0
Research Papers

Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage

[+] Author and Article Information
Kelsey L. Kleinhans

Orthopaedic Biomechanics Laboratory,
Department of Biomedical Engineering,
University of Miami,
1251 Memorial Drive, MEA 219,
Coral Gables, FL 33146
e-mail: k.kleinhans@umiami.edu

Lukas M. Jaworski

Orthopaedic Biomechanics Laboratory,
Department of Biomedical Engineering,
University of Miami,
1251 Memorial Drive, MEA 219,
Coral Gables, FL 33146
e-mail: l.jaworski@umiami.edu

Michaela M. Schneiderbauer

Department of Orthopaedics,
University of Miami Miller School of Medicine,
1400 NW 12th Avenue, Room 4056,
Miami, FL 33136
e-mail: MSchneiderbauer@med.miami.edu

Alicia R. Jackson

Orthopaedic Biomechanics Laboratory,
Department of Biomedical Engineering,
University of Miami,
1251 Memorial Drive, MEA 219,
Coral Gables, FL 33146
e-mail: a.jackson2@miami.edu

1Corresponding author.

Manuscript received February 25, 2015; final manuscript received July 14, 2015; published online August 10, 2015. Assoc. Editor: James C. Iatridis.

J Biomech Eng 137(10), 101004 (Aug 10, 2015) (8 pages) Paper No: BIO-15-1090; doi: 10.1115/1.4031118 History: Received February 25, 2015

Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure–function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Makris, E. A. , Hadidi, P. , and Athanasiou, K. A. , 2011, “The Knee Meniscus: Structure-Function, Pathophysiology, Current Repair Techniques, and Prospects for Regeneration,” Biomaterials, 32(30), pp. 7411–7431. [CrossRef] [PubMed]
Andriacchi, T. P. , Mundermann, A. , Smith, R. L. , Alexander, E. J. , Dyrby, C. O. , and Koo, S. , 2004, “A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee,” Ann. Biomed. Eng., 32(3), pp. 447–457. [CrossRef] [PubMed]
Sweigart, M. A. , and Athanasiou, K. A. , 2005, “Biomechanical Characteristics of the Normal Medial and Lateral Porcine Knee Menisci,” Proc. Inst. Mech. Eng., Part H, 219(1), pp. 53–62. [CrossRef]
Maroudas, A. , 1975, “Biophysical Chemistry of Cartilaginous Tissues With Special Reference to Solute and Fluid Transport,” Biorheology, 12(3–4), pp. 233–248. [PubMed]
Urban, J. P. , Holm, S. , Maroudas, A. , and Nachemson, A. , 1982, “Nutrition of the Intervertebral Disc: Effect of Fluid Flow on Solute Transport,” Clin. Orthop. Relat. Res., 170, pp. 296–302. [PubMed]
Urban, J. P. , Holm, S. , and Maroudas, A. , 1978, “Diffusion of Small Solutes Into the Intervertebral Disc: An In Vivo Study,” Biorheology, 15(3–4), pp. 203–221. [PubMed]
Fithian, D. C. , Kelly, M. A. , and Mow, V. C. , 1990, “Material Properties and Structure-Function Relationships in the Menisci,” Clin. Orthop. Relat. Res., 252, pp. 19–31. [PubMed]
Proctor, C. S. , Schmidt, M. B. , Whipple, R. R. , Kelly, M. A. , and Mow, V . C. , 1989, “Material Properties of the Normal Medial Bovine Meniscus,” J. Orthop. Res., 7(6), pp. 771–782. [CrossRef] [PubMed]
Nguyen, A. M. , and Levenston, M. E. , 2012, “Comparison of Osmotic Swelling Influences on Meniscal Fibrocartilage and Articular Cartilage Tissue Mechanics in Compression and Shear,” J. Orthop. Res., 30(1), pp. 95–102. [CrossRef] [PubMed]
Sweigart, M. A. , Zhu, C. F. , Burt, D. M. , DeHoll, P. D. , Agrawal, C. M. , Clanton, T. O. , and Athanasiou, K. A. , 2004, “Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus,” Ann. Biomed. Eng., 32(11), pp. 1569–1579. [CrossRef] [PubMed]
Gabrion, A. , Aimedieu, P. , Laya, Z. , Havet, E. , Mertl, P. , Grebe, R. , and Laude, M. , 2005, “Relationship Between Ultrastructure and Biomechanical Properties of the Knee Meniscus,” Surg. Radiol. Anat., 27(6), pp. 507–510. [CrossRef] [PubMed]
Tissakht, M. , and Ahmed, A. M. , 1995, “Tensile Stress-Strain Characteristics of the Human Meniscal Material,” J. Biomech., 28(4), pp. 411–422. [CrossRef] [PubMed]
Chia, H. N. , and Hull, M. L. , 2008, “Compressive Moduli of the Human Medial Meniscus in the Axial and Radial Directions at Equilibrium and at a Physiological Strain Rate,” J. Orthop. Res., 26(7), pp. 951–956. [CrossRef] [PubMed]
Leslie, B. W. , Gardner, D. L. , McGeough, J. A. , and Moran, R. S. , 2000, “Anisotropic Response of the Human Knee Joint Meniscus to Unconfined Compression,” Proc. Inst. Mech. Eng., Part H, 214(6), pp. 631–635. [CrossRef]
Skaggs, D. L. , Warden, W. H. , and Mow, V. C. , 1994, “Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus,” J. Orthop. Res., 12(2), pp. 176–185. [CrossRef] [PubMed]
Spilker, R. L. , Donzelli, P. S. , and Mow, V. C. , 1992, “A Transversely Isotropic Biphasic Finite Element Model of the Meniscus,” J. Biomech., 25(9), pp. 1027–1045. [CrossRef] [PubMed]
Sanchez-Adams, J. , Willard, V. P. , and Athanasiou, K. A. , 2011, “Regional Variation in the Mechanical Role of Knee Meniscus Glycosaminoglycans,” J. Appl. Physiol., 111(6), pp. 1590–1596. [CrossRef] [PubMed]
Danso, E. K. , Honkanen, J. T. , Saarakkala, S. , and Korhonen, R. K. , 2014, “Comparison of Nonlinear Mechanical Properties of Bovine Articular Cartilage and Meniscus,” J. Biomech., 47(1), pp. 200–206. [CrossRef] [PubMed]
Bursac, P. , Arnoczky, S. , and York, A. , 2009, “Dynamic Compressive Behavior of Human Meniscus Correlates With Its Extra-Cellular Matrix Composition,” Biorheology, 46(3), pp. 227–237. [PubMed]
LeRoux, M. A. , and Setton, L. A. , 2002, “Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension,” ASME J. Biomech. Eng., 124(3), pp. 315–321. [CrossRef]
Danzig, L. A. , Hargens, A. R. , Gershuni, D. H. , Skyhar, M. J. , Sfakianos, P. N. , and Akeson, W. H. , 1987, “Increased Transsynovial Transport With Continuous Passive Motion,” J. Orthop. Res., 5(3), pp. 409–413. [CrossRef] [PubMed]
Travascio, F. , Zhao, W. , and Gu, W. Y. , 2009, “Characterization of Anisotropic Diffusion Tensor of Solute in Tissue by Video-FRAP Imaging Technique,” Ann. Biomed. Eng., 37(4), pp. 813–823. [CrossRef] [PubMed]
Jackson, A. R. , Yuan, T. Y. , Huang, C. Y. , Travascio, F. , and Gu, W. Y. , 2008, “Effect of Compression and Anisotropy on the Diffusion of Glucose in Annulus Fibrosus,” Spine, 33(1), pp. 1–7. [CrossRef] [PubMed]
Jackson, A. R. , Yuan, T. Y. , Huang, C. Y. , Brown, M. D. , and Gu, W. Y. , 2012, “Nutrient Transport in Human Annulus Fibrosus is Affected by Compressive Strain and Anisotropy,” Ann. Biomed. Eng., 40(12), pp. 2551–2558. [CrossRef] [PubMed]
Yuan, T. Y. , Jackson, A. R. , Huang, C. Y. , and Gu, W. Y. , 2009, “ Strain-Dependent Oxygen Diffusivity in Bovine Annulus Fibrosus,” ASME J. Biomech. Eng., 131(7), p. 074503. [CrossRef]
Maroudas, A. , Stockwell, R. A. , Nachemson, A. , and Urban, J. , 1975, “Factors Involved in the Nutrition of the Human Lumbar Intervertebral Disc: Cellularity and Diffusion of Glucose In Vitro,” J. Anat., 120(1), pp. 113–130. [PubMed]
Maroudas, A. , Bullough, P. , Swanson, S. A. , and Freeman, M. A. , 1968, “The Permeability of Articular Cartilage,” J. Bone Jt. Surg., Br. Vol., 50(1), pp. 166–177.
Martin Seitz, A. , Galbusera, F. , Krais, C. , Ignatius, A. , and Durselen, L. , 2013, “ Stress-Relaxation Response of Human Menisci Under Confined Compression Conditions,” J. Mech. Behav. Biomed. Mater., 26, pp. 68–80. [CrossRef] [PubMed]
Quinn, T. M. , Kocian, P. , and Meister, J. J. , 2000, “Static Compression is Associated With Decreased Diffusivity of Dextrans in Cartilage Explants,” Arch. Biochem. Biophys., 384(2), pp. 327–334. [CrossRef] [PubMed]
Quinn, T. M. , Morel, V. , and Meister, J. J. , 2001, “Static Compression of Articular Cartilage Can Reduce Solute Diffusivity and Partitioning: Implications for the Chondrocyte Biological Response,” J. Biomech., 34(11), pp. 1463–1469. [CrossRef] [PubMed]
Eckstein, F. , Lemberger, B. , Stammberger, T. , Englmeier, K. H. , and Reiser, M. , 2000, “Patellar Cartilage Deformation In Vivo After Static Versus Dynamic Loading,” J. Biomech., 33(7), pp. 819–825. [CrossRef] [PubMed]
Yang, N. H. , Canavan, P. K. , Nayeb-Hashemi, H. , Najafi, B. , and Vaziri, A. , 2010, “Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint,” Comput. Methods Biomech. Biomed. Eng., 13(5), pp. 589–603. [CrossRef]
Gu, W. Y. , Lewis, B. , Lai, W. M. , Ratcliffe, A. , and Mow, V. C. , 1996, “A Technique for Measuring Volume and True Density of the Solid Matrix of Cartilaginous Tissues,” ASME Adv. Bioeng., 33, pp. 89–90.
Gu, W. Y. , Lewis, B. , Saed-Nejad, F. , Lai, W. M. , and Ratcliffe, A. , 1997, “Hydration and True Density of Normal and PG-Depleted Bovine Articular Cartilage,” Trans. Orthop. Res. Soc., 22(2), p. 826.
Lai, W. M. , Hou, J. S. , and Mow, V. C. , 1991, “A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage,” ASME J. Biomech. Eng., 113(3), pp. 245–258. [CrossRef]
Malda, J. , Rouwkema, J. , Martens, D. E. , Le Comte, E. P. , Kooy, F. K. , Tramper, J. , van Blitterswijk, C. A. , and Riesle, J. , 2004, “Oxygen Gradients in Tissue-Engineered PEGT/PBT Cartilaginous Constructs: Measurement and Modeling,” Biotechnol. Bioeng., 86(1), pp. 9–18. [CrossRef] [PubMed]
Hayat, M. A. , 1982, Fixation for Electron Microscope, Academic Press, New York.
Longsworth, L. G. , 1953, “Diffusion Measurements, at 25 °C, of Aqueous Solutions of Amino Acids, Peptides, and Sugars,” J. Am. Chem. Soc., 75(22), pp. 5705–5709. [CrossRef]
Burstein, D. , Gray, M. L. , Hartman, A. L. , Gipe, R. , and Foy, B. D. , 1993, “Diffusion of Small Solutes in Cartilage as Measured by Nuclear Magnetic Resonance (NMR) Spectroscopy and Imaging,” J. Orthop. Res., 11(4), pp. 465–478. [CrossRef] [PubMed]
Allhands, R. V. , Torzilli, P. A. , and Kallfelz, F. A. , 1984, “Measurement of Diffusion of Uncharged Molecules in Articular Cartilage,” Cornell Vet., 74(2), pp. 111–123. [PubMed]
Torzilli, P. A. , Grande, D. A. , and Arduino, J. M. , 1998, “Diffusive Properties of Immature Articular Cartilage,” J. Biomed. Mater. Res., 40(1), pp. 132–138. [CrossRef] [PubMed]
Maroudas, A. , 1968, “Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory,” Biophys. J., 8(5), pp. 575–595. [CrossRef] [PubMed]
Torzilli, P. A. , Arduino, J. M. , Gregory, J. D. , and Bansal, M. , 1997, “Effect of Proteoglycan Removal on Solute Mobility in Articular Cartilage,” J. Biomech., 30(9), pp. 895–902. [CrossRef] [PubMed]
Maroudas, A. , 1970, “Distribution and Diffusion of Solutes in Articular Cartilage,” Biophys. J., 10(5), pp. 365–379. [CrossRef] [PubMed]
Torzilli, P. A. , Adams, T. C. , and Mis, R. J. , 1987, “Transient Solute Diffusion in Articular Cartilage,” J. Biomech., 20(2), pp. 203–214. [CrossRef] [PubMed]
Travascio, F. , Jackson, A. R. , Brown, M. D. , and Gu, W. Y. , 2009, “Relationship Between Solute Transport Properties and Tissue Morphology in Human Annulus Fibrosus,” J. Orthop. Res., 27(12), pp. 1625–1630. [CrossRef] [PubMed]
Travascio, F. , and Gu, W. Y. , 2007, “Anisotropic Diffusive Transport in Annulus Fibrosus: Experimental Determination of the Diffusion Tensor by FRAP Technique,” Ann. Biomed. Eng., 35(10), pp. 1739–1748. [CrossRef] [PubMed]
Fetter, N. L. , Leddy, H. A. , Guilak, F. , and Nunley, J. A. , 2006, “Composition and Transport Properties of Human Ankle and Knee Cartilage,” J. Orthop. Res., 24(2), pp. 211–219. [CrossRef] [PubMed]
Shi, C. , Wright, G. J. , Ex-Lubeskie, C. L. , Bradshaw, A. D. , and Yao, H. , 2013, “Relationship Between Anisotropic Diffusion Properties and Tissue Morphology in Porcine TMJ Disc,” Osteoarthritis Cartilage, 21(4), pp. 625–633. [CrossRef] [PubMed]
Ngwa, W. , Geier, O. , Stallmach, F. , Naji, L. , Schiller, J. , and Arnold, K. , 2002, “Cation Diffusion in Cartilage Measured by Pulsed Field Gradient NMR,” Eur. Biophys. J., 31(1), pp. 73–80. [CrossRef] [PubMed]
Gu, W. Y. , Yao, H. , Vega, A. L. , and Flagler, D. , 2004, “Diffusivity of Ions in Agarose Gels and Intervertebral Disc: Effect of Porosity,” Ann. Biomed. Eng., 32(12), pp. 1710–1717. [CrossRef] [PubMed]
Kuo, J. , Wright, G. J. , Bach, D. E. , Slate, E. H. , and Yao, H. , 2011, “Effect of Mechanical Loading on Electrical Conductivity in Porcine TMJ Discs,” J. Dent. Res., 90(10), pp. 1216–1220. [CrossRef] [PubMed]
Jackson, A. R. , Yao, H. , Brown, M. D. , and Gu, W. Y. , 2006, “Anisotropic Ion Diffusivity in Intervertebral Disc: An Electrical Conductivity Approach,” Spine, 31(24), pp. 2783–2789. [CrossRef] [PubMed]
Mackie, J. S. , and Meares, P. , 1955, “The Diffusion of Electrolytes in a Cation-Exchange Resin Membrane. 1. Theoretical,” Proc. R. Soc. London, Ser. A, 232(1191), pp. 498–509. [CrossRef]
Evans, R. C. , and Quinn, T. M. , 2005, “Solute Diffusivity Correlates With Mechanical Properties and Matrix Density of Compressed Articular Cartilage,” Arch. Biochem. Biophys., 442(1), pp. 1–10. [CrossRef] [PubMed]
Arkill, K. P. , and Winlove, C. P. , 2008, “Solute Transport in the Deep and Calcified Zones of Articular Cartilage,” Osteoarthritis Cartilage, 16(6), pp. 708–714. [CrossRef] [PubMed]
Nimer, E. , Schneiderman, R. , and Maroudas, A. , 2003, “Diffusion and Partition of Solutes in Cartilage Under Static Load,” Biophys. Chem., 106(2), pp. 125–146. [CrossRef] [PubMed]
Leddy, H. A. , Haider, M. A. , and Guilak, F. , 2006, “Diffusional Anisotropy in Collagenous Tissues: Fluorescence Imaging of Continuous Point Photobleaching,” Biophys. J., 91(1), pp. 311–316. [CrossRef] [PubMed]
de Visser, S. K. , Crawford, R. W. , and Pope, J. M. , 2008, “Structural Adaptations in Compressed Articular Cartilage Measured by Diffusion Tensor Imaging,” Osteoarthritis Cartilage, 16(1), pp. 83–89. [CrossRef] [PubMed]
Meder, R. , de Visser, S. K. , Bowden, J. C. , Bostrom, T. , and Pope, J. M. , 2006, “Diffusion Tensor Imaging of Articular Cartilage as a Measure of Tissue Microstructure,” Osteoarthritis Cartilage, 14(9), pp. 875–881. [CrossRef] [PubMed]
Filidoro, L. , Dietrich, O. , Weber, J. , Rauch, E. , Oerther, T. , Wick, M. , Reiser, M. F. , and Glaser, C. , 2005, “ High-Resolution Diffusion Tensor Imaging of Human Patellar Cartilage: Feasibility and Preliminary Findings,” Magn. Reson. Med., 53(5), pp. 993–998. [CrossRef] [PubMed]
Hsu, E. W. , and Setton, L. A. , 1999, “Diffusion Tensor Microscopy of the Intervertebral Disc Anulus Fibrosus,” Magn. Reson. Med., 41(5), pp. 992–999. [CrossRef] [PubMed]
Stylianopoulos, T. , Diop-Frimpong, B. , Munn, L. L. , and Jain, R. K. , 2010, “Diffusion Anisotropy in Collagen Gels and Tumors: The Effect of Fiber Network Orientation,” Biophys. J., 99(10), pp. 3119–3128. [CrossRef] [PubMed]
Jackson, A. R. , Travascio, F. , and Gu, W. Y. , 2009, “Effect of Mechanical Loading on Electrical Conductivity in Human Intervertebral Disk,” ASME J. Biomech. Eng., 131(5), p. 054505. [CrossRef]
Iatridis, J. C. , and ap Gwynn, I. , 2004, “Mechanisms for Mechanical Damage in the Intervertebral Disc Annulus Fibrosus,” J. Biomech., 37(8), pp. 1165–1175. [CrossRef] [PubMed]
ap Gwynn, I. , Wade, S. , Ito, K. , and Richards, R. G. , 2002, “Novel Aspects to the Structure of Rabbit Articular Cartilage,” Eur. Cells Mater., 4, pp. 18–29.
McDevitt, C. A. , and Webber, R. J. , 1990, “The Ultrastructure and Biochemistry of Meniscal Cartilage,” Clin. Orthop. Relat. Res., 252, pp. 8–18. [PubMed]
Joshi, M. D. , Suh, J. K. , Marui, T. , and Woo, S. L. , 1995, “Interspecies Variation of Compressive Biomechanical Properties of the Meniscus,” J. Biomed. Mater. Res., 29(7), pp. 823–828. [CrossRef] [PubMed]
Chu, C. R. , Szczodry, M. , and Bruno, S. , 2010, “Animal Models for Cartilage Regeneration and Repair,” Tissue Eng. Part B Rev., 16(1), pp. 105–115. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic showing locations and sizes of test specimens. The meniscus was divided into central and horn regions (demarcated by larger dashed lines). From the central region, both axial and circumferential specimens were prepared; only axial specimens were prepared from the horn region. All specimens were cylindrical with a height of ∼0.5 mm and a diameter of 6 mm. Note that axial specimens were taken from the central region of the core of tissue. Samples from both medial and lateral menisci were pooled.

Grahic Jump Location
Fig. 2

Schematic of the custom-designed chamber for measuring the diffusion coefficient. The metal spacers between the two chamber halves are used to control the amount of uniaxial confined compression on the specimen; that is, the spacer matches the desired compressed height of the tissue (i.e., for a 0.5 mm thick specimen at 0% strain, the spacer is 0.5 mm, while at 10% strain the spacer is changed to 0.45 mm thickness).

Grahic Jump Location
Fig. 3

Correlation between apparent glucose diffusion coefficient and level of compression for three groups investigated: (a) axial horn (A-H), (b) axial central (A-C), and (c) circumferential central (C-C). Significant correlation was detected for all groups; p values and R values are shown for each.

Grahic Jump Location
Fig. 4

SEM images of both axial ((a) and (c)) and circumferential ((b) and (d)) porcine meniscus samples. Images (a) and (b) are magnified 250× with scale bars equaling 200 μm, while (c) and (d) are magnified 1000× with scale bars equaling 50 μm. Note the collagen fiber bundles running in the circumferential direction, thereby allowing for the presence of pores in circumferential specimens that are not apparent in axial specimens. The circle on (b) shows an example of a channel in the circumferential direction with the arrow pointing to (d) showing a magnified version of a channel. The samples were fixed using a 2% glutaraldehyde in PBS solution, dehydrated in a graded series of ethanol (20%, 50%, 70%, 90%, and 100%), and dried by immersion in hexamethyldisilazane.

Grahic Jump Location
Fig. 5

Relationship between tissue water volume fraction, ϕw, and relative diffusion coefficient, Dapp/Do, in meniscus tissues for the three groups investigated: (a) axial, horn; (b) axial, central; and (c) circumferential, central. For all groups, n = 30. P values from regression analysis assuming no constant (i.e., best fit line passing through the origin) are shown for each group.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In