0
Research Papers

Mapping of Contributions From Collateral Ligaments to Overall Knee Joint Constraint: An Experimental Cadaveric Study

[+] Author and Article Information
Adam J. Cyr

Bioengineering Graduate Program,
University of Kansas,
1530 W. 15th Street, Learned Hall,
Lawrence, KS 66044
e-mail: acyr@ku.edu

Sami S. Shalhoub

Bioengineering Graduate Program,
University of Kansas,
1530 W. 15th Street, Learned Hall,
Lawrence, KS 66044
e-mail: sss015@ku.edu

Fallon G. Fitzwater

Department of Mechanical Engineering,
University of Kansas,
1530 W. 15th Street,
Lawrence, KS 66044
e-mail: ffitzwat@ku.edu

Lauren A. Ferris

Department of Mechanical Engineering,
University of Kansas,
1530 W. 15th Street,
Lawrence, KS 66044
e-mail: lferris@ku.edu

Lorin P. Maletsky

Department of Mechanical Engineering,
University of Kansas,
1530 W. 15th Street,
Lawrence, KS 66044
e-mail: maletsky@ku.edu

1Corresponding author.

Manuscript received June 23, 2014; final manuscript received February 3, 2015; published online March 25, 2015. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 137(6), 061006 (Jun 01, 2015) (7 pages) Paper No: BIO-14-1289; doi: 10.1115/1.4029980 History: Received June 23, 2014; Revised February 03, 2015; Online March 25, 2015

Understanding the contribution of the soft-tissues to total joint constraint (TJC) is important for predicting joint kinematics, developing surgical procedures, and increasing accuracy of computational models. Previous studies on the collateral ligaments have focused on quantifying strain and tension properties under discrete loads or kinematic paths; however, there has been little work to quantify collateral ligament contribution over a broad range of applied loads and range of motion (ROM) in passive constraint. To accomplish this, passive envelopes were collected from nine cadaveric knees instrumented with implantable pressure transducers (IPT) in the collateral ligaments. The contributions from medial and lateral collateral ligaments (LCL) were quantified by the relative contribution of each structure at various flexion angles (0–120 deg) and compound external loads (±10 N m valgus, ±8 N m external, and ±40 N anterior). Average medial collateral ligament (MCL) contributions were highest under external and valgus torques from 60 deg to 120 deg flexion. The MCL showed significant contributions to TJC under external torques throughout the flexion range. Average LCL contributions were highest from 0 deg to 60 deg flexion under external and varus torques, as well as internal torques from 60 deg to 110 deg flexion. Similarly, these regions were found to have statistically significant LCL contributions. Anterior and posterior loads generally reduced collateral contribution to TJC; however, posterior loads further reduced MCL contribution, while anterior loads further reduced LCL contribution. These results provide insight to the functional role of the collaterals over a broad range of passive constraint. Developing a map of collateral ligament contribution to TJC may be used to identify the effects of injury or surgical intervention on soft-tissue, and how collateral ligament contributions to constraint correlate with activities of daily living.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Blankevoort, L., Huiskes, R., and de Lange, A., 1988, “The Envelope of Passive Knee Joint Motion,” J. Biomech., 21(9), pp. 705–720. [CrossRef] [PubMed]
Sanchez, A. R., 2nd, Sugalski, M. T., and LaPrade, R. F., 2006, “Anatomy and Biomechanics of the Lateral Side of the Knee,” Sports Med. Arthroscopy Rev., 14(1), pp. 2–11. [CrossRef]
Meister, B. R., Michael, S. P., Moyer, R. A., Kelly, J. D., and Schneck, C. D., 2000, “Anatomy and Kinematics of the Lateral Collateral Ligament of the Knee,” Am. J. Sports Med., 28(6), pp. 869–878. [PubMed]
Grood, E. S., Noyes, F. R., Butler, D. L., and Suntay, W. J., 1981, “Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees,” J. Bone Jt. Surg. Am., 63(8), pp. 1257–1269.
Gollehon, D. L., Torzilli, P. A., and Warren, R. F., 1987, “The Role of the Posterolateral and Cruciate Ligaments in the Stability of the Human Knee. A Biomechanical Study,” J. Bone Jt. Surg. Am., 69(2), pp. 233–242.
Wymenga, A. B., Kats, J. J., Kooloos, J., and Hillen, B., 2006, “Surgical Anatomy of the Medial Collateral Ligament and the Posteromedial Capsule of the Knee,” Knee Surg. Sports Traumatol. Arthroscopy, 14(3), pp. 229–234. [CrossRef]
Blankevoort, L., Huiskes, R., and de Lange, A., 1991, “Recruitment of Knee Joint Ligaments,” ASME J. Biomech. Eng., 113(1), pp. 94–103. [CrossRef]
Feeley, B. T., Muller, M. S., Allen, A. A., Granchi, C. C., and Pearle, A. D., 2009, “Biomechanical Comparison of Medial Collateral Ligament Reconstructions Using Computer-Assisted Navigation,” Am. J. Sports Med., 37(6), pp. 1123–1130. [CrossRef] [PubMed]
Robinson, J. R., Bull, A. M., and Amis, A. A., 2005, “Structural Properties of the Medial Collateral Ligament Complex of the Human Knee,” J. Biomech., 38(5), pp. 1067–1074. [CrossRef] [PubMed]
Pape, D., Duchow, J., Rupp, S., Seil, R., and Kohn, D., 2006, “Partial Release of the Superficial Medial Collateral Ligament for Open-Wedge High Tibial Osteotomy. A Human Cadaver Study Evaluating Medial Joint Opening by Stress Radiography,” Knee Surg. Sports Traumatol. Arthroscopy, 14(2), pp. 141–148. [CrossRef]
Lujan, T. J., Dalton, M. S., Thompson, B. M., Ellis, B. J., and Weiss, J. A., 2007, “Effect of ACL Deficiency on MCL Strains and Joint Kinematics,” ASME J. Biomech. Eng., 129(3), pp. 386–392. [CrossRef]
Bergknut, N., Rutges, J. P. H. J., Kranenburg, H. J. C., Smolders, L. A., Hagman, R., Smidt, H. J., Lagerstedt, A. S. E., Penning, L. C., Voorhout, G., Hazewinkel, H. A. W., Grinwis, G. C. M., Creemers, L. B., Meij, B. P., and Dhert, W. J. A., 2012, “The Dog as an Animal Model for Intervertebral Disc Degeneration?,” Spine, 37(5), pp. 351–358. [CrossRef] [PubMed]
Scholten, R. J., Opstelten, W., van der Plas, C. G., Bijl, D., Deville, W. L., and Bouter, L. M., 2003, “Accuracy of Physical Diagnostic Tests for Assessing Ruptures of the Anterior Cruciate Ligament: A Meta-Analysis,” J. Fam. pract., 52(9), pp. 689–694. [PubMed]
Malanga, G. A., Andrus, S., Nadler, S. F., and McLean, J., 2003, “Physical Examination of the Knee: A Review of the Original Test Description and Scientific Validity of Common Orthopedic Tests,” Arch. Phys. Med. Rehabil., 84(4), pp. 592–603. [CrossRef] [PubMed]
Feeley, B. T., Muller, M. S., Allen, A. A., Granchi, C. C., and Pearle, A. D., 2009, “Isometry of Medial Collateral Ligament Reconstruction,” Knee Surg. Sports Traumatol. Arthroscopy, 17(9), pp. 1078–1082. [CrossRef]
Jeffcote, B., Nicholls, R., Schirm, A., and Kuster, M. S., 2007, “The Variation in Medial and Lateral Collateral Ligament Strain and Tibiofemoral Forces Following Changes in the Flexion and Extension Gaps in Total Knee Replacement. A Laboratory Experiment Using Cadaver Knees,” J. Bone Jt. Surg. Br. Vol., 89(11), pp. 1528–1533.
Ishii, Y., Matsuda, Y., Noguchi, H., and Kiga, H., 2005, “Effect of Soft Tissue Tension on Measurements of Coronal Laxity in Mobile-Bearing Total Knee Arthroplasty,” J. Orthop. Sci., 10(5), pp. 496–500. [CrossRef] [PubMed]
Matsuda, Y., Ishii, Y., Noguchi, H., and Ishii, R., 2005, “Varus-Valgus Balance and Range of Movement After Total Knee Arthroplasty,” J. Bone Jt. Surg. Br. Vol., 87(6), pp. 804–808.
Heesterbeek, P. J., and Wymenga, A. B., 2010, “Correction of Axial and Rotational Alignment After Medial and Lateral Releases During Balanced Gap TKA. A Clinical Study of 54 Patients,” Acta Orthop., 81(3), pp. 347–353. [CrossRef] [PubMed]
Bellemans, J., D'Hooghe, P., Vandenneucker, H., Van Damme, G., and Victor, J., 2006, “Soft Tissue Balance in Total Knee Arthroplasty: Does Stress Relaxation Occur Perioperatively?,” Clin. Orthop. Relat. Res., 452, pp. 49–52. [CrossRef] [PubMed]
Delport, H., Labey, L., De Corte, R., Innocenti, B., Sloten, J. V., and Bellemans, J., 2013, “Collateral Ligament Strains During Knee Joint Laxity Evaluation Before and After TKA,” Clin. Biomech., 28(7), pp. 777–782. [CrossRef]
Fitzpatrick, C. K., Baldwin, M. A., Clary, C. W., Maletsky, L. P., and Rullkoetter, P. J., 2012, “Evaluating Knee Replacement Mechanics During ADL With PID-Controlled Dynamic Finite Element Analysis,” Comput. Methods Biomech. Biomed. Eng., 17(4), pp. 360–369.
Baldwin, M. A., Clary, C., Maletsky, L. P., and Rullkoetter, P. J., 2009, “Verification of Predicted Specimen-Specific Natural and Implanted Patellofemoral Kinematics During Simulated Deep Knee Bend,” J. Biomech., 42(14), pp. 2341–2348. [CrossRef] [PubMed]
Markolf, K. L., Park, S., Jackson, S. R., and McAllister, D. R., 2008, “Simulated Pivot-Shift Testing With Single and Double-Bundle Anterior Cruciate Ligament Reconstructions,” J. Bone Jt. Surg. Am., 90(8), pp. 1681–1689. [CrossRef]
Lopomo, N., Zaffagnini, S., Bignozzi, S., Visani, A., and Marcacci, M., 2010, “Pivot-Shift Test: Analysis and Quantification of Knee Laxity Parameters Using a Navigation System,” J. Orthop. Res., 28(2), pp. 164–169. [PubMed]
Sernert, N., Kartus, J., Kohler, K., Ejerhed, L., and Karlsson, J., 2001, “Evaluation of the Reproducibility of the KT-1000 Arthrometer,” Scand. J. Med. Sci. Sports, 11(2), pp. 120–125. [CrossRef] [PubMed]
Baldwin, M. A., Clary, C. W., Fitzpatrick, C. K., Deacy, J. S., Maletsky, L. P., and Rullkoetter, P. J., 2012, “Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics,” J. Biomech., 45(3), pp. 474–483. [CrossRef] [PubMed]
Fitzpatrick, C. K., Clary, C. W., Laz, P. J., and Rullkoetter, P. J., 2012, “Relative Contributions of Design, Alignment, and Loading Variability in Knee Replacement Mechanics,” J. Orthop. Res., 30(12), pp. 2015–2024. [CrossRef] [PubMed]
Belvedere, C., Ensini, A., Feliciangeli, A., Cenni, F., D'Angeli, V., Giannini, S., and Leardini, A., 2012, “Geometrical Changes of Knee Ligaments and Patellar Tendon During Passive Flexion,” J. Biomech., 45(11), pp. 1886–1892. [CrossRef] [PubMed]
Robinson, J. R., Bull, A. M., Thomas, R. R., and Amis, A. A., 2006, “The Role of the Medial Collateral Ligament and Posteromedial Capsule in Controlling Knee Laxity,” Am. J. Sports Med., 34(11), pp. 1815–1823. [CrossRef] [PubMed]
Blankevoort, L., and Huiskes, R., 1996, “A Mechanism for Rotation Restraints in the Knee Joint,” J. Orthop. Res., 14(4), pp. 676–679. [CrossRef] [PubMed]
Gardiner, J. C., and Weiss, J. A., 2003, “Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading,” J. Orthop. Res., 21(6), pp. 1098–1106. [CrossRef] [PubMed]
Sakane, M., Livesay, G. A., Fox, R. J., Rudy, T. W., Runco, T. J., and Woo, S. L., 1999, “Relative Contribution of the ACL, MCL, and Bony Contact to the Anterior Stability of the Knee,” Knee Surg. Sports Traumatol. Arthroscopy, 7(2), pp. 93–97. [CrossRef]
LaPrade, R. F., Tso, A., and Wentorf, F. A., 2004, “Force Measurements on the Fibular Collateral Ligament, Popliteofibular Ligament, and Popliteus Tendon to Applied Loads,” Am. J. Sports Med., 32(7), pp. 1695–1701. [CrossRef] [PubMed]
De Carlo, M., and Armstrong, B., 2010, “Rehabilitation of the Knee Following Sports Injury,” Clin. Sports Med., 29(1), pp. 81–106. [CrossRef] [PubMed]
Soavi, R., Girolami, M., Loreti, I., Bragonzoni, L., Monti, C., Visani, A., and Marcacci, M., 2000, “The Mobility of the Proximal Tibio-Fibular Joint. A Roentgen Stereophotogrammetric Analysis on Six Cadaver Specimens,” Foot Ankle Int., 21(4), pp. 336–342. [PubMed]
Ogden, J. A., 1974, “The Anatomy and Function of the Proximal Tibiofibular Joint,” Clin. Orthop. Relat. Res., 101, pp. 186–191. Available at: http://journals.lww.com/corr/Citation/1974/06000/The_Anatomy_and_Function_of_the_Proximal.28.aspx [PubMed]
Liu, F., Yue, B., Gadikota, H. R., Kozanek, M., Liu, W., Gill, T. J., Rubash, H. E., and Li, G., 2010, “Morphology of the Medial Collateral Ligament of the Knee,” J. Orthop. Surg. Res., 5, p. 69. [CrossRef] [PubMed]
Bonifasi-Lista, C., Lake, S. P., Small, M. S., and Weiss, J. A., 2005, “Viscoelastic Properties of the Human Medial Collateral Ligament Under Longitudinal, Transverse and Shear Loading,” J. Orthop. Res., 23(1), pp. 67–76. [CrossRef] [PubMed]
Lynch, H. A., Johannessen, W., Wu, J. P., Jawa, A., and Elliott, D. M., 2003, “Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon,” ASME J. Biomech. Eng., 125(5), pp. 726–731. [CrossRef]
Swedberg, A. M., Reese, S. P., Maas, S. A., Ellis, B. J., and Weiss, J. A., 2014, “Continuum Description of the Poisson's Ratio of Ligament and Tendon Under Finite Deformation,” J. Biomech., 47(12), pp. 3201–3209. [CrossRef] [PubMed]
Hewitt, J., Guilak, F., Glisson, R., and Vail, T. P., 2001, “Regional Material Properties of the Human Hip Joint Capsule Ligaments,” J. Orthop. Res., 19(3), pp. 359–364. [CrossRef] [PubMed]
Woo, S. L. Y., and Debski, R. E., 1999, “Biomechanics of Knee Ligaments,” Am. J. Sports Med., 27(4), pp. 533–543. [PubMed]
Glos, D. L., Butler, D. L., Grood, E. S., and Levy, M. S., 1993, “In Vivo Evaluation of an Implantable Force Transducer (IFT) in a Patellar Tendon Model,” ASME J. Biomech. Eng., 115(4A), pp. 335–343. [CrossRef]
Holden, J. P., Grood, E. S., Korvick, D. L., Cummings, J. F., Butler, D. L., and Bylski-Austrow, D. I., 1994, “In Vivo Forces in the Anterior Cruciate Ligament: Direct Measurements During Walking and Trotting in a Quadruped,” J. Biomech., 27(5), pp. 517–526. [CrossRef] [PubMed]
Fleming, B. C., and Beynnon, B. D., 2004, “In Vivo Measurement of Ligament/Tendon Strains and Forces: A Review,” Ann. Biomed. Eng., 32(3), pp. 318–328. [CrossRef] [PubMed]
Grood, E. S., and Suntay, W. J., 1983, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144. [CrossRef]
Cyr, A. J., and Maletsky, L. P., 2014, “Technical Note: A Multi-Dimensional Description of Knee Laxity Using Radial Basis Functions,” Comput. Methods Biomech. Biomed. Eng., 18(15), pp. 1–6.
Cyr, A. J., and Maletsky, L. P., 2014, “Unified Quantification of Variation in Passive Knee Joint Constraint,” Proc. Inst. Mech. Eng. Part H, 228(5), pp. 494–500. [CrossRef]
Chandrashekar, N., Mansouri, H., Slauterbeck, J., and Hashemi, J., 2006, “Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament,” J. Biomech., 39(16), pp. 2943–2950. [CrossRef] [PubMed]
Taylor, K. A., Terry, M. E., Utturkar, G. M., Spritzer, C. E., Queen, R. M., Irribarra, L. A., Garrett, W. E., and DeFrate, L. E., 2011, “Measurement of In Vivo Anterior Cruciate Ligament Strain During Dynamic Jump Landing,” J. Biomech., 44(3), pp. 365–371. [CrossRef] [PubMed]
Ahmed, A. M., Burke, D. L., Duncan, N. A., and Chan, K. H., 1992, “Ligament Tension Pattern in the Flexed Knee in Combined Passive Anterior Translation and Axial Rotation,” J. Orthop. Res., 10(6), pp. 854–867. [CrossRef] [PubMed]
Grood, E. S., Stowers, S. F., and Noyes, F. R., 1988, “Limits of Movement in the Human Knee. Effect of Sectioning the Posterior Cruciate Ligament and Posterolateral Structures,” J. Bone Jt. Surg. Am., 70(1), pp. 88–97.
Dennis, D. A., Komistek, R. D., Kim, R. H., and Sharma, A., 2010, “Gap Balancing Versus Measured Resection Technique for Total Knee Arthroplasty,” Clin. Orthop. Relat. Res., 468(1), pp. 102–107. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) Photo of the IPT and relative size (dimensions in millimeter, obtained with permission from Precision Measurement Company). (b) Example placement of an IPT in the superficial fibers of the anterior MCL.

Grahic Jump Location
Fig. 2

Experimental setup. With the femur fixed to a base plate, loads were applied through an analog foot and 6DOF load cell fixed to the distal tibia. Motion tracking arrays attached to the femur and tibia provided spatial bone orientations.

Grahic Jump Location
Fig. 3

UE quadrants in knee position space as defined by pure peak loads in VrVl (horizontal plane) and IE (vertical plane) across all flexion angles. The quadrants are defined as follows: (1) valgus/external, (2) valgus/internal, (3) varus/internal, and (4) varus/external.

Grahic Jump Location
Fig. 4

UE in joint orientation space for 100% isosurface, colored with average (a–c) and significant (d–f) MCL contribution. Average colors represent average level or normalized MCL constraint under (a) 0 N AP, (b) 40 N anterior, and (c) 40 N posterior force. For significance figures, red (light) regions correspond with statistically significant MCL contribution greater than 0% (H0 = 0, p  <  0.05) for (d) 0 N AP, (e) 40 N anterior, and (f) 40 N posterior force. In all figures, the UE ranges from 0 to 120 deg flexion.

Grahic Jump Location
Fig. 5

UE in joint orientation space for 100% isosurface, colored with average (a–c) and significant (d–f) LCL contribution. Average colors represent average level or normalized LCL constraint under (a) 0 N AP, (b) 40 N anterior, and (c) 40 N posterior force. For significance figures, red (light) regions correspond with statistically significant LCL contribution greater than 0% (H0 = 0, p < 0.05) for (d) 0 N AP, (e) 40 N anterior, and (f) 40 N posterior force. In all figures, the UE ranges from 0 to 120 deg flexion.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In