Research Papers

Prior Distributions of Material Parameters for Bayesian Calibration of Growth and Remodeling Computational Model of Abdominal Aortic Wall

[+] Author and Article Information
Sajjad Seyedsalehi

Department of Mechanical Engineering,
Michigan State University,
East Lansing, MI 48824-1226

Liangliang Zhang

Department of Statistics and Probability,
Michigan State University,
East Lansing, MI 48824-1027

Jongeun Choi

Department of Mechanical Engineering,
Department of Electrical and
Computer Engineering,
Michigan State University,
East Lansing, MI 48824-1226

Seungik Baek

Department of Mechanical Engineering,
Michigan State University,
2457 Engineering Building,
East Lansing, MI 48824-1226
e-mail: sbaek@egr.msu.edu

1Corresponding author.

Manuscript received January 7, 2015; final manuscript received July 6, 2015; published online August 6, 2015. Assoc. Editor: Jonathan Vande Geest.

J Biomech Eng 137(10), 101001 (Aug 06, 2015) (13 pages) Paper No: BIO-15-1007; doi: 10.1115/1.4031116 History: Received January 07, 2015

For the accurate prediction of the vascular disease progression, there is a crucial need for developing a systematic tool aimed toward patient-specific modeling. Considering the interpatient variations, a prior distribution of model parameters has a strong influence on computational results for arterial mechanics. One crucial step toward patient-specific computational modeling is to identify parameters of prior distributions that reflect existing knowledge. In this paper, we present a new systematic method to estimate the prior distribution for the parameters of a constrained mixture model using previous biaxial tests of healthy abdominal aortas (AAs). We investigate the correlation between the estimated parameters for each constituent and the patient's age and gender; however, the results indicate that the parameters are correlated with age only. The parameters are classified into two groups: Group-I in which the parameters ce, ck1, ck2, cm2,Ghc,andϕe are correlated with age, and Group-II in which the parameters cm1, Ghm, G1e, G2e,andα are not correlated with age. For the parameters in Group-I, we used regression associated with age via linear or inverse relations, in which their prior distributions provide conditional distributions with confidence intervals. For Group-II, the parameter estimated values were subjected to multiple transformations and chosen if the transformed data had a better fit to the normal distribution than the original. This information improves the prior distribution of a subject-specific model by specifying parameters that are correlated with age and their transformed distributions. Therefore, this study is a necessary first step in our group's approach toward a Bayesian calibration of an aortic model. The results from this study will be used as the prior information necessary for the initialization of Bayesian calibration of a computational model for future applications.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Chien, S. , Li, S. , and Shyy, Y. J. , 1998, “Effects of Mechanical Forces on Signal Transduction and Gene Expression in Endothelial Cells,” Hypertension, 31(1 Pt 2), pp. 162–169. [CrossRef] [PubMed]
Guo, D.-C. , Papke, C. L. , He, R. , and Milewicz, D. M. , 2006, “Pathogenesis of Thoracic and Abdominal Aortic Aneurysms,” Ann. N.Y. Acad. Sci., 1085, pp. 339–352. [CrossRef] [PubMed]
Humphrey, J. D. , and Holzapfel, G. A. , 2012, “Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms,” J. Biomech., 45(5), pp. 805–814. [CrossRef] [PubMed]
Thorne, B. C. , Hayenga, H. N. , Humphrey, J. D. , and Peirce, S. M. , 2011, “Toward a Multi-Scale Computational Model of Arterial Adaptation in Hypertension: Verification of a Multi-Cell Agent Based Model,” Front. Physiol., 2, p. 20 . [CrossRef] [PubMed]
Murtada, S.-I. , Kroon, M. , and Holzapfel, G. A. , 2010, “A Calcium-Driven Mechanochemical Model for Prediction of Force Generation in Smooth Muscle,” Biomech. Modell. Mechanobiol., 9(6), pp. 749–762. [CrossRef]
Wilson, J. S. , Baek, S. , and Humphrey, J. D. , 2012, “Importance of Initial Aortic Properties on the Evolving Regional Anisotropy, Stiffness and Wall Thickness of Human Abdominal Aortic Aneurysms,” J. R. Soc. Interface R. Soc., 9(74), pp. 2047–2058. [CrossRef]
Upchurch, G. R. , and Schaub, T. A. , 2006, “Abdominal Aortic Aneurysm,” Am. Fam. Physician, 73(7), pp. 1198–1204. [PubMed]
Wilmink, T. B. , Quick, C. R. , Hubbard, C. S. , and Day, N. E. , 1999, “The Influence of Screening on the Incidence of Ruptured Abdominal Aortic Aneurysms,” J. Vasc. Surg., 30(2), pp. 203–208. [CrossRef] [PubMed]
Assar, A. N. , and Zarins, C. K. , 2009, “Ruptured Abdominal Aortic Aneurysm: A Surgical Emergency With Many Clinical Presentations,” Postgrad. Med. J., 85(1003), pp. 268–273. [CrossRef] [PubMed]
Pearce, W. H. , Zarins, C. K. , and Bacharach, J. M. , 2008, “Atherosclerotic Peripheral Vascular Disease Symposium II Controversies in Abdominal Aortic Aneurysm Repair,” Circulation, 118(25), pp. 2860–2863. [CrossRef] [PubMed]
Zeinali-Davarani, S. , Raguin, L. G. , Vorp, D. A. , and Baek, S. , 2011, “Identification of In Vivo Material and Geometric Parameters of a Human Aorta: Toward Patient-Specific Modeling of Abdominal Aortic Aneurysm,” Biomech. Modell. Mechanobiol., 10(5), pp. 689–699. [CrossRef]
Rodríguez, J. F. , Ruiz, C. , Doblaré, M. , and Holzapfel, G. A. , 2008, “Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy,” ASME J. Biomech. Eng., 130(2), p. 021023. [CrossRef]
Fillinger, M. F. , Marra, S. P. , Raghavan, M. L. , and Kennedy, F. E. , 2003, “Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter,” J. Vasc. Surg., 37(4), pp. 724–732. [CrossRef] [PubMed]
Vande Geest, J. P. , Di Martino, E. S. , Bohra, A. , Makaroun, M. S. , and Vorp, D. A. , 2006, “A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment,” Ann. N.Y. Acad. Sci., 1085(1), pp. 11–21. [CrossRef] [PubMed]
Fillinger, M. F. , Raghavan, M. L. , Marra, S. P. , Cronenwett, J. L. , and Kennedy, F. E. , 2002, “In Vivo Analysis of Mechanical Wall Stress and Abdominal Aortic Aneurysm Rupture Risk,” J. Vasc. Surg., 36(3), pp. 589–597. [CrossRef] [PubMed]
Dorfmann, A. , Wilson, C. , Edgar, E. S. , and Peattie, R. A. , 2009, “Evaluating Patient-Specific Abdominal Aortic Aneurysm Wall Stress Based on Flow-Induced Loading,” Biomech. Modell. Mechanobiol., 9(2), pp. 127–139. [CrossRef]
Raghavan, M. L. , and Vorp, D. A. , 2000, “Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability,” J. Biomech., 33(4), pp. 475–482. [CrossRef] [PubMed]
Maier, A. , Gee, M. W. , Reeps, C. , Pongratz, J. , Eckstein, H.-H. , and Wall, W. A. , 2010, “A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction,” Ann. Biomed. Eng., 38(10), pp. 3124–3134. [CrossRef] [PubMed]
Baek, S. , Rajagopal, K. R. , and Humphrey, J. D. , 2006, “A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms,” ASME J. Biomech. Eng., 128(1), pp. 142–149. [CrossRef]
Watton, P. N. , Hill, N. A. , and Heil, M. , 2004, “A Mathematical Model for the Growth of the Abdominal Aortic Aneurysm,” Biomech. Modell. Mechanobiol., 3(2), pp. 98–113. [CrossRef]
Watton, P. N. , and Hill, N. A. , 2007, “Evolving Mechanical Properties of a Model of Abdominal Aortic Aneurysm,” Biomech. Modell. Mechanobiol., 8(1), pp. 25–42. [CrossRef]
Kroon, M. , and Holzapfel, G. A. , 2007, “A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling,” J. Theor. Biol., 247(4), pp. 775–787. [CrossRef] [PubMed]
Kroon, M. , and Holzapfel, G. A. , 2009, “A Theoretical Model for Fibroblast-Controlled Growth of Saccular Cerebral Aneurysms,” J. Theor. Biol., 257(1), pp. 73–83. [CrossRef] [PubMed]
Hariton, I. , deBotton, G. , Gasser, T. C. , and Holzapfel, G. A. , 2006, “ Stress-Driven Collagen Fiber Remodeling in Arterial Walls,” Biomech. Modell. Mechanobiol., 6(3), pp. 163–175. [CrossRef]
Fung, Y. C. , Fronek, K. , and Patitucci, P. , 1979, “Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression,” Am. J. Physiol., 237(5), pp. H620–H631. [PubMed]
Takamizawa, K. , and Hayashi, K. , 1987, “Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics,” J. Biomech., 20(1), pp. 7–17. [CrossRef] [PubMed]
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elast. Phys. Sci. Solids, 61(1–3), pp. 1–48.
Holzapfel, G. A. , Gasser, T. C. , and Ogden, R. W. , 2004, “Comparison of a Multi-Layer Structural Model for Arterial Walls With a Fung-Type Model, and Issues of Material Stability,” ASME J. Biomech. Eng., 126(2), pp. 264–275. [CrossRef]
Hu, J.-J. , Baek, S. , and Humphrey, J. D. , 2007, “Stress–Strain Behavior of the Passive Basilar Artery in Normotension and Hypertension,” J. Biomech., 40(11), pp. 2559–2563. [CrossRef] [PubMed]
Wan, W. , Dixon, J. B. , and Gleason, R. L., Jr. , 2012, “Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters,” Biophys. J., 102(12), pp. 2916–2925. [CrossRef] [PubMed]
Gasser, T. C. , Ogden, R. W. , and Holzapfel, G. A. , 2006, “Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations,” J. R. Soc. Interface, 3(6), pp. 15–35. [CrossRef] [PubMed]
Zeinali-Davarani, S. , Choi, J. , and Baek, S. , 2009, “On Parameter Estimation for Biaxial Mechanical Behavior of Arteries,” J. Biomech., 42(4), pp. 524–530. [CrossRef] [PubMed]
Ferruzzi, J. , Vorp, D. A. , and Humphrey, J. D. , 2011, “On Constitutive Descriptors of the Biaxial Mechanical Behaviour of Human Abdominal Aorta and Aneurysms,” J. R. Soc. Interface R. Soc., 8(56), pp. 435–450. [CrossRef]
Humphrey, J. D. , and Rajagopal, K. R. , 2002, “A Constrained Mixture Model for Growth and Remodeling of Soft Tissues,” Math. Models Methods Appl. Sci., 12(3), pp. 407–430. [CrossRef]
Valentín, A. , and Holzapfel, G. A. , 2012, “Constrained Mixture Models as Tools for Testing Competing Hypotheses in Arterial Biomechanics: A Brief Survey,” Mech. Res. Commun., 42, pp. 126–133. [CrossRef] [PubMed]
Zeinali-Davarani, S. , Sheidaei, A. , and Baek, S. , 2011, “A Finite Element Model of Stress-Mediated Vascular Adaptation: Application to Abdominal Aortic Aneurysms,” Comput. Methods Biomech. Biomed. Eng., 14(9), pp. 803–817. [CrossRef]
Sheidaei, A. , Hunley, S. C. , Zeinali-Davarani, S. , Raguin, L. G. , and Baek, S. , 2011, “Simulation of Abdominal Aortic Aneurysm Growth With Updating Hemodynamic Loads Using a Realistic Geometry,” Med. Eng. Phys., 33(1), pp. 80–88. [CrossRef] [PubMed]
Martufi, G. , and Gasser, T. C. , 2012, “Turnover of Fibrillar Collagen in Soft Biological Tissue With Application to the Expansion of Abdominal Aortic Aneurysms,” J. R. Soc. Interface R. Soc., 9(77), pp. 3366–3377. [CrossRef]
Geest, J. P. V. , Sacks, M. S. , and Vorp, D. A. , 2005, “Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta,” ASME J. Biomech. Eng., 126(6), pp. 815–822. [CrossRef]
Roccabianca, S. , Figueroa, C. A. , Tellides, G. , and Humphrey, J. D. , 2014, “Quantification of Regional Differences in Aortic Stiffness in the Aging Human,” J. Mech. Behav. Biomed. Mater., 29, pp. 618–634. [CrossRef] [PubMed]
Baek, S. , Valentín, A. , and Humphrey, J. D. , 2007, “Biochemomechanics of Cerebral Vasospasm and Its Resolution: II. Constitutive Relations and Model Simulations,” Ann. Biomed. Eng., 35(9), pp. 1498–1509. [CrossRef] [PubMed]
Burton, A. C. , 1954, “Relation of Structure to Function of the Tissues of the Wall of Blood Vessels,” Physiol. Rev., 34(4), pp. 619–642. [PubMed]
Vande Geest, J. P. , Sacks, M. S. , and Vorp, D. A. , 2006, “The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta,” J. Biomech., 39(7), pp. 1324–1334. [CrossRef] [PubMed]
Zeinali-Davarani, S. , Raguin, L. G. , and Baek, S. , 2011, “An Inverse Optimization Approach Toward Testing Different Hypotheses of Vascular Homeostasis Using Image-Based Models,” Int. J. Struct. Change Solids, 3(2), pp. 33–45.
Kennedy, M. C. , and O'Hagan, A. , 2001, “Bayesian Calibration of Computer Models,” J. R. Stat. Soc. Ser. B Stat. Methodol., 63(3), pp. 425–464. [CrossRef]
Osborne, C. , “Statistical Calibration: A Review,” Int. Stat. Rev., 59(3), pp. 309–336. [CrossRef]
Reeps, C. , Maier, A. , Pelisek, J. , Härtl, F. , Grabher-Meier, V. , Wall, W. A. , Essler, M. , Eckstein, H.-H. , and Gee, M. W. , 2012, “Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall,” Biomech. Modell. Mechanobiol., 12(4), pp. 717–733. [CrossRef]
Enevoldsen, M. S. , Henneberg, K.-A. , Jensen, J. A. , Lönn, L. , and Humphrey, J. D. , 2011, “New Interpretation of Arterial Stiffening Due to Cigarette Smoking Using a Structurally Motivated Constitutive Model,” J. Biomech., 44(6), pp. 1209–1211. [CrossRef] [PubMed]
Forsell, C. , Swedenborg, J. , Roy, J. , and Gasser, T. C. , 2013, “The Quasi-Static Failure Properties of the Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental–Numerical Approach,” Ann. Biomed. Eng., 41(7), pp. 1554–1566. [CrossRef] [PubMed]
Sakia, R. M. , 1992, “The Box–Cox Transformation Technique: A Review,” J. R. Stat. Soc. Ser. Stat., 41(2), pp. 169–178.
Johnson, R. A. , and Wichern, D. W. , 2007, Applied Multivariate Statistical Analysis, 6/E, Pearson Education, New York.
Sawabe, M. , 2010, “Vascular Aging: From Molecular Mechanism to Clinical Significance,” Geriatr. Gerontol. Int., 10(Suppl 1), pp. S213–S220. [CrossRef] [PubMed]
Greenwald, S. E. , 2007, “Ageing of the Conduit Arteries,” J. Pathol., 211(2), pp. 157–172. [CrossRef] [PubMed]
Spina, M. , Garbisa, S. , Hinnie, J. , Hunter, J. C. , and Serafini-Fracassini, A. , 1983, “ Age-Related Changes in Composition and Mechanical Properties of the Tunica Media of the Upper Thoracic Human Aorta,” Arteriosclerosis, 3(1), pp. 64–76. [CrossRef] [PubMed]
Rizzo, R. J. , McCarthy, W. J. , Dixit, S. N. , Lilly, M. P. , Shively, V. P. , Flinn, W. R. , and Yao, J. S. , 1989, “Collagen Types and Matrix Protein Content in Human Abdominal Aortic Aneurysms,” J. Vasc. Surg., 10(4), pp. 365–373. [CrossRef] [PubMed]
He, C. M. , and Roach, M. R. , 1994, “The Composition and Mechanical Properties of Abdominal Aortic Aneurysms,” J. Vasc. Surg., 20(1), pp. 6–13. [CrossRef] [PubMed]
O'Leary, S. A. , Healey, D. A. , Kavanagh, E. G. , Walsh, M. T. , McGloughlin, T. M. , and Doyle, B. J. , 2014, “The Biaxial Biomechanical Behavior of Abdominal Aortic Aneurysm Tissue,” Ann. Biomed. Eng., 42(12), pp. 2440–2450. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 3

Flow chart illustrating the steps involved in the construction of the prior distribution

Grahic Jump Location
Fig. 1

Different configurations of the cut specimen and constituents of the aorta

Grahic Jump Location
Fig. 5

Comparison between simulation results using five different parameter sets, 45, 60, and 75 years, are results of the simulation using parameters reported in Table 6. “Mean” and “Median” are the results of the simulation using the mean and median of estimations for each parameter in Table 2, respectively.

Grahic Jump Location
Fig. 2

Schematic drawing of Bayesian calibration of a G&R model. P(θ| age, gender), P(X|θ, age, gender), and P(θ|X, age, gender) denote the conditional joint (prior) distribution, likelihood function, and posterior distribution of the model parameters, respectively.

Grahic Jump Location
Fig. 4

Stress–stretch curves for experimental results (dots) from Vande Geest et al. [40,46], and best-fit constitutive model (lines) for seven biaxial tension controlled protocols with Tzz:Tθθ equal to (i) 0.1:1, (ii) 0.5:1, (iii) 0.75:1, (iv) 1:1, (v) 1:0.75, (vi) 1:0.5, and (vii) 1:0.1. (a) and (b) Nonaneurysmal AA of a 19-year-old male axial and circumferential, respectively. (c) and (d) Nonaneurysmal AA of a 78-year-old female axial and circumferential, respectively.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In