Research Papers

Mechanically Driven Branching of Bacterial Colonies

[+] Author and Article Information
Chiara Giverso

MOX - Department of Mathematics,
Politecnico di Milano and Fondazione CEN,
P.za Leonardo da Vinci, 32,
Milan 20133, Italy
e-mail: chiara.giverso@polimi.it

Marco Verani

MOX - Department of Mathematics,
Politecnico di Milano,
P.za Leonardo da Vinci, 32,
Milan 20133, Italy
e-mail: marco.verani@polimi.it

Pasquale Ciarletta

CNRS and Institut Jean le Rond d'Alembert,
UMR 7190,
Université Paris 6,
4 place Jussieu case 162,
Paris 75005, France
e-mail: pasquale.ciarletta@upmc.fr

Manuscript received December 21, 2014; final manuscript received March 12, 2015; published online June 2, 2015. Assoc. Editor: Pasquale Vena.

J Biomech Eng 137(7), 071003 (Jul 01, 2015) (10 pages) Paper No: BIO-14-1636; doi: 10.1115/1.4030176 History: Received December 21, 2014; Revised March 12, 2015; Online June 02, 2015

A continuum mathematical model with sharp interface is proposed for describing the occurrence of patterns in initially circular and homogeneous bacterial colonies. The mathematical model encapsulates the evolution of the chemical field characterized by a Monod-like uptake term, the chemotactic response of bacteria, the viscous interaction between the colony and the underlying culture medium and the effects of the surface tension at the boundary. The analytical analysis demonstrates that the front of the colony is linearly unstable for a proper choice of the parameters. The simulation of the model in the nonlinear regime confirms the development of fingers with typical wavelength controlled by the size parameters of the problem, whilst the emergence of branches is favored if the diffusion is dominant on the chemotaxis or for high values of the friction parameter. Such results provide new insights on pattern selection in bacterial colonies and may be applied for designing engineered patterns.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Martin, P., and Parkhurst, S. M., 2004, “Parallels Between Tissue Repair and Embryo Morphogenesis,” Development, 131(13), pp. 3021–3034. [CrossRef] [PubMed]
Weijer, C. J., 2009, “Collective Cell Migration in Development,” J. Cell Sci., 122(Pt 18), pp. 3215–3223. [CrossRef] [PubMed]
Murray, J. D., Oster, G. F., and Harris, A. K., 1983, “Mechanical Aspects of Mesenchymal Morphogenesis,” J. Embryol. Exp. Morphol., 78, pp. 83–125. [PubMed]
Zhang, H. P., Be'er, A., Florin, E. L., and Swinney, H. L., 2010, “Collective Motion and Density Fluctuations in Bacterial Colonies,” Proc. Natl. Acad. Sci. U. S. A., 107(31), pp. 13626–13630. [CrossRef] [PubMed]
Ben-Jacob, E., and Schultz, D., 2010, “Bacteria Determine Fate by Playing Dice With Controlled Odds,” Proc. Natl. Acad. Sci. U. S. A., 107(30), pp. 13197–13198. [CrossRef] [PubMed]
Friedl, P., and Gilmour, D., 2009, “Collective Cell Migration in Morphogenesis, Regeneration and Cancer,” Nat. Rev. Mol. Cell Biol., 10(7), pp. 445–457. [CrossRef] [PubMed]
Bassler, B. L., and Losick, R., 2006, “Bacterially Speaking,” Cell, 125(2), pp. 237–246. [CrossRef] [PubMed]
Shapiro, J. A., 1988, “Bacteria as Multicellular Organisms,” Sci. Am., 258, pp. 82–89. [CrossRef] [PubMed]
Fujikawa, H., and Matsushita, M., 1989, “Fractal Growth of Bacillus subtilis on Agar Plates,” J. Phys. Soc. Jpn., 58(11), pp. 3875–3878. [CrossRef]
Fujikawa, H., 1994, “Diversity of the Growth Patterns of Bacillus subtilis Colonies on Agar Plates,” FEMS Microbiol. Ecol., 13(3), pp. 159–168. [CrossRef]
Ben-Jacob, E., Cohen, I., and Gutnick, D. L., 1998, “Cooperative Organization of Bacterial Colonies: From Genotype to Morphotype,” Annu. Rev. Microbiol., 52, pp. 779–806. [CrossRef] [PubMed]
Ben-Jacob, E., Cohen, I., and Levine, H., 2000, “Cooperative Self-Organization of Microorganisms,” Adv. Phys., 49(4), pp. 395–554. [CrossRef]
Ben-Jacob, E., and Levine, H., 2006, “Self-Engineering Capabilities of Bacteria,” J. R. Soc., Interface, 3(6), pp. 197–214. [CrossRef]
Kawasaki, K., Mochizuki, A., Matsushita, M., Umeda, T., and Shigesada, N., 1997, “Modeling Spatio-Temporal Patterns Generated by Bacillus subtilis,” J. Theor. Biol., 188(2), pp. 177–185. [CrossRef] [PubMed]
Matsushita, M., Wakita, J., Itoh, H., Ràfols, I., Matsuyama, T., Sakaguchi, H., and Mimura, M., 1998, “Interface Growth and Pattern Formation in Bacterial Colonies,” Phys. A, 249(1–4), pp. 517–524. [CrossRef]
Matsushita, M., Hiramatsu, F., Kobayashi, N., Ozawa, T., Yamazaki, Y., and Matsuyama, Y., 2004, “Colony Formation in Bacteria: Experiments and Modeling,” Biofilms, 1(4), pp. 305–317. [CrossRef]
Mimura, M., Sakaguchi, H., and Matsushita, M., 2000, “Reaction-Diffusion Modelling of Bacterial Colony Patterns,” Phys. A, 282(1–2), pp. 283–303. [CrossRef]
Wakita, J., Itoh, H., Matsuyama, T., and Matsushita, M., 1997, “Self-Affinity for the Growing Interface of Bacterial Colonies,” J. Phys. Soc. Jpn., 66(1), pp. 67–72. [CrossRef]
Adler, J., 1966, “Chemotaxis in Bacteria,” Science, 153(3737), pp. 708–716. [CrossRef] [PubMed]
Golding, I., Kozlovsky, Y., Cohen, I., and Ben-Jacob, E., 1998, “Studies of Bacterial Branching Growth Using Reaction-Diffusion Models for Colonial Development,” Physica A, 260(3–4), pp. 510–554. [CrossRef]
Kozlovsky, Y., Cohen, I., Golding, I., and Ben-Jacob, E., 1999, “Lubricating Bacteria Model for Branching Growth of Bacterial Colonies,” Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 59(6), pp. 7025–7035. [CrossRef]
Bonachela, J. A., Nadell, C. D., Xavier, J. B., and Levin, S. A., 2011, “Universality in Bacterial Colonies,” J. Stat. Phys., 144(2), pp. 303–315. [CrossRef]
Wakita, J., Komatsu, K., Nakahara, A., Matsuyama, T., and Matsushita, M., 1994, “Experimental Investigation on the Validity of Population Dynamics Approach to Bacterial Colony Formation,” J. Phys. Soc. Jpn., 63(3), pp. 1205–1211. [CrossRef]
Marrocco, A., Henry, H., Holland, I. B., Plapp, M., Séror, S. J., and Perthame, B., 2010, “Models of Self-Organizing Bacterial Communities and Comparisons With Experimental Observations,” Math. Modell. Nat. Phenom., 5(1), pp. 148–162. [CrossRef]
Cerreti, F., Perthame, B., Schmeiser, C., Tang, M., and Vauchelet, N., 2011, “Waves for a Hyperbolic Keller–Segel Model and Branching Instabilities,” Math. Models Methods Appl. Sci., 21, pp. 825–842. [CrossRef]
Farrell, F. D. C., Hallatschek, O., Marenduzzo, D., and Waclaw, B., 2013, “Mechanically Driven Growth of Quasi-Two Dimensional Microbial Colonies,” Phys. Rev. Lett., 111, p. 168101. [CrossRef] [PubMed]
Dockery, J., and Klapper, I., 2001, “Finger Formation in Biofilm Layers,” SIAM J. Appl. Math., 62(3), pp. 853–869.
Monod, J., 1950, “La technique de culture continue; theorie et applications,” Ann. Inst. Pasteur, 79, pp. 390–410.
Lega, J., and Passot, T., 2003, “Hydrodynamics of Bacterial Colonies: A Model,” Phys. Rev. E, 67, p. 031906. [CrossRef]
Graziano, L., and Preziosi, L., 2007, “Mechanics in Tumor Growth,” Modeling of Biological Materials, F.Mollica, K. R.Rajagopal, L.Preziosi, eds., Birkhäuser, Boston, pp. 267–328. [CrossRef]
Guyon, E., Hulin, J. P., Petit, L., and De Gennes, P. G., 2001, Hydrodynamique physique, EDP Sciences, Les Ulis, France.
Saffman, P. G., and Taylor, G., 1958, “The Penetration of a Fluid Into a Medium or Hele-Shaw Cell Containing a More Viscous Liquid,” Proc. R. Soc. London, Ser. A, 245(1242), pp. 312–329. [CrossRef]
Keller, E. F., and Segel, L. A., 1971, “Model for Chemotaxis,” J. Theor. Biol., 30(2), pp. 225–234. [CrossRef] [PubMed]
Flemming, H. C., and Wingender, J., 2010, “The Biofilm Matrix,” Nat. Rev., 8, pp. 623–633. [CrossRef]
Giverso, C., Verani, M., and Ciarletta, P., 2015, “Branching Instability in Expanding Bacterial Colonies,” J. R. Soc., Interface, 12. [CrossRef]
Ciarletta, P., 2012, “Free Boundary Morphogenesis in Living Matter,” Eur. Biophys. J., 41(8), pp. 681–686. [CrossRef] [PubMed]
Cross, M. C., and Hohenberg, P. C., 1993, “Pattern Formation Outside of Equilibrium,” Rev. Mod. Phys., 65, pp. 851–1123. [CrossRef]
Ben Amar, M., Chatelain, C., and Ciarletta, P., 2011, “Contour Instabilities in Early Tumor Growth Models,” Phys. Rev. Lett., 106, p. 148101. [CrossRef] [PubMed]
Homsy, G. M., 1987, “Viscous Fingering in Porous Media,” Annu. Rev. Fluid Mech., 19, pp. 271–311. [CrossRef]
Eberl, H. J., Parker, D. F., and van Loosdrecht, M. C. M., 2001, “A New Deterministic Spatio-Temporal Continuum Model for Biofilm Development,” J. Theor. Med., 3(3), pp. 161–175. [CrossRef]
Roca-Cusachs, P., Sunyer, R., and Trepat, X., 2013, “Mechanical Guidance of Cell Migration: Lessons From Chemotaxis,” Curr. Opin. Cell Biol., 25(5), pp. 543–549. [CrossRef] [PubMed]
Cochet-Escartin, O., Ranft, J., Silberzan, P., and Marcq, P., 2014, “Border Forces and Friction Control Epithelial Closure Dynamics,” Biophys. J., 106(1), pp. 65–73. [CrossRef] [PubMed]
Klapper, I., Rupp, C. J., Cargo, R., Purvedorj, B., and Stoodley, P., 2002, “Viscoelastic Fluid Description of Bacterial Biofilm Material Properties,” Biotechnol. Bioeng., 80(3), pp. 289–296. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Dispersion diagrams for different values of the model parameters β and σ. The solid lines are obtained through interpolation of the discrete values of λ, solutions of the dispersion equation for k ∈ N,k≥1. The dispersion curves are reported in (a) and (b) for the case n0>>nmax and in (c) and (d) for the case n0≪nmin.

Grahic Jump Location
Fig. 2

Morphological diagram of the expanding bacterial colony for increasing values (from left to right) of the parameter β, while keeping the other parameters fixed. In particular, the simulations were obtained setting Rout = 220, σ = 0.01,n0 = 0.5, and Rout/R0* = 5. The contour of the colony is plotted at different instants of time (reported at the bottom of each contour plot).

Grahic Jump Location
Fig. 3

Morphological diagram of the expanding bacterial colony for different values of the dimensionless surface tension σ, maintaining fixed the dimensionless Petri dish radius (Rout = 220) and the initial radius of the colony (Rout = 44). In the simulations, it is set β = 1 and n0 = 0.5.

Grahic Jump Location
Fig. 4

Morphological diagram of the expanding bacterial colony for different values of Rout and R0*, while keeping the value q = Rout/R0* = 5 fixed. The other parameters are equal to β = 1, σ = 0.01, and n0 = 0.5. The contour of the colony is plotted at different instants of time (reported at the bottom of each contour plot).

Grahic Jump Location
Fig. 5

Morphological diagram of the expanding bacterial colony for different values of the initial size of the colony, R0*, maintaining fixed the dimensionless Petri dish radius. The other parameters in the model are: Rout = 220, σ = 0.01, β = 1, and n0 = 0.5. The contour of the colony is plotted at different instants of time (reported at the bottom of each contour plot).

Grahic Jump Location
Fig. 6

Morphological diagram of the expanding bacterial colony for different values of n0, regulating the Monod dynamic. The other parameters in the model are: Rout = 100, σ = 0.01, β = 1, and Rout/R0* = 5. At the bottom of each morphological diagram, the evolution of the nutrients concentration along a diameter of the Petri dish is reported for different instants of time.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In