Research Papers

Moderate Cyclic Tensile Strain Alters the Assembly of Cartilage Extracellular Matrix Proteins In Vitro

[+] Author and Article Information
Judith Bleuel

Institute of Biomechanics and Orthopaedics,
German Sport University Köln,
Am Sportpark Müngersdorf 6,
Köln 50933, Germany
e-mail: j.bleuel@dshs-koeln.de

Frank Zaucke

Center for Biochemistry,
Medical Faculty,
University of Köln,
Joseph-Stelzmann-Straße 52,
Köln 50931, Germany;
Cologne Center for Musculoskeletal Biomechanics,
Medical Faculty,
University of Köln,
Joseph-Stelzmann-Straße 9,
Köln 50931, Germany
e-mail: frank.zaucke@uni-koeln.de

Gert-Peter Brüggemann

Institute of Biomechanics and Orthopaedics,
German Sport University Köln,
Am Sportpark Müngersdorf 6,
Köln 50933, Germany;
Cologne Center for Musculoskeletal Biomechanics,
Medical Faculty,
University of Köln,
Joseph-Stelzmann-Straße 9,
Köln 50931, Germany
e-mail: brueggemann@dshs-koeln.de

Juliane Heilig

Center for Biochemistry,
Medical Faculty,
University of Köln,
Joseph-Stelzmann-Straße 52,
Köln 50931, Germany
e-mail: juliane.heilig@uni-koeln.de

Marie-Louise Wolter

Institute of Biomechanics and Orthopaedics,
German Sport University Köln,
Am Sportpark Müngersdorf 6,
Köln 50933, Germany
e-mail: Mary_LouW@web.de

Nina Hamann

Institute of Biomechanics and Orthopaedics,
German Sport University Köln,
Am Sportpark Müngersdorf 6,
Köln 50933, Germany
e-mail: hamann@dshs-koeln.de

Sara Firner

Institute of Biomechanics and Orthopaedics,
German Sport University Köln,
Am Sportpark Müngersdorf 6,
Köln 50933, Germany
e-mail: s.firner@dshs-koeln.de

Anja Niehoff

Institute of Biomechanics and Orthopaedics,
German Sport University Köln,
Am Sportpark Müngersdorf 6,
Köln 50933, Germany;
Cologne Center for Musculoskeletal Biomechanics,
Medical Faculty,
University of Köln,
Joseph-Stelzmann-Straße 9,
Köln 50931, Germany
e-mail: niehoff@dshs-koeln.de

Manuscript received October 6, 2014; final manuscript received March 9, 2015; published online April 14, 2015. Assoc. Editor: Carlijn V. C Bouten.

J Biomech Eng 137(6), 061009 (Jun 01, 2015) (9 pages) Paper No: BIO-14-1497; doi: 10.1115/1.4030053 History: Received October 06, 2014; Revised March 09, 2015; Online April 14, 2015

Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Wilson, W., van Burken, C., van Donkelaar, C., Buma, P., van Rietbergen, B., and Huiskes, R., 2006, “Causes of Mechanically Induced Collagen Damage in Articular Cartilage,” J. Orthop. Res., 24(2), pp. 220–228. [CrossRef] [PubMed]
Hagiwara, Y., Ando, A., Chimoto, E., Saijo, Y., Ohmori‐Matsuda, K., and Itoi, E., 2009, “Changes of Articular Cartilage After Immobilization in a Rat Knee Contracture Model,” J. Orthop. Res., 27(2), pp. 236–242. [CrossRef] [PubMed]
Eyre, D., 2002, “Collagen of Articular Cartilage,” Arthritis Res., 4(1), pp. 30–35. [CrossRef] [PubMed]
Vaughan, L., Mendler, M., Huber, S., Bruckner, P., Winterhalter, K. H., Irwin, M. I., and Mayne, R., 1988, “D-Periodic Distribution of Collagen Type IX Along Cartilage Fibrils,” J. Cell Biol., 106(3), pp. 991–997. [CrossRef] [PubMed]
Williamson, A. K., Chen, A. C., Masuda, K., Thonar, E. J., and Sah, R. L., 2003, “Tensile Mechanical Properties of Bovine Articular Cartilage: Variations With Growth and Relationships to Collagen Network Components,” J. Orthop. Res., 21(5), pp. 872–880. [CrossRef] [PubMed]
Zaucke, F., and Grässel, S., 2009, “Genetic Mouse Models for the Functional Analysis of the Perifibrillar Components Collagen IX, COMP and Matrilin-3: Implications for Growth Cartilage Differentiation and Endochondral Ossification,” Histol. Histopathol., 24(8), pp. 1067–1079. [PubMed]
Mann, H. H., Özbek, S., Engel, J., Paulsson, M., and Wagener, R., 2004, “Interactions Between the Cartilage Oligomeric Matrix Protein and Matrilins,” J. Biol. Chem., 279(24), pp. 25294–25298. [CrossRef] [PubMed]
Eyre, D. R., Pietka, T., Weis, M. A., and Wu, J. J., 2004, “Covalent Cross-Linking of the NC1 Domain of Collagen Type IX to Collagen Type II in Cartilage,” J. Biol. Chem., 279(4), pp. 2568–2574. [CrossRef] [PubMed]
Holden, P., Meadows, R. S., Chapman, K. L., Grant, M. E., Kadler, K. E., and Briggs, M. D., 2001, “Cartilage Oligomeric Matrix Protein Interacts With Type IX Collagen, and Disruptions to These Interactions Identify a Pathogenetic Mechanism in a Bone Dysplasia Family,” J. Biol. Chem., 276(8), pp. 6046–6055. [CrossRef] [PubMed]
Rosenberg, K., Olsson, H., Mörgelin, M., and Heinegård, D., 1998, “Cartilage Oligomeric Matrix Protein Shows High Affinity Zinc-Dependent Interaction With Triple Helical Collagen,” J. Biol. Chem., 273(32), pp. 20397–20403. [CrossRef] [PubMed]
Parsons, P., Gilbert, S. J., Vaughan-Thomas, A., Sorrell, D. A., Notman, R., Bishop, M., Hayes, A. J., Mason, D. J., and Duance, V. C., 2011, “Type IX Collagen Interacts With Fibronectin Providing an Important Molecular Bridge in Articular Cartilage,” J. Biol. Chem., 286(40), pp. 34986–34997. [CrossRef] [PubMed]
Budde, B., Blumbach, K., Ylostalo, J., Zaucke, F., Ehlen, H. W. A., Wagener, R., Ala-Kokko, L., Paulsson, M., Bruckner, P., and Grassel, S., 2005, “Altered Integration of Matrilin-3 Into Cartilage Extracellular Matrix in the Absence of Collagen IX,” Mol. Cell. Biol., 25(23), pp. 10465–10478. [CrossRef] [PubMed]
Thur, J., Rosenberg, K., Nitsche, D. P., Pihlajamaa, T., Ala-Kokko, L., Heinegård, D., Paulsson, M., and Maurer, P., 2001, “Mutations in Cartilage Oligomeric Matrix Protein Causing Pseudoachondroplasia and Multiple Epiphyseal Dysplasia Affect Binding of Calcium and Collagen I, II, and IX,” J. Biol. Chem., 276(9), pp. 6083–6092. [CrossRef] [PubMed]
Chen, F. H., Herndon, M. E., Patel, N., Hecht, J. T., Tuan, R. S., and Lawler, J., 2007, “Interaction of Cartilage Oligomeric Matrix Protein/Thrombospondin 5 With Aggrecan,” J. Biol. Chem., 282(34), pp. 24591–24598. [CrossRef] [PubMed]
Van der Rest, M., and Mayne, R., 1988, “Type IX Collagen Proteoglycan From Cartilage is Covalently Cross-Linked to Type II Collagen,” J. Biol. Chem., 263(4), pp. 1615–1618. [PubMed]
Otten, C., Hansen, U., Talke, A., Wagener, R., Paulsson, M., and Zaucke, F., 2010, “A Matrilin-3 Mutation Associated With Osteoarthritis Does Not Affect Collagen Affinity but Promotes the Formation of Wider Cartilage Collagen Fibrils,” Hum. Mutat., 31(3), pp. 254–263. [CrossRef] [PubMed]
Briggs, M. D., Hoffman, S. M. G., King, L. M., Olsen, A. S., Mohrenweiser, H., Leroy, J. G., Mortier, G. R., Rimoin, D. L., Lachman, R. S., and Gaines, E. S., 1995, “Pseudoachondroplasia and Multiple Epiphyseal Dysplasia Due to Mutations in the Cartilage Oligomeric Matrix Protein Gene,” Nat. Genet., 10(3), pp. 330–336. [CrossRef] [PubMed]
Chapman, K. L., Mortier, G. R., Chapman, K., Loughlin, J., Grant, M. E., and Briggs, M. D., 2001, “Mutations in the Region Encoding the von Willebrand Factor A Domain of Matrilin-3 Are Associated With Multiple Epiphyseal Dysplasia,” Nat. Genet., 28(4), pp. 393–396. [CrossRef] [PubMed]
Lohiniva, J., Paassilta, P., Seppänen, U., Vierimaa, O., Kivirikko, S., and Ala‐Kokko, L., 2000, “Splicing Mutations in the COL3 Domain of Collagen IX Cause Multiple Epiphyseal Dysplasia,” Am. J. Med. Genet., 90(3), pp. 216–222. [CrossRef] [PubMed]
Nicolae, C., Ko, Y. P., Miosge, N., Niehoff, A., Studer, D., Enggist, L., Hunziker, E. B., Paulsson, M., Wagener, R., and Aszodi, A., 2007, “Abnormal Collagen Fibrils in Cartilage of Matrilin-1/Matrilin-3-Deficient Mice,” J. Biol. Chem., 282(30), pp. 22163–22175. [CrossRef] [PubMed]
Blumbach, K., Bastiaansen Jenniskens, Y. M., DeGroot, J., Paulsson, M., van Osch, G., and Zaucke, F., 2009, “Combined Role of Type IX Collagen and Cartilage Oligomeric Matrix Protein in Cartilage Matrix Assembly: Cartilage Oligomeric Matrix Protein Counteracts Type IX Collagen–Induced Limitation of Cartilage Collagen Fibril Growth in Mouse Chondrocyte Cultures,” Arthritis Rheum., 60(12), pp. 3676–3685. [CrossRef] [PubMed]
Van der Weyden, L., Wei, L., Luo, J., Yang, X., Birk, D. E., Adams, D. J., Bradley, A., and Chen, Q., 2006, “Functional Knockout of the Matrilin-3 Gene Causes Premature Chondrocyte Maturation to Hypertrophy and Increases Bone Mineral Density and Osteoarthritis,” Am. J. Pathol., 169(2), pp. 515–527. [CrossRef] [PubMed]
Otten, C., Wagener, R., Paulsson, M., and Zaucke, F., 2005, “Matrilin-3 Mutations That Cause Chondrodysplasias Interfere With Protein Trafficking While a Mutation Associated With Hand Osteoarthritis Does Not,” J. Med. Genet., 42(10), pp. 774–779. [CrossRef] [PubMed]
Ragan, P. M., Badger, A. M., Cook, M., Chin, V. I., Gowen, M., Grodzinsky, A. J., and Lark, M. W., 1999, “Down-Regulation of Chondrocyte Aggrecan and Type-II Collagen Gene Expression Correlates With Increases in Static Compression Magnitude and Duration,” J. Orthop. Res., 17(6), pp. 836–842. [CrossRef] [PubMed]
Smith, R. L., Rusk, S., Ellison, B., Wessells, P., Tsuchiya, K., Carter, D., Caler, W., Sandell, L., and Schurman, D., 1996, “In Vitro Stimulation of Articular Chondrocyte mRNA and Extracellular Matrix Synthesis by Hydrostatic Pressure,” J. Orthop. Res., 14(1), pp. 53–60. [CrossRef] [PubMed]
Ikenoue, T., Trindade, M. C., Lee, M. S., Lin, E. Y., Schurman, D. J., Goodman, S. B., and Smith, R. L., 2003, “Mechanoregulation of Human Articular Chondrocyte Aggrecan and Type II Collagen Expression by Intermittent Hydrostatic Pressure In Vitro,” J. Orthop. Res., 21(1), pp. 110–116. [CrossRef] [PubMed]
Naito, K., Watari, T., Muta, T., Furuhata, A., Iwase, H., Igarashi, M., Kurosawa, H., Nagaoka, I., and Kaneko, K., 2010, “Low‐Intensity Pulsed Ultrasound (LIPUS) Increases the Articular Cartilage Type II Collagen in a Rat Osteoarthritis Model,” J. Orthop. Res., 28(3), pp. 361–369. [CrossRef] [PubMed]
Kanbe, K., Yang, X., Wei, L., Sun, C., and Chen, Q., 2007, “Pericellular Matrilins Regulate Activation of Chondrocytes by Cyclic Load Induced Matrix Deformation,” J. Bone Miner. Res., 22(2), pp. 318–328. [CrossRef] [PubMed]
Wong, M., Siegrist, M., and Goodwin, K., 2003, “Cyclic Tensile Strain and Cyclic Hydrostatic Pressure Differentially Regulate Expression of Hypertrophic Markers in Primary Chondrocytes,” Bone, 33(4), pp. 685–693. [CrossRef] [PubMed]
Ng, K. W., Mauck, R. L., Wang, C. C. B., Kelly, T. A. N., Ho, M. M. Y., Chen, F. H., Ateshian, G. A., and Hung, C. T., 2009, “Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage,” Cell. Mol. Bioeng., 2(3), pp. 386–394. [CrossRef] [PubMed]
Bieler, F. H., Ott, C. E., Thompson, M. S., Seidel, R., Ahrens, S., Epari, D. R., Wilkening, U., Schaser, K. D., Mundlos, S., and Duda, G. N., 2009, “Biaxial Cell Stimulation: A Mechanical Validation,” J. Biomech., 42(11), pp. 1692–1696. [CrossRef] [PubMed]
Brown, T. D., 2000, “Techniques for Mechanical Stimulation of Cells In Vitro: A Review,” J. Biomech., 33(1), pp. 3–14. [CrossRef] [PubMed]
Agarwal, S., Deschner, J., Long, P., Verma, A., Hofman, C., Evans, C. H., and Piesco, N., 2004, “Role of NF-kappaB Transcription Factors in Antiinflammatory and Proinflammatory Actions of Mechanical Signals,” Arthritis Rheum., 50(11), pp. 3541–3548. [CrossRef] [PubMed]
DiCesare, P. E., Mörgelin, M., and Paulsson, M., 1994, “Cartilage Oligomeric Matrix Protein and Thrombospondin 1,” Eur. J. Biochem., 223(3), pp. 927–937. [CrossRef] [PubMed]
Klatt, A. R., Nitsche, D. P., Kobbe, B., Morgelin, M., Paulsson, M., and Wagener, R., 2000, “Molecular Structure and Tissue Distribution of Matrilin-3, A Filament-Forming Extracellular Matrix Protein Expressed During Skeletal Development,” J. Biol. Chem., 275(6), pp. 3999–4006. [CrossRef] [PubMed]
Bruckner, P., Mendler, M., Steinmann, B., Huber, S., and Winterhalter, K. H., 1988, “The Structure of Human Collagen Type IX and Its Organization in Fetal and Infant Cartilage Fibrils,” J. Biol. Chem., 263(32), pp. 16911–16917. [PubMed]
Hamann, N., Zaucke, F., Heilig, J., Oberländer, K., Brüggemann, G. P., and Niehoff, A., 2014, “Effect of Different Running Modes on the Morphological, Biochemical, and Mechanical Properties of Articular Cartilage,” Scand. J. Med. Sci. Sports, 24(1), pp. 179–188. [CrossRef] [PubMed]
Zaucke, F., Dinser, R., Maurer, P., and Paulsson, M., 2001, “Cartilage Oligomeric Matrix Protein (COMP) and Collagen IX are Sensitive Markers for the Differentiation State of Articular Primary Chondrocytes,” Biochem. J., 358(Pt. 1), pp. 17–24. [CrossRef] [PubMed]
Halász, K., Kassner, A., Mörgelin, M., and Heinegård, D., 2007, “COMP Acts as a Catalyst in Collagen Fibrillogenesis,” J. Biol. Chem., 282(43), pp. 31166–31173. [CrossRef] [PubMed]
Bruckner, P., and van der Rest, M., 1994, “Structure and Function of Cartilage Collagens,” Microsc. Res. Tech., 28(5), pp. 378–384. [CrossRef] [PubMed]
Heinegård, D., 2009, “Proteoglycans and More—From Molecules to Biology,” Int. J. Exp. Pathol., 90(6), pp. 575–586. [CrossRef] [PubMed]
Wu, P., DeLassus, E., Patra, D., Liao, W., and Sandell, L. J., 2013, “Effects of Serum and Compressive Loading on the Cartilage Matrix Synthesis and Spatiotemporal Deposition Around Chondrocytes in 3D Culture,” Tissue Eng., Part A, 19(9–10), pp. 1199–1208. [CrossRef]
Wong, M., Siegrist, M., and Cao, X., 1999, “Cyclic Compression of Articular Cartilage Explants Is Associated With Progressive Consolidation and Altered Expression Pattern of Extracellular Matrix Proteins,” Matrix Biol., 18(4), pp. 391–399. [CrossRef] [PubMed]
Hagg, R., Bruckner, P., and Hedbom, E., 1998, “Cartilage Fibrils of Mammals Are Biochemically Heterogeneous: Differential Distribution of Decorin and Collagen IX,” J. Cell Biol., 142(1), pp. 285–294. [CrossRef] [PubMed]
Giannoni, P., Siegrist, M., Hunziker, E., and Wong, M., 2003, “The Mechanosensitivity of Cartilage Oligomeric Matrix Protein (COMP),” Biorheology, 40, pp. 101–109. [PubMed]
Bian, L., Fong, J. V., Lima, E. G., Stoker, A. M., Ateshian, G. A., Cook, J. L., and Hung, C. T., 2010, “Dynamic Mechanical Loading Enhances Functional Properties of Tissue-Engineered Cartilage Using Mature Canine Chondrocytes,” Tissue Eng., Part A, 16(5), pp. 1781–1790. [CrossRef]
Doi, H., Nishida, K., Yorimitsu, M., Komiyama, T., Kadota, Y., Tetsunaga, T., Yoshida, A., Kubota, S., Takigawa, M., and Ozaki, T., 2008, “Interleukin-4 Downregulates the Cyclic Tensile Stress-Induced Matrix Metalloproteinases-13 and Cathepsin B Expression by Rat Normal Chondrocytes,” Acta Med. Okayama, 62(2), pp. 119–126. [PubMed]
Demarteau, O., Wendt, D., Braccini, A., Jakob, M., Schäfer, D., Heberer, M., and Martin, I., 2003, “Dynamic Compression of Cartilage Constructs Engineered From Expanded Human Articular Chondrocytes,” Biochem. Biophys. Res. Commun., 310(2), pp. 580–588. [CrossRef] [PubMed]
Toyoda, T., Seedhom, B. B., Kirkham, J., and Bonass, W. A., 2003, “Upregulation of Aggrecan and Type II Collagen mRNA Expression in Bovine Chondrocytes by the Application of Hydrostatic Pressure,” Biorheology, 40(1), pp. 79–85. [PubMed]
Huang, J., Ballou, L. R., and Hasty, K. A., 2007, “Cyclic Equibiaxial Tensile Strain Induces Both Anabolic and Catabolic Responses in Articular Chondrocytes,” Gene, 404(1–2), pp. 101–109. [CrossRef] [PubMed]
Ru-song, Z., Zhu-li, Y., Yan-xiao, D., Chong-ying, Y., Ping-ping, J., and Xiao, Y., 2012, “Effect of Tensile Stress on Type Collagen and Aggrecan II Expression in Rat Condylar Chondrocytes,” Chin. J. Tissue Eng. Res., 16(20), pp. 3649–3653.
Shimizu, A., Watanabe, S., Iimoto, S., and Yamamoto, H., 2004, “Interleukin-4 Protects Matrix Synthesis in Chondrocytes Under Excessive Mechanical Stress in vitro,” Mod. Rheumatol., 14(4), pp. 296–300. [CrossRef] [PubMed]
Armstrong, C., Bahrani, A., and Gardner, D., 1980, “Changes in the Deformational Behavior of Human Hip Cartilage With Age,” ASME J. Biomech. Eng., 102(3), pp. 214–220. [CrossRef]
Guilak, F., 1995, “Compression-Induced Changes in the Shape and Volume of the Chondrocyte Nucleus,” J. Biomech., 28(12), pp. 1529–1541. [CrossRef] [PubMed]
Gassner, R., Buckley, M. J., Georgescu, H., Studer, R., Stefanovich-Racic, M., Piesco, N. P., Evans, C. H., and Agarwal, S., 1999, “Cyclic Tensile Stress Exerts Antiinflammatory Actions on Chondrocytes by Inhibiting Inducible Nitric Oxide Synthase,” J. Immunol., 163(4), pp. 2187–2192. [PubMed]
Xu, Z., Buckley, M. J., Evans, C. H., and Agarwal, S., 2000, “Cyclic Tensile Strain Acts as an Antagonist of IL-1ß Actions in Chondrocytes,” J. Immunol., 165(1), pp. 453–460. [CrossRef] [PubMed]
Tanimoto, K., Kitamura, R., Tanne, Y., Kamiya, T., Kunimatsu, R., Yoshioka, M., Tanaka, N., Tanaka, E., and Tanne, K., 2009, “Modulation of Hyaluronan Catabolism in Chondrocytes by Mechanical Stimuli,” J. Biomed. Mater. Res., 93A(1), pp. 373–380. [CrossRef]
Tanimoto, K., Kamiya, T., Tanne, Y., Kunimatsu, R., Mitsuyoshi, T., Tanaka, E., and Tanne, K., 2011, “Superficial Zone Protein Affects Boundary Lubrication on the Surface of Mandibular Condylar Cartilage,” Cell Tissue Res., 344(2), pp. 333–340. [CrossRef] [PubMed]
Wang, D., Taboas, J. M., and Tuan, R. S., 2011, “PTHrP Overexpression Partially Inhibits a Mechanical Strain-Induced Arthritic Phenotype in Chondrocytes,” Osteoarthritis Cartilage, 19(2), pp. 213–221. [CrossRef] [PubMed]
Yorimitsu, M., Nishida, K., Shimizu, A., Doi, H., Miyazawa, S., Komiyama, T., Nasu, Y., Yoshida, A., Watanabe, S., and Ozaki, T., 2008, “Intra-Articular Injection of Interleukin-4 Decreases Nitric Oxide Production by Chondrocytes and Ameliorates Subsequent Destruction of Cartilage in Instability-Induced Osteoarthritis in Rat Knee Joints,” Osteoarthritis Cartilage, 16(7), pp. 764–771. [CrossRef] [PubMed]
Das, R. H. J., Jahr, H., Verhaar, J. A. N., van der Linden, J. C., van Osch, G., and Weinans, H., 2008, “In Vitro Expansion Affects the Response of Chondrocytes to Mechanical Stimulation,” Osteoarthritis Cartilage, 16(3), pp. 385–391. [CrossRef] [PubMed]
Castillo, E. R., Lieberman, G. M., McCarty, L. S., and Lieberman, D. E., 2014, “Effects of Pole Compliance and Step Frequency on the Biomechanics and Economy of Pole Carrying During Human Walking,” J. Appl. Physiol., 117(5), pp. 507–517. [CrossRef] [PubMed]
Öberg, T., Karsznia, A., and Öberg, K., 1993, “Basic Gait Parameters: Reference Data for Normal Subjects, 10–79 Years of Age,” J. Rehabil. Res. Dev., 30, pp. 210–223. [PubMed]
Honda, K., Ohno, S., Tanimoto, K., Ijuin, C., Tanaka, N., Doi, T., Kato, Y., and Tanne, K., 2000, “The Effects of High Magnitude Cyclic Tensile Load on Cartilage Matrix Metabolism in Cultured Chondrocytes,” Eur. J. Cell Biol., 79(9), pp. 601–609. [CrossRef] [PubMed]
Ueki, M., Tanaka, N., Tanimoto, K., Nishio, C., Honda, K., Lin, Y. Y., Tanne, Y., Ohkuma, S., Kamiya, T., and Tanaka, E., 2008, “The Effect of Mechanical Loading on the Metabolism of Growth Plate Chondrocytes,” Ann. Biomed. Eng., 36(5), pp. 793–800. [CrossRef] [PubMed]
Davisson, T., Kunig, S., Chen, A., Sah, R., and Ratcliffe, A., 2002, “Static and Dynamic Compression Modulate Matrix Metabolism in Tissue Engineered Cartilage,” J. Orthop. Res., 20(4), pp. 842–848. [CrossRef] [PubMed]
Nugent, G., Schmidt, T., Schumacher, B., Voegtline, M., Bae, W., Jadin, K., and Sah, R., 2006, “Static and Dynamic Compression Regulate Cartilage Metabolism of PRoteoGlycan 4 (PRG4),” Biorheology, 43(3), pp. 191–200. [PubMed]
Sah, R. L. Y., Kim, Y. J., Doong, J. Y. H., Grodzinsky, A. J., Plass, A. H. K., and Sandy, J. D., 1989, “Biosynthetic Response of Cartilage Explants to Dynamic Compression,” J. Orthop. Res., 7(5), pp. 619–636. [CrossRef] [PubMed]
Fitzgerald, J. B., Jin, M., and Grodzinsky, A. J., 2006, “Shear and Compression Differentially Regulate Clusters of Functionally Related Temporal Transcription Patterns in Cartilage Tissue,” J. Biol. Chem., 281(34), pp. 24095–24103. [CrossRef] [PubMed]
Vanderploeg, E. J., Imler, S. M., Brodkin, K. R., Garcı́a, A. J., and Levenston, M. E., 2004, “Oscillatory Tension Differentially Modulates Matrix Metabolism and Cytoskeletal Organization in Chondrocytes and Fibrochondrocytes,” J. Biomech., 37(12), pp. 1941–1952. [CrossRef] [PubMed]
Fan, J. C., and Waldman, S. D., 2010, “The Effect of Intermittent Static Biaxial Tensile Strains on Tissue Engineered Cartilage,” Ann. Biomed. Eng., 38(4), pp. 1672–1682. [CrossRef] [PubMed]
Han, X., Guo, L., Wang, F., Zhu, Q., and Yang, L., 2014, “Contribution of PTHrP to Mechanical Strain-Induced Fibrochondrogenic Differentiation in Entheses of Achilles Tendon of Miniature Pigs,” J. Biomech., 47(10), pp. 2406–2414. [CrossRef] [PubMed]
Marlovits, S., Hombauer, M., Truppe, M., Vecsei, V., and Schlegel, W., 2004, “Changes in the Ratio of Type-I and Type-II Collagen Expression During Monolayer Culture of Human Chondrocytes,” J. Bone Joint Surg., Br. Vol., 86(2), pp. 286–295. [CrossRef]
Schnabel, M., Marlovits, S., Eckhoff, G., Fichtel, I., Gotzen, L., Vecsei, V., and Schlegel, J., 2002, “Dedifferentiation-Associated Changes in Morphology and Gene Expression in Primary Human Articular Chondrocytes in Cell Culture,” Osteoarthritis Cartilage, 10(1), pp. 62–70. [CrossRef] [PubMed]
Krug, D., Klinger, M., Haller, R., Hargus, G., Büning, J., Rohwedel, J., and Kramer, J., 2013, “Minor Cartilage Collagens Type IX and XI are Expressed During Embryonic Stem Cell-Derived In Vitro Chondrogenesis,” Ann. Anat., 195(1), pp. 88–97. [CrossRef] [PubMed]
Schulze-Tanzil, G., 2009, “Activation and Dedifferentiation of Chondrocytes: Implications in Cartilage Injury and Repair,” Ann. Anat., 191(4), pp. 325–338. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

Representative Western blots and densitometric data of (a) COMP, (b) collagen IX, (c) matrilin-3, and (d) collagen II in loaded (+) and unloaded (−) chondrocytes. Proteins were detected in the supernatant, the lysate, and the matrix. (d) Collagen II was only detected after digestion with pepsin. Data are presented as mean ± standard deviation of three independent experiments. Unloaded samples of each fraction were set 1. *Significantly (p < 0.05) different between loaded and unloaded cells.

Grahic Jump Location
Fig. 2

Semiquantitative RT-PCR of (a) COMP, (b) collagen IX, (c) matrilin-3, and (d) collagen II in loaded (gray) and unloaded (black) primary mouse chondrocytes at different time-points after loading. Signal intensity was normalized to GAPDH. Data represent means ± standard deviation of three independent experiments. Time point 24 h: n = 2. Unloaded samples of each time point were set 1.

Grahic Jump Location
Fig. 3

Immunofluorescence staining of (a) COMP, (b) collagen IX, and (c) matrilin-3 each costained with collagen II in loaded and unloaded primary mouse chondrocytes. Nuclei were stained with DAPI. Arrows indicate thick collagen II containing fibrils (a, b, c) that were strongly costained for COMP (a) or collagen IX (b) in loaded chondrocytes. White arrows indicate very intense intracellular staining (a, b) in unloaded chondrocytes. Intracellular staining intensity was evaluated quantitatively, whereas higher score values indicate stronger intracellular staining intensity. Experiments were conducted three times. Pictures and data from one representative experiment. *significantly (p < 0.05) different between loaded and unloaded cells.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In