Technical Brief

A Technique for Quantifying Wrist Motion Using Four-Dimensional Computed Tomography: Approach and Validation

[+] Author and Article Information
Kristin Zhao

Rehabilitation Medicine Research Center,
Department of Physical Medicine and Rehabilitation,
Mayo Clinic,
200 First Street SW,
Rochester, MN 55905
e-mail: zhao.kristin@mayo.edu

Ryan Breighner

Biomechanics Laboratory,
Division of Orthopedic Research,
Mayo Clinic,
200 First Street SW,
Rochester, MN 55905
e-mail: Breighner.Ryan@mayo.edu

David Holmes, III

Department of Physiology and Biomedical Engineering,
Mayo Clinic,
200 First Street SW,
Rochester, MN 55905
e-mail: Holmes.David3@mayo.edu

Shuai Leng

Department of Radiology,
Mayo Clinic,
200 First Street SW,
Rochester, MN 55905
e-mail: Leng.Shuai@mayo.edu

Cynthia McCollough

Department of Radiology,
Mayo Clinic,
200 First Street SW,
Rochester, MN 55905
e-mail: mccollough.cynthia@mayo.edu

Kai-Nan An

Fellow ASME Biomechanics Laboratory,
Division of Orthopedic Research,
Mayo Clinic,
200 First Street SW,
Rochester, MN 55905
e-mail: an.kainan@mayo.edu

1Corresponding author.

Manuscript received September 9, 2014; final manuscript received April 12, 2015; published online June 3, 2015. Assoc. Editor: Zong-Ming Li.

J Biomech Eng 137(7), 074501 (Jul 01, 2015) (5 pages) Paper No: BIO-14-1446; doi: 10.1115/1.4030405 History: Received September 09, 2014; Revised April 12, 2015; Online June 03, 2015

Accurate quantification of subtle wrist motion changes resulting from ligament injuries is crucial for diagnosis and prescription of the most effective interventions for preventing progression to osteoarthritis. Current imaging techniques are unable to detect injuries reliably and are static in nature, thereby capturing bone position information rather than motion which is indicative of ligament injury. A recently developed technique, 4D (three dimensions + time) computed tomography (CT) enables three-dimensional volume sequences to be obtained during wrist motion. The next step in successful clinical implementation of the tool is quantification and validation of imaging biomarkers obtained from the four-dimensional computed tomography (4DCT) image sequences. Measures of bone motion and joint proximities are obtained by: segmenting bone volumes in each frame of the dynamic sequence, registering their positions relative to a known static posture, and generating surface polygonal meshes from which minimum distance (proximity) measures can be quantified. Method accuracy was assessed during in vitro simulated wrist movement by comparing a fiducial bead-based determination of bone orientation to a bone-based approach. The reported errors for the 4DCT technique were: 0.00–0.68 deg in rotation; 0.02–0.30 mm in translation. Results are on the order of the reported accuracy of other image-based kinematic techniques.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Garcia-Elias, M., and Folgar, M. A., 2006, “The Management of Wrist Injuries: An International Perspective,” Injury, 37(11), pp. 1049–1056. [CrossRef] [PubMed]
Guly, H. R., 2002, “Injuries Initially Misdiagnosed as Sprained Wrist (Beware the Sprained Wrist),” Emerg. Med. J., 19(1), pp. 41–42. [CrossRef] [PubMed]
Jones, W. A., 1988, “Beware the Sprained Wrist: The Incidence and Diagnosis of Scapholunate Instability,” J. Bone Jt. Surg., Br., 70(2), pp. 293–297. [CrossRef]
Minami, A., Kato, H., and Iwasaki, N., 2003, “Treatment of Scapholunate Dissociation: Ligamentous Repair Associated With Modified Dorsal Capsulodesis,” Hand Surg., 8(1), pp. 1–6. [CrossRef] [PubMed]
O'Meeghan, C. J., Stuart, W., Mamo, V., Stanley, J. K., and Trail, I. A., 2003, “The Natural History of an Untreated Isolated Scapholunate Interosseus Ligament Injury,” J. Hand Surg. Br., 28(4), pp. 307–310. [CrossRef] [PubMed]
Watson, H., Ottoni, L., Pitts, E. C., and Handal, A. G., 1993, “Rotary Subluxation of the Scaphoid: A Spectrum of Instability,” J. Hand Surg. Br., 18(1), pp. 62–64. [CrossRef] [PubMed]
Watson, H. K., and Ballet, F. L., 1984, “The SLAC Wrist: Scapholunate Advanced Collapse Pattern of Degenerative Arthritis,” J. Hand Surg. Am., 9(3), pp. 358–365. [CrossRef] [PubMed]
Watson, H. K., Weinzweig, J., and Zeppieri, J., 1997, “The Natural Progression of Scaphoid Instability,” Hand Clin., 13(1), pp. 39–49. [PubMed]
Rominger, M. B., Bernreuter, W. K., Kenney, P. J., and Lee, D. H., 1993, “MR Imaging of Anatomy and Tears of Wrist Ligaments,” Radiographics, 13(6), pp. 1233–1246 (Discussion 1247–1248). [CrossRef] [PubMed]
Schadel-Hopfner, M., Iwinska-Zelder, J., Braus, T., Bohringer, G., Klose, K. J., and Gotzen, L., 2001, “MRI Versus Arthroscopy in the Diagnosis of Scapholunate Ligament Injury,” J. Hand Surg. Br., 26(1), pp. 17–21. [CrossRef] [PubMed]
Braunstein, E. M., Louis, D. S., Greene, T. L., and Hankin, F. M., 1985, “Fluoroscopic and Arthrographic Evaluation of Carpal Instability,” AJR, Am. J. Roentgenol., 144(6), pp. 1259–1262. [CrossRef]
Gilula, L. A., Hardy, D. C., Totty, W. G., and Reinus, W. R., 1987, “Fluoroscopic Identification of Torn Intercarpal Ligaments After Injection of Contrast Material,” AJR, Am. J. Roentgenol., 149(4), pp. 761–764. [CrossRef]
White, S. J., Louis, D. S., Braunstein, E. M., Hankin, F. M., and Greene, T. L., 1984, “Capitate-Lunate Instability: Recognition by Manipulation Under Fluoroscopy,” AJR, Am. J. Roentgenol., 143(2), pp. 361–364. [CrossRef]
Beek, M., Small, C. F., Csongvay, S., Sellens, R. W., Ellis, R. E., and Pichora, D. R., 2004, “Wrist Kinematics From Computed Tomography Data,” Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004, Vol. 3217, C.Barillot, D. R.Haynor, and P.Hellier, eds., Springer-Verlag, Saint-Malo, France, pp. 1040–1041.
Crisco, J. J., Coburn, J. C., Moore, D. C., Akelman, E., Weiss, A. P., and Wolfe, S. W., 2005, “In Vivo Radiocarpal Kinematics and the Dart Thrower's Motion,” J. Bone Jt. Surg. Am., 87(12), pp. 2729–2740. [CrossRef]
Crisco, J. J., Wolfe, S. W., Neu, C. P., and Pike, S., 2001, “Advances in the In Vivo Measurement of Normal and Abnormal Carpal Kinematics,” Orthop. Clin. North Am., 32(2), pp. 219–231. [CrossRef] [PubMed]
Feipel, V., and Rooze, M., 1999, “Three-Dimensional Motion Patterns of the Carpal Bones: An In Vivo Study Using Three-Dimensional Computed Tomography and Clinical Applications,” Surg. Radiol. Anat., 21(2), pp. 125–131. [CrossRef] [PubMed]
Goto, A., Moritomo, H., Murase, T., Oka, K., Sugamoto, K., Arimura, T., Masumoto, J., Tamura, S., Yoshikawa, H., and Ochi, T., 2005, “In Vivo Three-Dimensional Wrist Motion Analysis Using Magnetic Resonance Imaging and Volume-Based Registration,” J. Orthop. Res., 23(4), pp. 750–756. [CrossRef] [PubMed]
Ishikawa, J., Cooney, W. P., 3rd, Niebur, G., An, K. N., Minami, A., and Kaneda, K., 1999, “The Effects of Wrist Distraction on Carpal Kinematics,” J. Hand Surg. Am., 24(1), pp. 113–120. [CrossRef] [PubMed]
Kobayashi, M., Berger, R. A., Nagy, L., Linscheid, R. L., Uchiyama, S., Ritt, M., and An, K. N., 1997, “Normal Kinematics of Carpal Bones: A Three-Dimensional Analysis of Carpal Bone Motion Relative to the Radius,” J. Biomech., 30(8), pp. 787–793. [CrossRef] [PubMed]
Moojen, T. M., Snel, J. G., Ritt, M. J., Kauer, J. M., Venema, H. W., and Bos, K. E., 2002, “Three-Dimensional Carpal Kinematics In Vivo,” Clin. Biomech., 17(7), pp. 506–514. [CrossRef]
Moritomo, H., Murase, T., Goto, A., Oka, K., Sugamoto, K., and Yoshikawa, H., 2004, “Capitate-Based Kinematics of the Midcarpal Joint During Wrist Radioulnar Deviation: An In Vivo Three-Dimensional Motion Analysis,” J. Hand Surg. Am., 29(4), pp. 668–675. [CrossRef] [PubMed]
Patterson, R. M., Williams, L., Andersen, C. R., Koh, S., and Viegas, S. F., 2007, “Carpal Kinematics During Simulated Active and Passive Motion of the Wrist,” J. Hand Surg. Am., 32(7), pp. 1013–1019. [CrossRef] [PubMed]
Short, W. H., Werner, F. W., Fortino, M. D., and Mann, K. A., 1997, “Analysis of the Kinematics of the Scaphoid and Lunate in the Intact Wrist Joint,” Hand Clin., 13(1), pp. 93–108. [PubMed]
Werner, F. W., Green, J. K., Short, W. H., and Masaoka, S., 2004, “Scaphoid and Lunate Motion During a Wrist Dart Throw Motion,” J. Hand Surg. Am., 29(3), pp. 418–422. [CrossRef] [PubMed]
Berdia, S., Short, W. H., Werner, F. W., Green, J. K., and Panjabi, M., 2006, “The Hysteresis Effect in Carpal Kinematics,” J. Hand Surg. Am., 31(4), pp. 594–600. [CrossRef] [PubMed]
Berger, R. A., 1997, “The Ligaments of the Wrist. A Current Overview of Anatomy With Considerations of Their Potential Functions,” Hand Clin., 13(1), pp. 63–82. [PubMed]
Berger, R. A., Imaeda, T., Berglund, L., An, K. N., Cooney, W. P., Amadio, P. C., and Linscheid, R. L., 1994, “The Anatomic, Constraint and Material Properties of the Scapholunate Interosseous Ligament: A Preliminary Study,” Advances in the Biomechanics of the Hand and Wrist (NATO ASI Series, Vol. A 256), F.Schuind, K. N.An, W. P.Cooney, III, and M.Garcia-Elias, eds., Plenum Press, New York.
Berger, R. A., Imaeda, T., Berglund, L. J., and An, K. N., 1999, “Constraint and Material Properties of the Subregions of the Scapholunate Interosseous Ligament,” J. Hand Surg. Am., 24(5), pp. 953–962. [CrossRef] [PubMed]
Jantea, C., An, K., Linscheid, R., and Cooney, W., 1994, “The Role of the Scapho-Trapezial-Trapezoidal Ligament Complex on Scaphoid Kinematics,” Advances in the Biomechanics of the Hand and Wrist, Plenum Press, New York.
Mitsuyasu, H., Patterson, R. M., Shah, M. A., Buford, W. L., Iwamoto, Y., and Viegas, S. F., 2004, “The Role of the Dorsal Intercarpal Ligament in Dynamic and Static Scapholunate Instability,” J. Hand Surg. Am., 29(2), pp. 279–288. [CrossRef] [PubMed]
Nagao, S., Patterson, R. M., Buford, W. L., Jr., Andersen, C. R., Shah, M. A., and Viegas, S. F., 2005, “Three-Dimensional Description of Ligamentous Attachments Around the Lunate,” J. Hand Surg. Am., 30(4), pp. 685–692. [CrossRef] [PubMed]
Ruby, L. K., An, K. N., Linscheid, R. L., Cooney, W. P., 3rd, and Chao, E. Y., 1987, “The Effect of Scapholunate Ligament Section on Scapholunate Motion,” J. Hand Surg. Am., 12(5 Pt 1), pp. 767–771. [CrossRef] [PubMed]
Crisco, J. J., Pike, S., Hulsizer-Galvin, D. L., Akelman, E., Weiss, A. P. C., and Wolfe, S. W., 2003, “Carpal Bone Postures and Motions are Abnormal in Both Wrists of Patients With Unilateral Scapholunate Interosseous Ligament Tears,” J. Hand Surg. Am., 28(6), pp. 926–937. [CrossRef] [PubMed]
Picha, B. M., Konstantakos, E. K., and Gordon, D. A., 2012, “Incidence of Bilateral Scapholunate Dissociation in Symptomatic and Asymptomatic Wrists,” J. Hand Surg. Am., 37(6), pp. 1130–1135 [CrossRef] [PubMed]
Choi, Y. S., Lee, Y. H., Kim, S., Cho, H. W., Song, H. T., and Suh, J. S., 2013, “Four-Dimensional Real-Time Cine Images of Wrist Joint Kinematics Using Dual Source CT With Minimal Time Increment Scanning,” Yonsei Med. J., 54(4), pp. 1026–1032. [CrossRef] [PubMed]
Demehri, S., Wadhwa, V., Thawait, G. K., Fattahi, N., Means, K. R., Carrino, J. A., and Chhabra, A., 2014, “Dynamic Evaluation of Pisotriquetral Instability Using 4-Dimensional Computed Tomography,” J. Comput. Assisted Tomogr., 38(4), pp. 507–512. [CrossRef]
Edirisinghe, Y., Troupis, J. M., Patel, M., Smith, J., and Crossett, M., 2014, “Dynamic Motion Analysis of Dart Throwers Motion Visualized Through Computerized Tomography and Calculation of the Axis of Rotation,” J. Hand Surg. Eur., 39(4), pp. 364–372. [CrossRef]
Garcia-Elias, M., Alomar Serrallach, X., and Monill Serra, J., 2014, “Dart-Throwing Motion in Patients With Scapholunate Instability: A Dynamic Four-Dimensional Computed Tomography Study,” J. Hand Surg. Eur., 39(4), pp. 346–352. [CrossRef]
Goh, Y. P., and Lau, K. K., 2012, “Using the 320-Multidetector Computed Tomography Scanner for Four-Dimensional Functional Assessment of the Elbow Joint,” Am. J. Orthop., 41(2), pp. E20–E24. [PubMed]
Halpenny, D., Courtney, K., and Torreggiani, W. C., 2012, “Dynamic Four-Dimensional 320 Section CT and Carpal Bone Injury: A Description of a Novel Technique to Diagnose Scapholunate Instability,” Clin. Radiol., 67(2), pp. 185–187. [CrossRef] [PubMed]
Shores, J. T., Demehri, S., and Chhabra, A., 2013, “Kinematic ‘4 Dimensional’ CT Imaging in the Assessment of Wrist Biomechanics Before and After Surgical Repair,” ePlasty, 13, p. e9. [PubMed]
Wassilew, G. I., Janz, V., Heller, M. O., Tohtz, S., Rogalla, P., Hein, P., and Perka, C., 2013, “Real Time Visualization of Femoroacetabular Impingement and Subluxation Using 320-Slice Computed Tomography,” J. Orthop. Res., 31(2), pp. 275–281. [CrossRef] [PubMed]
Leng, S., Zhao, K., Qu, M., An, K. N., Berger, R., and Mccollough, C. H., 2011, “Dynamic CT Technique for Assessment of Wrist Joint Instabilities,” Med. Phys., 38(Suppl. 1), p. S50. [CrossRef] [PubMed]
Biswas, D., Bible, J. E., Bohan, M., Simpson, A. K., Whang, P. G., and Grauer, J. N., 2009, “Radiation Exposure From Musculoskeletal Computerized Tomographic Scans,” J. Bone Jt. Surg. Am., 91(8), pp. 1882–1889. [CrossRef]
Schauer, D., 2009, “Ionizing Radiation Exposure of the Population of the United States,” The National Council on Radiation Protection and Measurements (NCRP), Report No. 160.
Sebastian, T. B., Tek, H., Crisco, J. J., and Kimia, B. B., 2003, “Segmentation of Carpal Bones From CT Images Using Skeletally Coupled Deformable Models,” Med. Image Anal., 7(1), pp. 21–45. [CrossRef] [PubMed]
Salembier, P., and Serra, J., 1995, “Flat Zones Filtering, Connected Operators, and Filters by Reconstruction,” IEEE Trans. Image Process., 4(8), pp. 1153–1160. [CrossRef] [PubMed]
Meyer, F., and Beucher, S., 1990, “Morphological Segmentation,” J. Visual Commun. Image Representation, 1(1), pp. 21–46. [CrossRef]
Lorensen, W. E., and Cline, H. E., 1987, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” ACM Comput. Graphics, 21(4), pp. 163–169. [CrossRef]
Lin, W. T., and Robb, R. A., 2000, “Patient Specific Physics-Based Model for Interactive Visualization of Cardiac Dynamics,” Stud. Health Technol. Inf., 70, pp. 182–188.
Eusemann, C. D., Bellemann, M. E., and Robb, R. A., 2000, “Measurement and Display of Instantaneous Regional Motion of the Myocardium,” Proc. SPIE3911, pp. 34–41. [CrossRef]
Haider, C. R., Bartholmai, B. J., Holmes, D. R., Camp, J. J., and Robb, R. A., 2005, “Quantitative Characterization of Lung Disease,” Comput. Med. Imaging Graphics, 29(7), pp. 555–563. [CrossRef]
Besl, P. J., and Mckay, N. D., 1992, “A Method for Registration of 3-D Shapes,” IEEE Trans. Pattern Anal. Mach. Intell., 14(2), pp. 239–256. [CrossRef]
Hansson, G.-A., Balogh, I., Ohlsson, K., Granqvist, L., Nordander, C., Arvidsson, I., Akesson, I., Unge, J., Rittner, R., Stromberg, U., and Skerfving, S., 2009, “Physical Workload in Various Types of Work: Part I: Wrist and Forearm,” Int. J. Ind. Ergon., 39(1), pp. 221–233. [CrossRef]
Bey, M. J., Kline, S. K., Tashman, S., and Zauel, R., 2008, “Accuracy of Biplane X-Ray Imaging Combined With Model-Based Tracking for Measuring In-Vivo Patellofemoral Joint Motion,” J. Orthop. Surg. Res., 3, p. 38. [CrossRef] [PubMed]
Crisco, J. J., McGovern, R. D., and Wolfe, S. W., 1999, “Noninvasive Technique for Measuring In Vivo Three-Dimensional Carpal Bone Kinematics,” J. Orthop. Res., 17(1), pp. 96–100. [CrossRef] [PubMed]
Miranda, D. L., Schwartz, J. B., Loomis, A. C., Brainerd, E. L., Fleming, B. C., and Crisco, J. J., 2011, “Static and Dynamic Error of a Biplanar Videoradiography System Using Marker-Based and Markerless Tracking Techniques,” ASME J. Biomech. Eng., 133(12), p. 121002. [CrossRef]
Tashman, S., and Anderst, W., 2003, “In-Vivo Measurement of Dynamic Joint Motion Using High Speed Biplane Radiography and CT: Application to Canine ACL Deficiency,” ASME J. Biomech. Eng., 125(2), pp. 238–245. [CrossRef]
Mak, W. H., Szabo, R. M., and Myo, G. K., 2012, “Assessment of Volar Radiocarpal Ligaments: MR Arthrographic and Arthroscopic Correlation,” Am. J. Roentgenol., 198(2), pp. 423–427. [CrossRef]


Grahic Jump Location
Fig. 1

A single three-dimensional volume-rendered image volume from a 4DCT image sequence (high resolution, not shown). Image volumes are reconstructed at each of 18 time points over the 2 s movement cycles. Images are output in DICOM format for determination of metrics and imaging biomarkers.

Grahic Jump Location
Fig. 2

Proximity values represented on the scaphoid, lunate, and radius articulating surfaces of a right wrist at one time point (from the 18 total) of a 4DCT sequence (palmar view). Proximity values are calculated as the minimum distance from all mesh vertices on the first surface mesh to the second bone mesh. The resulting proximity maps are depicted as a contour color map indicating the minimum distances between the articulating bone surfaces.

Grahic Jump Location
Fig. 3

Custom CT-compatible cadaveric wrist simulator for simulating wrist flexion/extension and radial/ulnar deviation motions via a linear motor (fiducial markers not shown)

Grahic Jump Location
Fig. 4

Time series data of bead-based and bone-based rotation values of the scaphoid during a wrist flexion–extension trial



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In