Research Papers

Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage

[+] Author and Article Information
Alexander G. Bruno

Harvard-MIT Health Sciences and
Technology Program,
Massachusetts Institute of Technology,
Cambridge, MA 02139
Center for Advanced Orthopaedic Studies,
Beth Israel Deaconess Medical Center,
330 Brookline Ave., RN121,
Boston, MA 02215
e-mail: agbruno@mit.edu

Mary L. Bouxsein

Harvard-MIT Health Sciences and
Technology Program,
Massachusetts Institute of Technology,
Cambridge, MA 02139
Center for Advanced Orthopaedic Studies,
Beth Israel Deaconess Medical Center,
330 Brookline Ave.,
Boston, MA 02215
Department of Orthopedic Surgery,
Harvard Medical School,
Boston, MA 02115
e-mail: mbouxsei@bidmc.harvard.edu

Dennis E. Anderson

Center for Advanced Orthopaedic Studies,
Beth Israel Deaconess Medical Center,
330 Brookline Ave.,
Boston, MA 02215
Department of Orthopedic Surgery,
Harvard Medical School,
Boston, MA 02115
e-mail: danders7@bidmc.harvard.edu

1Corresponding author.

Manuscript received October 23, 2014; final manuscript received April 6, 2015; published online June 9, 2015. Assoc. Editor: Joel D. Stitzel.

J Biomech Eng 137(8), 081003 (Jun 09, 2015) (10 pages) Paper No: BIO-14-1531; doi: 10.1115/1.4030408 History: Received October 23, 2014

We developed and validated a fully articulated model of the thoracolumbar spine in opensim that includes the individual vertebrae, ribs, and sternum. To ensure trunk muscles in the model accurately represent muscles in vivo, we used a novel approach to adjust muscle cross-sectional area (CSA) and position using computed tomography (CT) scans of the trunk sampled from a community-based cohort. Model predictions of vertebral compressive loading and trunk muscle tension were highly correlated to previous in vivo measures of intradiscal pressure (IDP), vertebral loading from telemeterized implants and trunk muscle myoelectric activity recorded by electromyography (EMG).

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Delp, S. L. , Anderson, F. C. , Arnold, A. S. , Loan, P. , Habib, A. , John, C. T. , Guendelman, E. , and Thelen, D. G. , 2007, “OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef] [PubMed]
Christophy, M. , Faruk Senan, N. A. , Lotz, J. C. , and O'Reilly, O. M. , 2012, “A Musculoskeletal Model for the Lumbar Spine,” Biomech. Model. Mechanobiol., 11(1–2), pp. 19–34. [CrossRef] [PubMed]
Briggs, A. M. , van Dieën, J. H. , Wrigley, T. V. , Greig, A. M. , Phillips, B. , Lo, S. K. , and Bennell, K. L. , 2007, “Thoracic Kyphosis Affects Spinal Loads and Trunk Muscle Force,” Phys. Ther., 87(5), pp. 595–607. [CrossRef] [PubMed]
Han, K. S. , Zander, T. , Taylor, W. R. , and Rohlmann, A. , 2012, “An Enhanced and Validated Generic Thoraco-Lumbar Spine Model for Prediction of Muscle Forces,” Med. Eng. Phys., 34(6), pp. 709–716. [CrossRef] [PubMed]
Keller, T. S. , Colloca, C. J. , Harrison, D. E. , Harrison, D. D. , and Janik, T. J. , 2005, “Influence of Spine Morphology on Intervertebral Disc Loads and Stresses in Asymptomatic Adults: Implications for the Ideal Spine,” Spine J., 5(3), pp. 297–309. [CrossRef] [PubMed]
Iyer, S. , Christiansen, B. A. , Roberts, B. J. , Valentine, M. J. , Manoharan, R. K. , and Bouxsein, M. L. , 2010, “A Biomechanical Model for Estimating Loads on Thoracic and Lumbar Vertebrae,” Clin. Biomech. (Bristol, Avon), 25(9), pp. 853–858. [CrossRef] [PubMed]
Briggs, A. , Wrigley, T. , van Dieën, J. , Phillips, B. , Lo, S. , Greig, A. , and Bennell, K. , 2006, “The Effect of Osteoporotic Vertebral Fracture on Predicted Spinal Loads In Vivo,” Eur. Spine J., 15(12), pp. 1785–1795. [CrossRef] [PubMed]
Harrison, D. E. , Colloca, C. J. , Harrison, D. D. , Janik, T. J. , Haas, J. W. , and Keller, T. S. , 2005, “Anterior Thoracic Posture Increases Thoracolumbar Disc Loading,” Eur. Spine J., 14(3), pp. 234–242. [CrossRef] [PubMed]
Keller, T. S. , Harrison, D. E. , Colloca, C. J. , Harrison, D. D. , and Janik, T. J. , 2003, “Prediction of Osteoporotic Spinal Deformity,” Spine, 28(5), pp. 455–462. [PubMed]
Murakami, D. , Kobayashi, S. , Torigaki, T. , and Kent, R. , 2006, “Finite Element Analysis of Hard and Soft Tissue Contributions to Thoracic Response: Sensitivity Analysis of Fluctuations in Boundary Conditions,” Stapp Car Crash J., 50, pp. 169–189. [PubMed]
Bogduk, N. , Macintosh, J. E. , and Pearcy, M. J. , 1992, “A Universal Model of the Lumbar Back Muscles in the Upright Position,” Spine, 17(8), pp. 897–913. [CrossRef] [PubMed]
Kamibayashi, L. K. , and Richmond, F. J. , 1998, “Morphometry of Human Neck Muscles,” Spine, 23(12), pp. 1314–1323. [CrossRef] [PubMed]
Vasavada, A. N. , Li, S. , and Delp, S. L. , 1998, “Influence of Muscle Morphometry and Moment Arms on the Moment-Generating Capacity of Human Neck Muscles,” Spine, 23(4), pp. 412–422. [CrossRef] [PubMed]
Narici, M. , 1999, “Human Skeletal Muscle Architecture Studied In Vivo by Non-Invasive Imaging Techniques: Functional Significance and Applications,” J. Electromyography Kinesiology, 9(2), pp. 97–103. [CrossRef]
Bernhardt, M. , and Bridwell, K. H. , 1989, “Segmental Analysis of the Sagittal Plane Alignment of the Normal Thoracic and Lumbar Spines and Thoracolumbar Junction,” Spine, 14(7), pp. 717–721. [CrossRef] [PubMed]
Kuntz, C. , Levin, L. S. , Ondra, S. L. , Shaffrey, C. I. , and Morgan, C. J. , 2007, “Neutral Upright Sagittal Spinal Alignment From the Occiput to the Pelvis in Asymptomatic Adults: A Review and Resynthesis of the Literature,” J. Neurosurg.: Spine, 6(2), pp. 104–112. [CrossRef] [PubMed]
Gayzik, F. S. , Yu, M. M. , Danelson, K. A. , Slice, D. E. , and Stitzel, J. D. , 2008, “Quantification of Age-Related Shape Change of the Human Rib Cage Through Geometric Morphometrics,” J. Biomech., 41(7), pp. 1545–1554. [CrossRef] [PubMed]
Holzbaur, K. R. , Murray, W. M. , and Delp, S. L. , 2005, “A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control,” Ann. Biomed. Eng., 33(6), pp. 829–840. [CrossRef] [PubMed]
Tafazzol, A. , Arjmand, N. , Shirazi-Adl, A. , and Parnianpour, M. , 2014, “Lumbopelvic Rhythm During Forward and Backward Sagittal Trunk Rotations: Combined In Vivo Measurement With Inertial Tracking Device and Biomechanical Modeling,” Clin. Biomech., 29(1), pp. 7–13. [CrossRef]
White, A. A., 3rd , and Panjabi, M. M. , 1978, “The Basic Kinematics of the Human Spine. A Review of Past and Current Knowledge,” Spine, 3(1), pp. 12–20. [CrossRef] [PubMed]
Wong, K. W. , Luk, K. D. , Leong, J. C. , Wong, S. F. , and Wong, K. K. , 2006, “Continuous Dynamic Spinal Motion Analysis,” Spine, 31(4), pp. 414–419. [CrossRef] [PubMed]
Fujimori, T. , Iwasaki, M. , Nagamoto, Y. , Matsuo, Y. , Ishii, T. , Sugiura, T. , Kashii, M. , Murase, T. , Sugamoto, K. , and Yoshikawa, H. , 2013, “Kinematics of the Thoracic Spine in Trunk Lateral Bending: In Vivo Three-Dimensional Analysis,” Spine J., 14(9), pp. 1991–1999. [CrossRef] [PubMed]
Rozumalski, A. , Schwartz, M. H. , Wervey, R. , Swanson, A. , Dykes, D. C. , and Novacheck, T. , 2008, “The In Vivo Three-Dimensional Motion of the Human Lumbar Spine During Gait,” Gait Posture, 28(3), pp. 378–384. [CrossRef] [PubMed]
Fujii, R. , Sakaura, H. , Mukai, Y. , Hosono, N. , Ishii, T. , Iwasaki, M. , Yoshikawa, H. , and Sugamoto, K. , 2007, “Kinematics of the Lumbar Spine in Trunk Rotation: In Vivo Three-Dimensional Analysis Using Magnetic Resonance Imaging,” Eur. Spine J., 16(11), pp. 1867–1874. [CrossRef] [PubMed]
Fujimori, T. , Iwasaki, M. , Nagamoto, Y. , Ishii, T. , Kashii, M. , Murase, T. , Sugiura, T. , Matsuo, Y. , Sugamoto, K. , and Yoshikawa, H. , 2012, “Kinematics of the Thoracic Spine in Trunk Rotation: In Vivo 3-Dimensional Analysis,” Spine, 37(21), pp. E1318–E1328. [CrossRef] [PubMed]
Duprey, S. , Subit, D. , Guillemot, H. , and Kent, R. W. , 2010, “Biomechanical Properties of the Costovertebral Joint,” Med. Eng. Phys., 32(2), pp. 222–227. [CrossRef] [PubMed]
Lemosse, D. , Le Rue, O. , Diop, A. , Skalli, W. , Marec, P. , and Lavaste, F. , 1998, “Characterization of the Mechanical Behaviour Parameters of the Costo-Vertebral Joint,” Eur. Spine J., 7(1), pp. 16–23. [CrossRef] [PubMed]
Wilson, T. A. , Rehder, K. , Krayer, S. , Hoffman, E. A. , Whitney, C. G. , and Rodarte, J. R. , 1987, “Geometry and Respiratory Displacement of Human Ribs,” J. Appl. Physiol. (1985), 62(5), pp. 1872–1877. [PubMed]
Andriacchi, T. , Schultz, A. , Belytschko, T. , and Galante, J. , 1974, “A Model for Studies of Mechanical Interactions Between the Human Spine and Rib Cage,” J. Biomech., 7(6), pp. 497–507. [CrossRef] [PubMed]
Schultz, A. B. , Benson, D. R. , and Hirsch, C. , 1974, “Force-Deformation Properties of Human Costo-Sternal and Costo-Vertebral Articulations,” J. Biomech., 7(3), pp. 311–318. [CrossRef] [PubMed]
de Leva, P. , 1996, “Adjustments to Zatsiorsky–Seluyanov's Segment Inertia Parameters,” J. Biomech., 29(9), pp. 1223–1230. [CrossRef] [PubMed]
Liu, Y. K. , Laborde, J. M. , and Van Buskirk, W. C. , 1971, “Inertial Properties of a Segmented Cadaver Trunk: Their Implications in Acceleration Injuries.,” Aerosp. Med., 42(6), pp. 650–657. [PubMed]
Pearsall, D. , Reid, J. , and Livingston, L. , 1996, “Segmental Inertial Parameters of the Human Trunk as Determined From Computed Tomography,” Ann. Biomed. Eng., 24(2), pp. 198–210. [CrossRef] [PubMed]
Stokes, I. A. , and Gardner-Morse, M. , 1999, “Quantitative Anatomy of the Lumbar Musculature,” J. Biomech., 32(3), pp. 311–316. [CrossRef] [PubMed]
Garner, B. A. , and Pandy, M. G. , 2001, “Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset,” Comput. Methods Biomech. Biomed. Eng., 4(2), pp. 93–126. [CrossRef]
Garner, B. A. , and Pandy, M. G. , 2003, “Estimation of Musculotendon Properties in the Human Upper Limb,” Ann. Biomed. Eng., 31(2), pp. 207–220. [CrossRef] [PubMed]
Brown, S. H. , Ward, S. R. , Cook, M. S. , and Lieber, R. L. , 2011, “Architectural Analysis of Human Abdominal Wall Muscles: Implications for Mechanical Function,” Spine, 36(5), pp. 355–362. [PubMed]
Thelen, D. G. , 2003, “Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults,” ASME J. Biomech. Eng., 125(1), pp. 70–77. [CrossRef]
Saumarez, R. C. , 1986, “An Analysis of Action of Intercostal Muscles in Human Upper Rib Cage,” J. Appl. Physiol., 60(2), pp. 690–701. [PubMed]
Wilson, T. A. , Legrand, A. , Gevenois, P. A. , and De Troyer, A. , 2001, “Respiratory Effects of the External and Internal Intercostal Muscles in Humans,” J. Physiol., 530(Pt 2), pp. 319–330. [CrossRef] [PubMed]
Hoffmann, U. , Massaro, J. M. , Fox, C. S. , Manders, E. , and O'Donnell, C. J. , 2008, “Defining Normal Distributions of Coronary Artery Calcium in Women and Men (From the Framingham Heart Study),” Am. J. Cardiol., 102(9), pp. 1136–1141. [CrossRef] [PubMed]
Anderson, D. E. , D'Agostino, J. , Bruno, A. G. , Manoharan, R. K. , and Bouxsein, M. L. , 2012, “Regressions for Estimating Muscle Parameters in the Thoracic and Lumbar Trunk for Use in Musculoskeletal Modeling,” J. Biomech., 45(1), pp. 66–75. [CrossRef] [PubMed]
Narici, M. V. , Roi, G. S. , and Landoni, L. , 1988, “Force of Knee Extensor and Flexor Muscles and Cross-Sectional Area Determined by Nuclear Magnetic Resonance Imaging,” Eur. J. Appl. Physiol. Occup. Physiol., 57(1), pp. 39–44. [CrossRef] [PubMed]
Pearcy, M. J. , and Bogduk, N. , 1988, “Instantaneous Axes of Rotation of the Lumbar Intervertebral Joints,” Spine, 13(9), pp. 1033–1041. [CrossRef] [PubMed]
Andersson, G. B. , Ortengren, R. , and Nachemson, A. , 1977, “Intradiskal Pressure, Intra-Abdominal Pressure and Myoelectric Back Muscle Activity Related to Posture and Loading,” Clin. Orthop. Relat. Res., 129, pp. 156–164. [CrossRef] [PubMed]
Polga, D. J. , Beaubien, B. P. , Kallemeier, P. M. , Schellhas, K. P. , Lew, W. D. , Buttermann, G. R. , and Wood, K. B. , 2004, “Measurement of In Vivo Intradiscal Pressure in Healthy Thoracic Intervertebral Discs,” Spine, 29(12), pp. 1320–1324. [CrossRef] [PubMed]
Sato, K. , Kikuchi, S. , and Yonezawa, T. , 1999, “In Vivo Intradiscal Pressure Measurement in Healthy Individuals and in Patients With Ongoing Back Problems,” Spine, 24(23), pp. 2468–2474. [CrossRef] [PubMed]
Schultz, A. , Andersson, G. , Ortengren, R. , Haderspeck, K. , and Nachemson, A. , 1982, “Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals,” J. Bone Jt. Surg., 64(5), pp. 713–720.
Takahashi, I. , Kikuchi, S. , Sato, K. , and Sato, N. , 2006, “Mechanical Load of the Lumbar Spine During Forward Bending Motion of the Trunk—A Biomechanical Study,” Spine, 31(1), pp. 18–23. [CrossRef] [PubMed]
Wilke, H.-J. , Neef, P. , Hinz, B. , Seidel, H. , and Claes, L. , 2001, “Intradiscal Pressure Together With Anthropometric Data—A Data Set for the Validation of Models,” Clin. Biomech., 16(Suppl. 1), pp. S111–S126. [CrossRef]
Rohlmann, A. , Graichen, F. , Kayser, R. , Bender, A. , and Bergmann, G. , 2008, “Loads on a Telemeterized Vertebral Body Replacement Measured in Two Patients,” Spine, 33(11), pp. 1170–1179. [CrossRef] [PubMed]
Crowninshield, R. D. , and Brand, R. A. , 1981, “A Physiologically Based Criterion of Muscle Force Prediction in Locomotion,” J. Biomech., 14(11), pp. 793–801. [CrossRef] [PubMed]
Hughes, R. E. , 2000, “Effect of Optimization Criterion on Spinal Force Estimates During Asymmetric Lifting,” J. Biomech., 33(2), pp. 225–229. [CrossRef] [PubMed]
Dreischarf, M. , Rohlmann, A. , Zhu, R. , Schmidt, H. , and Zander, T. , 2013, “Is it Possible to Estimate the Compressive Force in the Lumbar Spine From Intradiscal Pressure Measurements? A Finite Element Evaluation,” Med. Eng. Phys., 35(9), pp. 1385–1390. [CrossRef] [PubMed]
Nachemson, A. , 1960, “Lumbar Intradiscal Pressure: Experimental Studies on Post-Mortem Material,” Acta Orthop. Scand. Suppl., 43, pp. 1–104. [CrossRef] [PubMed]
Nachemson, A. , 1966, “The Load on Lumbar Disks in Different Positions of the Body,” Clin. Orthop. Relat. Res., 45, pp. 107–122. [CrossRef] [PubMed]
de Zee, M. , Hansen, L. , Wong, C. , Rasmussen, J. , and Simonsen, E. B. , 2007, “A Generic Detailed Rigid-Body Lumbar Spine Model,” J. Biomech., 40(6), pp. 1219–1227. [CrossRef] [PubMed]
Stokes, I. A. , Gardner-Morse, M. G. , and Henry, S. M. , 2010, “Intra-Abdominal Pressure and Abdominal Wall Muscular Function: Spinal Unloading Mechanism,” Clin. Biomech. (Bristol, Avon), 25(9), pp. 859–866. [CrossRef] [PubMed]
Cholewicki, J. , Ivancic, P. C. , and Radebold, A. , 2002, “Can Increased Intra-Abdominal Pressure in Humans Be Decoupled From Trunk Muscle Co-Contraction During Steady State Isometric Exertions?,” Eur. J. Appl. Physiol., 87(2), pp. 127–133. [CrossRef] [PubMed]
De Troyer, A. , and Boriek, A. M. , 2011, “Mechanics of the Respiratory Muscles,” Compr. Physiol., 1(3), pp. 1273–1300. [PubMed]
McGill, S. M. , and Sharratt, M. T. , 1990, “Relationship Between Intra-Abdominal Pressure and Trunk EMG,” Clin. Biomech., 5(2), pp. 59–67. [CrossRef]
Macintosh, J. E. , and Bogduk, N. , 1991, “The Attachments of the Lumbar Erector Spinae,” Spine, 16(7), pp. 783–792. [CrossRef] [PubMed]
Boyle, J. J. , Milne, N. , and Singer, K. P. , 2002, “Influence of Age on Cervicothoracic Spinal Curvature: An Ex Vivo Radiographic Survey,” Clin. Biomech. (Bristol, Avon), 17(5), pp. 361–367. [CrossRef] [PubMed]
Bruno, A. G. , Anderson, D. E. , D'Agostino, J. , and Bouxsein, M. L. , 2012, “The Effect of Thoracic Kyphosis and Sagittal Plane Alignment on Vertebral Compressive Loading,” J. Bone Miner. Res., 27(10), pp. 2144–2151. [CrossRef] [PubMed]
Manns, R. A. , Haddaway, M. J. , McCall, I. W. , Cassar Pullicino, V. , and Davie, M. W. J. , 1996, “The Relative Contribution of Disc and Vertebral Morphometry to the Angle of Kyphosis in Asymptomatic Subjects,” Clin. Radiol., 51(4), pp. 258–262. [CrossRef] [PubMed]
Shi, X. , Cao, L. , Reed, M. P. , Rupp, J. D. , Hoff, C. N. , and Hu, J. , 2014, “A Statistical Human Rib Cage Geometry Model Accounting for Variations by Age, Sex, Stature and Body Mass Index,” J. Biomech., 47(10), pp. 2277–2285. [CrossRef] [PubMed]
Weaver, A. A. , Schoell, S. L. , and Stitzel, J. D. , 2014, “Morphometric Analysis of Variation in the Ribs With Age and Sex,” J. Anat., 225(2), pp. 246–261. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 2

Method for calculating muscle group CSA and moment arm in the model at different transverse planes, facilitating comparisons to muscle group CSA and moment arm made on axial CT images. The example above shows the calculation of trapezius CSA and moment arm at the T9 midvertebral plane in the model (a), which we would like to compare to measurements of trapezius CSA and moment arm made on axial CT at the T9 midplane (b). The four trapezius fascicles in the model that cross the T9 midplane are schematically shown in (c), where they are plotted relative to the T9 vertebral body centroid. The size of the circles is equal to the CSA of the individual fascicles, and these areas are summed to get trapezius CSA at T9. The centroid of the fascicles is then calculated and used to find the ML and AP moment arms of the muscle group relative to the vertebral centroid.

Grahic Jump Location
Fig. 1

(a) Image of the new musculoskeletal spine model shown with and without muscles. (b) The model can simulate sagittally symmetric and asymmetric activities. Here, the model is simulating 30 deg trunk flexion and 20 deg trunk lateral bending to the right.

Grahic Jump Location
Fig. 4

The model was used to simulate activities for which IDP measurements have been previously reported. Vertebral compressive force predicted by the model was converted to an estimated IDP using vertebral area and a correction factor of 0.66. IDP estimated by the model was correlated with IDP measurements made in the lumbar (a) and thoracic spine (b). The error bars in (b) are the range of IDP reported by Polga et al. [46]. The dashed lines represent unity.

Grahic Jump Location
Fig. 3

Muscle anatomy for the baseline model (pre-adjusted model) was derived from prior cadaver studies and anatomical descriptions. We generated a new model with muscle group CSA and position scaled to match average in vivo values of muscle CSA and position that were measured on CT scans in a sample of older males (cohort CT measurements) at the vertebral midslices of T6–L5 for several major muscle groups. (a)–(c) The improvement in CSA, AP moment arm, and ML moment arm for the erector spinae muscle group in the adjusted versus pre-adjusted model. The error bars are ±1 standard deviations of the measured data.

Grahic Jump Location
Fig. 5

The model was used to simulate the activities reported in Rohlmann et al. [51], for which vertebral loading at L1 was recorded from telemeterized vertebral implants in two individuals. (a) Vertebral loading is expressed as a percentage of standing load. Error bars are the range of data reported in the study. (b) The correlation between measured and model predicted loading is shown.

Grahic Jump Location
Fig. 6

The model was used to simulate a range of activities for which trunk muscle myoelectric activity has been previously reported by (a) Takahashi et al. at L3 [49], (b) Schultz et al. at L1–L5 [48], and (c) Andersson et al. at T4 [45]. Measured myoelectric activity was correlated with the sum of erector spinae fascicle tensions predicted by the model at the spine levels measured.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In