0
Research Papers

The Contribution of the Acetabular Labrum to Hip Joint Stability: A Quantitative Analysis Using a Dynamic Three-Dimensional Robot Model

[+] Author and Article Information
Tara F. Bonner

Cleveland Clinic Foundation,
9500 Euclid Avenue, ND20,
Cleveland, OH 44195
e-mail: bonnert2@ccf.org

Robb W. Colbrunn

Cleveland Clinic Foundation,
9500 Euclid Avenue, ND20,
Cleveland, OH 44195
e-mail: colbrur@ccf.org

John J. Bottros

Cleveland Clinic Foundation,
9500 Euclid Avenue, Desk A41,
Cleveland, OH 44195
e-mail: johnbottros@gmail.com

Amar B. Mutnal

Cleveland Clinic Foundation,
9500 Euclid Avenue, Desk A41,
Cleveland, OH 44195
e-mail: amutnal@gmail.com

Clay B. Greeson

Cleveland Clinic Foundation,
9500 Euclid Avenue, Desk A41,
Cleveland, OH 44195
e-mail: clayg5@gmail.com

Alison K. Klika

Cleveland Clinic Foundation,
9500 Euclid Avenue, Desk A41,
Cleveland, OH 44195
e-mail: klikaa@ccf.org

Antonie J. van den Bogert

Department of Mechanical Engineering,
Cleveland State University,
2121 Euclid Avenue,
Cleveland, OH 44115
e-mail: a.vandenbogert@csuohio.edu

Wael K. Barsoum

Cleveland Clinic Foundation,
9500 Euclid Avenue, Desk A41,
Cleveland, OH 44195
e-mail: barsouw@ccf.org

1Corresponding author.

Manuscript received September 15, 2014; final manuscript received February 27, 2015; published online April 23, 2015. Assoc. Editor: Kenneth Fischer.

J Biomech Eng 137(6), 061012 (Jun 01, 2015) (5 pages) Paper No: BIO-14-1461; doi: 10.1115/1.4030012 History: Received September 15, 2014; Revised February 27, 2015; Online April 23, 2015

The acetabular labrum provides mechanical stability to the hip joint in extreme positions where the femoral head is disposed to subluxation. We aimed to quantify the isolated labrum's stabilizing value. Five human cadaveric hips were mounted to a robotic manipulator, and subluxation potential tests were run with and without labrum. Three-dimensional (3D) kinematic data were quantified using the stability index (Colbrunn et al., 2013, “Impingement and Stability of Total Hip Arthroplasty Versus Femoral Head Resurfacing Using a Cadaveric Robotics Model,” J. Orthop. Res., 31(7), pp. 1108–1115). Global and regional stability indices were significantly greater with labrum intact than after total labrectomy for both anterior and posterior provocative positions. In extreme positions, the labrum imparts significant overall mechanical resistance to hip subluxation. Regional stability contributions vary with joint orientation.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Topics: Stability , Robots
Your Session has timed out. Please sign back in to continue.

References

Espinosa, N., Rothenfluh, D. A., Beck, M., Ganz, R., and Leunig, M., 2006, “Treatment of Femoro-Acetabular Impingement: Preliminary Results of Labral Refixation,” J. Bone Joint Surg. Am., 88(5), pp. 925–935. [CrossRef] [PubMed]
Philippon, M. J., Briggs, K. K., Yen, Y.-M., and Kuppersmith, D. A., 2009, “Outcomes Following Hip Arthroscopy for Femoroacetabular Impingement With Associated Chondrolabral Dysfunction: Minimum Two-Year Follow-Up,” J. Bone Joint Surg. Br., 91(1), pp. 16–23. [CrossRef] [PubMed]
Burnett, R. S. J., Della Rocca, G. J., Prather, H., Curry, M., Maloney, W. J., and Clohisy, J. C., 2006, “Clinical Presentation of Patients With Tears of the Acetabular Labrum,” J. Bone Joint Surg. Am., 88(7), pp. 1448–1457. [CrossRef] [PubMed]
McCarthy, J. C., Noble, P. C., Schuck, M. R., Wright, J., and Lee, J., 2001, “The Otto E. Aufranc Award: The Role of Labral Lesions to Development of Early Degenerative Hip Disease,” Clin. Orthop. Relat. Res., 393, pp. 25–37. [CrossRef] [PubMed]
Crawford, M. J., Dy, C. J., Alexander, J. W., Thompson, M., Schroder, S. J., Vega, C. E., Patel, R. V., Miller, A. R., McCarthy, J. C., Lowe, W. R., and Noble, P. C., 2007, “The 2007 Frank Stinchfield Award. The Biomechanics of the Hip Labrum and the Stability of the Hip,” Clin. Orthop. Relat. Res., 465, pp. 16–22. [PubMed]
Takechi, H., Nagashima, H., and Ito, S., 1982, “Intra-Articular Pressure of the Hip Joint Outside and Inside the Limbus,” Nippon Seikeigeka Gakkai Zasshi, 56(6), pp. 529–536. [PubMed]
Hlavácek, M., 2002, “The Influence of the Acetabular Labrum Seal, Intact Articular Superficial Zone and Synovial Fluid Thixotropy on Squeeze-Film Lubrication of a Spherical Synovial Joint,” J. Biomech., 35(10), pp. 1325–1335. [CrossRef] [PubMed]
Ferguson, S. J., Bryant, J. T., Ganz, R., and Ito, K., 2003, “An in vitro Investigation of the Acetabular Labral Seal in Hip Joint Mechanics,” J. Biomech., 36(2), pp. 171–178. [CrossRef] [PubMed]
Song, Y., Safran, M. R., Ito, H., Carter, D., and Giori, N., 2012, “Articular Cartilage Friction Increases in Hip Joints After the Removal of the Acetabular Labrum,” J Biomech., 45(3), pp. 524–530. [CrossRef] [PubMed]
Dy, C. J., Thompson, M. T., Crawford, M. J., Alexander, J. W., McCarthy, J. C., and Noble, P. C., 2008, “Tensile Strain in the Anterior Part of the Acetabular Labrum During Provocative Maneuvering of the Normal Hip,” J. Bone Joint Surg. Am., 90(7), pp. 1464–1472. [CrossRef] [PubMed]
Ishiko, T., Naito, M., and Moriyama, S., 2005, “Tensile Properties of the Human Acetabular Labrum—The First Report,” J. Orthop. Res., 23(6), pp. 1448–1453. [CrossRef] [PubMed]
Smith, M. V., Panchal, H. B., Thiele, R. A. R., and Sekiya, J. K., 2011, “Effect of Acetabular Labrum Tears on Hip Stability and Labral Strain in a Joint Compression Model,” Am. J. Sports Med., 39(Suppl), pp. 103S–110S. [CrossRef] [PubMed]
Myers, C. A., Register, B. C., Lertwanich, P., Ejnisman, L., Pennington, W. W., Giphart, J. E., LaPrade, R. F., and Philippon, M. J., 2011, “Role of the Acetabular Labrum and the Iliofemoral Ligament in Hip Stability: An In Vitro Biplane Fluoroscopy Study,” Am. J. Sports Med., 39(Suppl), pp. 85S–91S. [CrossRef] [PubMed]
Ferguson, S. J., Bryant, J. T., Ganz, R., and Ito, K., 2000, “The Influence of the Acetabular Labrum on Hip Joint Cartilage Consolidation: A Poroelastic Finite Element Model,” J. Biomech., 33(8), pp. 953–960. [CrossRef] [PubMed]
Seldes, R. M., Tan, V., Hunt, J., Katz, M., Winiarsky, R., and Fitzgerald, R. H., Jr., 2001, “Anatomy, Histologic Features, and Vascularity of the Adult Acetabular Labrum,” Clin. Orthop. Relat. Res., 382, pp. 232–240. [CrossRef] [PubMed]
Miozzari, H. H., Clark, J. M., Jacob, H. A. C., von Rechenberg, B., and Nötzli, H. P., 2004, “Effects of Removal of the Acetabular Labrum in a Sheep Hip Model,” Osteoarthritis Cartilage, 12(5), pp. 419–430. [CrossRef] [PubMed]
Harris, W. H., Bourne, R. B., and Oh, I., 1979, “Intra-Articular Acetabular Labrum: A Possible Etiological Factor in Certain Cases of Osteoarthritis of the Hip,” J. Bone Joint Surg. Am., 61(4), pp. 510–514. [PubMed]
Henak, C. R., Ellis, B. J., Harris, M. D., Anderson, A. E., Peters, C. L., and Weiss, J. A., 2011, “Role of the Acetabular Labrum in Load Support Across the Hip Joint,” J. Biomech., 44(12), pp. 2201–2206. [CrossRef] [PubMed]
Colbrunn, R. W., Bottros, J. J., Butler, R. S., Klika, A. K., Bonner, T. F., Greeson, C., van den Bogert, A. J., and Barsoum, W. K., 2013, “Impingement and Stability of Total Hip Arthroplasty Versus Femoral Head Resurfacing Using a Cadaveric Robotics Model,” J. Orthop. Res., 31(7), pp. 1108–1115. [CrossRef] [PubMed]
Noble, L. D., Jr., Colbrunn, R. W., Lee, D.-G., van den Bogert, A. J., and Davis, B. L., 2010, “Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications,” ASME J. Biomech. Eng., 132(2), p. 025001. [CrossRef]
Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D'Lima, D. D., Cristofolini, L., Witte, H., Schmid, O., and Stokes, I., 2002, Standardization and Terminology Committee of the International Society of Biomechanics, “ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine,” J. Biomech., 35(4), pp. 543–548. [CrossRef] [PubMed]
Barsoum, W. K., Patterson, R. W., Higuera, C., Klika, A. K., Krebs, V. E., and Molloy, R., 2007, “A Computer Model of the Position of the Combined Component in the Prevention of Impingement in Total Hip Replacement,” J. Bone Joint Surg. Br., 89(6), pp. 839–845. [CrossRef] [PubMed]
Robinson, R. P., Simonian, P. T., Gradisar, I. M., and Ching, R. P., 1997, “Joint Motion and Surface Contact Area Related to Component Position in Total Hip Arthroplasty,” J. Bone Joint Surg. Br., 79(1), pp. 140–146. [CrossRef] [PubMed]
Bowman, K. F., Jr., Fox, J., and Sekiya, J. K., 2010, “A Clinically Relevant Review of Hip Biomechanics,” Arthroscopy, 26(8), pp. 1118–1129. [CrossRef] [PubMed]
Greaves, L. L., Gilbart, M. K., Yung, A. C., Kozlowski, P., and Wilson, D. R., 2010, “Effect of Acetabular Labral Tears, Repairs and Resection on Hip Cartilage Strain: A 7T MR Study,” J. Biomech., 43(5), pp. 858–863. [CrossRef] [PubMed]
Safran, M. R., Giordano, G., Lindsey, D. P., Gold, G. E., Rosenberg, J., Zaffagnini, S., and Giori, N. J., 2011, “Strains Across the Acetabular Labrum During Hip Motion: A Cadaveric Model,” Am. J. Sports Med., 39(Suppl), pp. 92S–102S. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

The hemi-pelvis mounted on the 6 degree-of-freedom musculoskeletal simulator [19]. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:1108–1115, 2013.

Grahic Jump Location
Fig. 2

Subluxation potential test with a rotating, constant magnitude force vector. Distance refers to the lateral displacement.

Grahic Jump Location
Fig. 3

Defining point of subluxation potential. (a) Lateral joint displacement versus vector angle. (b) Change in lateral joint displacement versus force vector angle. Note the inflection point in the curve at the subluxation potential angle, θd, and that this occurs at the force vector angle where the change in lateral displacement exceeds 0.05 mm/deg.

Grahic Jump Location
Fig. 4

Radial plot of stability index values comparing stability between native and labrum-deficient conditions in the anterior provocative position. The figure represents the cup shaped stability envelope laid flat with anatomical directions analogous to an observer standing to the right of the subject and viewing the right hip. Regional stability index values are shaded.

Grahic Jump Location
Fig. 5

Radial plot of stability index values comparing stability between native and labrum-deficient conditions in the posterior provocative position. The figure represents the cup shaped stability envelope laid flat with anatomical directions analogous to an observer standing to the right of the subject and viewing the right hip. Regional stability index values are shaded.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In