Proc. Inst. Mech. Eng., Part H, 226(2), pp. 82–94. [CrossRef]
Bey, M. J. , Peltz, C. D. , Ciarelli, K. , Kline, S. K. , Divine, G. W. , van Holsbeeck, M. , Muh, S. , Kolowich, P. A. , Lock, T. R. , and Moutzouros, V. , 2011, “ In Vivo Shoulder Function After Surgical Repair of a Torn Rotator Cuff: Glenohumeral Joint Mechanics, Shoulder Strength, Clinical Outcomes, and Their Interaction,” Am. J. Sports Med., 39(10), pp. 2117–2129. [CrossRef] [PubMed]
Bey, M. J. , Kline, S. K. , Zauel, R. , Lock, T. R. , and Kolowich, P. A. , 2008, “ Measuring Dynamic In-Vivo Glenohumeral Joint Kinematics: Technique and Preliminary Results,” J. Biomech., 41(3), pp. 711–714. [CrossRef] [PubMed]
Wuelker, N. , Schmotzer, H. , Thren, K. , and Korell, M. , 1994, “ Translation of the Glenohumeral Joint With Simulated Active Elevation,” Clin. Orthop. Relat. Res., 309, pp. 193–200. [PubMed]
Friedman, R. J. , 1992, “ Glenohumeral Translation After Total Shoulder Arthroplasty,” J. Shoulder Elbow Surg., 1(6), pp. 312–316. [CrossRef] [PubMed]
Graichen, H. , Hinterwimmer, S. , von Eisenhart-Rothe, R. , Vogl, T. , Englmeier, K.-H. , and Eckstein, F. , 2005, “ Effect of Abducting and Adducting Muscle Activity on Glenohumeral Translation, Scapular Kinematics and Subacromial Space Width In Vivo,” J. Biomech., 38(4), pp. 755–760. [CrossRef] [PubMed]
Massimini, D. F. , Li, G. , and Warner, J. P. , 2010, “ Glenohumeral Contact Kinematics in Patients After Total Shoulder Arthroplasty,” J. Bone Jt. Surg., 92(4), pp. 916–926. [CrossRef]
Hammond, G. , Tibone, J. E. , McGarry, M. H. , Jun, B.-J. J. , and Lee, T. Q. , 2012, “ Biomechanical Comparison of Anatomic Humeral Head Resurfacing and Hemiarthroplasty in Functional Glenohumeral Positions,” J. Bone Jt. Surg., Am., 94(1), pp. 68–76. [CrossRef]
Soslowsky, L. J. , Flatow, E. L. , Bigliani, L. U. , Pawluk, R. J. , Ateshian, G. A. A. , and Mow, V. C. , 1992, “ Quantitation of In Situ Contact Areas at the Glenohumeral Joint: A Biomechanical Study,” J. Orthop. Res., 10(4), pp. 524–534. [CrossRef] [PubMed]
Blalock, R. , and Galatz, L. M. , 2012, “ Rotator Cuff Tears After Arthroplasty,” Semin. Arthroplasty, 23(2), pp. 114–117. [CrossRef]
Prinold, J. A. L. , Masjedi, M. , Johnson, G. R. , and Bull, A. M. , 2013, “ Musculoskeletal Shoulder Models: A Technical Review and Proposals for Research Foci,” Proc. Inst. Mech. Eng., Part H, 227(10), pp. 1041–1057. [CrossRef]
Dickerson, C. R. , Chaffin, D. B. , and Hughes, R. E. , 2007, “ A Mathematical Musculoskeletal Shoulder Model for Proactive Ergonomic Analysis,” Comput. Methods Biomech. Biomed. Eng., 10(6), pp. 389–400. [CrossRef]
Westerhoff, P. , Graichen, F. , Bender, A. , Halder, A. M. , Beier, A. , Rohlmann, A. , and Bergmann, G. , 2009, “ In Vivo Measurement of Shoulder Joint Loads During Activities of Daily Living,” J. Biomech., 42(12), pp. 1840–1849. [CrossRef] [PubMed]
Buchler, P. , Ramaniraka, N. A. , Rakotomanana, L. , Iannotti, J. P. , Farron, A. , and Büchler, P. , 2002, “ A Finite Element Model of the Shoulder: Application to the Comparison of Normal and Osteoarthritic Joints,” Clin. Biomech., 17(9–10), pp. 630–639. [CrossRef]
Terrier, A. , Brighenti, V. , Pioletti, D. P. , and Farron, A. , 2012, “ Importance of Polyethylene Thickness in Total Shoulder Arthroplasty: A Finite Element Analysis,” Clin. Biomech., 27(5), pp. 443–448. [CrossRef]
Zhang, J. , Kim, H. M. , Yongpravat, C. , Levine, W. N. , Bigliani, L. U. , Gardner, T. R. , and Ahmad, C. S. , 2013, “ Glenoid Articular Conformity Affects Stress Distributions in Total Shoulder Arthroplasty,” J. Shoulder Elbow Surg., 22(3), pp. 350–356. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Views of the shoulder model. Deltoid muscle is constrained by an artificial rake (see bullets on deltoid muscle in all the three views). Glenoid component replaces the anatomic glenoid of the scapula (see coronal views); Humeral head component replaces the anatomic one in the humerus (see coronal, back, view). The configuration creates a 6.4 mm mismatch.

Grahic Jump Location
Fig. 2

Representation of the algorithms implemented in the NC-TSA model. The humeral head is represented by the dotted circle and the glenoid part by the solid line. The position of the two components represents a 30 deg of abduction. (a) Front view: representation of the FDK algorithm. αsIS and αsAP : translations in the IS and AP directions, respectively. FsIS and FsAP : FDK forces in the IS and AP directions, respectively. (b) Profile view: representation of the joint contact algorithm. Fc: contact force at each vertex in contact. F: total contact force for the whole contact area (eliptic surface in the superior, left part of panel (a)). kd: pressure modulus.

Grahic Jump Location
Fig. 3

Results of contact computation for five degrees of abduction (15 deg, 30 deg, 60 deg, 90 deg, and 120 deg): GH contact area with values of surface in cm2 (surface in white) and position of the COP of the humeral head on the glenoid component (crossed dot displayed in the white surface on the glenoid component)

Grahic Jump Location
Fig. 4

GH-JRF for the two models (B&S model and NC-TSA model) and comparison with other studies [1,10,11,13,42]

Grahic Jump Location
Fig. 5

The three parts of deltoid (anterior, middle, posterior), supraspinatus, infraspinatus, subscapularis, and teres minor are represented, for the B&S model (dotted line) and the NC-TSA model (solid line)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In