0
Technical Forum

Deconstructing the Anterior Cruciate Ligament: What We Know and Do Not Know About Function, Material Properties, and Injury Mechanics

[+] Author and Article Information
Scott G. McLean

Human Performance Innovation Laboratory,
School of Kinesiology,
University of Michigan,
Ann Arbor, MI 48109
e-mail: mcleans@umich.edu

Kaitlyn F. Mallett

Department of Mechanical Engineering,
University of Michigan,
Ann Arbor, MI 48109
e-mail: kmallett@umich.edu

Ellen M. Arruda

Department of Mechanical Engineering,
Department of Biomedical Engineering,
Program in Macromolecular Science
and Engineering,
University of Michigan,
Ann Arbor, MI 48109
e-mail: arruda@umich.edu

Manuscript received August 8, 2014; final manuscript received November 25, 2014; published online January 26, 2015. Editor: Beth A. Winkelstein.

J Biomech Eng 137(2), 020906 (Feb 01, 2015) (19 pages) Paper No: BIO-14-1378; doi: 10.1115/1.4029278 History: Received August 08, 2014; Revised November 25, 2014; Online January 26, 2015

Anterior cruciate ligament (ACL) injury is a common and potentially catastrophic knee joint injury, afflicting a large number of males and particularly females annually. Apart from the obvious acute injury events, it also presents with significant long-term morbidities, in which osteoarthritis (OA) is a frequent and debilitative outcome. With these facts in mind, a vast amount of research has been undertaken over the past five decades geared toward characterizing the structural and mechanical behaviors of the native ACL tissue under various external load applications. While these efforts have afforded important insights, both in terms of understanding treating and rehabilitating ACL injuries; injury rates, their well-established sex-based disparity, and long-term sequelae have endured. In reviewing the expanse of literature conducted to date in this area, this paper identifies important knowledge gaps that contribute directly to this long-standing clinical dilemma. In particular, the following limitations remain. First, minimal data exist that accurately describe native ACL mechanics under the extreme loading rates synonymous with actual injury. Second, current ACL mechanical data are typically derived from isolated and oversimplified strain estimates that fail to adequately capture the true 3D mechanical response of this anatomically complex structure. Third, graft tissues commonly chosen to reconstruct the ruptured ACL are mechanically suboptimal, being overdesigned for stiffness compared to the native tissue. The net result is an increased risk of rerupture and a modified and potentially hazardous habitual joint contact profile. These major limitations appear to warrant explicit research attention moving forward in order to successfully maintain/restore optimal knee joint function and long-term life quality in a large number of otherwise healthy individuals.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lohmander, L. S., Ostenberg, A., Englund, M., and Roos, H. P., 2004, “High Prevalence of Knee Osteoarthritis, Pain, and Functional Limitations in Female Soccer Players Twelve Years After Anterior Cruciate Ligament Injury,” Arthritis Rheum., 50(10), pp. 3145–3152. [CrossRef] [PubMed]
Csintalan, R. P., Inacio, M. C. S., and Funahashi, T. T., 2008, “Incidence Rate of Anterior Cruciate Ligament Reconstructions,” Perm. J., 12(3), pp. 17–21. [PubMed]
Griffin, L. Y., Albohm, M. J., Arendt, E. A., Bahr, R., Beynnon, B. D., Demaio, M., Dick, R. W., Engebretsen, L., Garrett, W. E., Jr., Hannafin, J. A., Hewett, T. E., Huston, L. J., Ireland, M. L., Johnson, R. J., Lephart, S., Mandelbaum, B. R., Mann, B. J., Marks, P. H., Marshall, S. W., Myklebust, G., Noyes, F. R., Powers, C., Shields, C., Jr., Shultz, S. J., Silvers, H., Slauterbeck, J., Taylor, D. C., Teitz, C. C., Wojtys, E. M., and Yu, B., 2006, “Understanding and Preventing Noncontact Anterior Cruciate Ligament Injuries: A Review of the Hunt Valley II Meeting, January 2005,” Am. J. Sports Med., 34(9), pp. 1512–1532. [CrossRef] [PubMed]
Deneweth, J. M., Bey, M. J., McLean, S. G., Lock, T. R., Kolowich, P. A., and Tashman, S., 2010, “Tibiofemoral Joint Kinematics of the Anterior Cruciate Ligament-Reconstructed Knee During a Single-Legged Hop Landing,” Am. J. Sports Med., 38(9), pp. 1820–1828. [CrossRef] [PubMed]
Tashman, S., Anderst, W., Kolowich, P. A., Havstad, S., and Arnoczky, S. P., 2004, “Kinematics of the ACL-Deficient Canine Knee During Gait: Serial Changes Over Two Years,” J. Orthop. Res., 22(5), pp. 931–941. [CrossRef] [PubMed]
Lohmander, L. S., Englund, P. M., Dahl, L. L., and Roos, E. M., 2007, “The Long-Term Consequence of Anterior Cruciate Ligament and Meniscus Injuries: Osteoarthritis,” Am. J. Sports Med., 35(10), pp. 1756–1769. [CrossRef] [PubMed]
Neuman, P., Englund, M., Kostogiannis, I., Friden, T., Roos, H. P., and Dahlberg, L. E., 2008, “Prevalence of Tibiofemoral Osteoarthritis 15 Years After Nonoperative Treatment of Anterior Cruciate Ligament Injury: A Prospective Cohort Study,” Am. J. Sports Med., 36(9), pp. 1717–1725. [CrossRef] [PubMed]
Imhauser, C. W., Mauro, C., Choi, D., Rosenberg, E., Mathew, S., Nguyen, J., Ma, Y., and Wickiewicz, T., 2013, “Abnormal Tibiofemoral Contact Stress and Its Association With Altered Kinematics After Center-Center Anterior Cruciate Ligament Reconstruction: An In Vitro Study,” Am. J. Sports Med., 41(4), pp. 815–825. [CrossRef] [PubMed]
Andriacchi, T. P., Mundermann, A., Smith, R. L., Alexander, E. J., Dyrby, C. O., and Koo, S., 2004, “A Framework for the In Vivo Pathomechanics of Osteoarthritis at the Knee,” Ann. Biomed. Eng., 32(3), pp. 447–457. [CrossRef] [PubMed]
Logan, M. C., Dunstan, E., Robinson, J., Williams, A., Gedroyc, W., and Freeman, M., 2004, “Tibiofemoral Kinematics of the Anterior Cruciate Ligament (ACL)-Deficient Weightbearing, Living Knee Employing Vertical Access Open ‘Interventional’ Multiple Resonance Imaging,” Am. J. Sports Med., 32(3), pp. 720–726. [CrossRef] [PubMed]
Rupp, S., Muller, B., and Seil, R., 2001, “Knee Laxity After ACL Reconstruction With a BPTB Graft,” Knee Surg. Sports Traumatol. Arthrosc., 9(2), pp. 72–76. [CrossRef] [PubMed]
Van Kampen, A., Wymenga, A. B., van der Heide, H. J., and Bakens, H. J., 1998, “The Effect of Different Graft Tensioning in Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Study,” Arthroscopy, 14(8), pp. 845–850. [CrossRef] [PubMed]
Cuppone, M., and Seedhom, B. B., 2001, “Effect of Implant Lengthening and Mode of Fixation On Knee Laxity After ACL Reconstruction With an Artificial Ligament: A Cadaveric Study,” J. Orthop. Sci., 6(3), pp. 253–261. [CrossRef] [PubMed]
Roos, P. J., Hull, M. L., and Howell, S. M., 2004, “Lengthening of Double-Looped Tendon Graft Constructs in Three Regions After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis,” J. Orthop. Res., 22(4), pp. 839–846. [CrossRef] [PubMed]
Smith, C. K., Hull, M. L., and Howell, S. M., 2006, “Lengthening of a Single-Loop Tibialis Tendon Graft Construct After Cyclic Loading: A Study Using Roentgen Stereophotogrammetric Analysis,” ASME J. Biomech. Eng., 128(3), pp. 437–442. [CrossRef]
Boorman, R. S., Thornton, G. M., Shrive, N. G., and Frank, C. B., 2002, “Ligament Grafts Become More Susceptible to Creep Within Days After Surgery: Evidence for Early Enzymatic Degradation of a Ligament Graft in a Rabbit Model,” Acta Orthop. Scand., 73(5), pp. 568–574. [CrossRef] [PubMed]
Ma, J., Smietana, M. J., Kostrominova, T. Y., Wojtys, E. M., Larkin, L. M., and Arruda, E. M., 2012, “Three-Dimensional Engineered Bone–Ligament–Bone Constructs for Anterior Cruciate Ligament Replacement,” Tissue Eng., 18(1–2), pp. 103–116. [CrossRef]
Lu, H. H., 2012, “Engineering Tissue-to-Tissue Interfaces and the Formation of Complex Tissues,” Bridge, 42(4), pp. 40–47.
Murray, M. M., and Fleming, B. C., 2013, “Biology of Anterior Cruciate Ligament Injury and Repair: Kappa Delta Ann Doner Vaughn Award Paper 2013,” J. Orthop. Res., 31(10), pp. 1501–1506. [CrossRef] [PubMed]
Grood, E. S., and Suntay, W. J., 1983, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144. [CrossRef]
Ramsey, D. K., and Wretenberg, P. F., 1999, “Biomechanics of the Knee: Methodological Considerations in the In Vivo Kinematic Analysis of the Tibiofemoral and Patellofemoral Joint,” Clin. Biomech. (Bristol, Avon), 14(9), pp. 595–611. [CrossRef] [PubMed]
Takeda, Y., Xerogeanes, J. W., Livesay, G. A., Fu, F. H., and Woo, S. L.-Y., 1994, “Biomechanical Function of the Human Anterior Cruciate Ligament,” Arthroscopy, 10(2), pp. 140–147. [CrossRef] [PubMed]
Woo, S. L.-Y., Debski, R. E., Withrow, J. D., and Janaushek, M. A., 1999, “Biomechanics of Knee Ligaments,” Am. J. Sports Med., 27(4), pp. 533–543. [PubMed]
Marans, H. J., Jackson, R. W., Glossop, N. D., and Young, C., 1989, “Anterior Cruciate Ligament Insufficiency: A Dynamic Three-Dimensional Motion Analysis,” Am. J. Sports Med., 17(3), pp. 325–332. [CrossRef] [PubMed]
Shiavi, R., Limbird, T., Frazer, M., Stivers, K., Strauss, A., and Abramovitz, J., 1987, “Helical Motion Analysis of the Knee–II. Kinematics of Uninjured and Injured Knees During Walking and Pivoting.,” J. Biomech., 20(7), pp. 653–665. [CrossRef] [PubMed]
Yu, B., Lin, C. F., and Garrett, W. E., 2006, “Lower Extremity Biomechanics During the Landing of a Stop-Jump Task,” Clin. Biomech., 21(3), pp. 297–305. [CrossRef]
Hewett, T. E., Torg, J. S., and Boden, B. P., 2009, “Video Analysis of Trunk and Knee Motion During Non-Contact Anterior Cruciate Ligament Injury in Female Athletes: Lateral Trunk and Knee Abduction Motion Are Combined Components of the Injury Mechanism,” Br. J. Sports Med., 43(6), pp. 417–422. [CrossRef] [PubMed]
McLean, S. G., Borotikar, B., and Lucey, S. M., 2010, “Lower Limb Muscle Pre-Motor Time Measures During a Choice Reaction Task Associate With Knee Abduction Loads During Dynamic Single Leg Landings,” Clin. Biomech., 25(6), pp. 563–569. [CrossRef]
McLean, S. G., and Beaulieu, M. L., 2010, “Complex Integrative Morphological and Mechanical Contributions to ACL Injury Risk,” Exercise Sport Sci. Rev., 38(4), pp. 192–200. [CrossRef]
Meyer, E. G., and Haut, R. C., 2008, “Anterior Cruciate Ligament Injury Induced by Internal Tibial Torsion or Tibiofemoral Compression,” J. Biomech., 41(16), pp. 3377–3383. [CrossRef] [PubMed]
Oh, Y. K., Kreinbrink, J. L., Wojtys, E. M., and Ashton-Miller, J. A., 2012, “Effect of Axial Tibial Torque Direction on ACL Relative Strain and Strain Rate in an In Vitro Simulated Pivot Landing,” J. Orthop. Res., 30(4), pp. 528–534. [CrossRef] [PubMed]
Girgis, F., Marshall, J., and Al Monajem, A. R. S., 1975, “The Cruciate Ligaments of the Knee Joint: Anatomical, Functional and Experimental Analysis,” Clin. Orthop. Relat. Res., 106, pp. 216–231. [CrossRef] [PubMed]
Dye, S. F., and Cannon, W. D. J., 1988, “Anatomy and Biomechanics of the Anterior Cruciate Ligament,” Clin. Sports Med., 7(4), pp. 715–725. [PubMed]
Moghaddam, A. B., and Torkaman, A., 2013, “A Cadaver Study of the Structures and Positions of the Anterior Cruciate Ligament in Humans,” Int. J. Prev. Med., 4(Suppl. 1), pp. S85–S91. [PubMed]
Odensten, M., and Gillquist, J., 1985, “Functional Anatomy of the Anterior Cruciate Ligament and a Rationale for Reconstruction,” J. Bone Jt. Surg. Am., 67(2), pp. 257–262.
Petersen, W., and Zantop, T., 2007, “Anatomy of the Anterior Cruciate Ligament With Regard to Its Two Bundles,” Clin. Orthop. Relat. Res., 454, pp. 35–47. [CrossRef] [PubMed]
Smith, B. A., Livesay, G. A., and Woo, S. L.-Y., 1993, “Biology and Biomechanics of the Anterior Cruciate Ligament,” Clin. Sports Med., 12(4), pp. 637–670. [PubMed]
Welsh, R. P., 1980, “Knee Joint Structure and Function,” Clin. Orthop. Relat. Res., 147, pp. 7–14. [CrossRef] [PubMed]
Fu, F. H., Harner, C. D., Johnson, D. L., Miller, M. D., and Woo, S. L.-Y., 1993, “Biomechanics of Knee Ligaments; Basic Concepts and Clinical Application,” J. Bone Jt. Surg., 75(11), pp. 1716–1727.
Harner, C. D., Baek, G. H., Vogrin, T. M., Carlin, G. J., Kashiwaguchi, S., and Woo, S. L.-Y., 1999, “Quantitative Analysis of Human Cruciate Ligament Insertions,” Arthroscopy, 15(7), pp. 741–749. [CrossRef] [PubMed]
Arnoczky, S. P., 1983, “Anatomy of the Anterior Cruciate Ligament,” Clin. Orthop. Relat. Res., 172, pp. 19–25. [CrossRef] [PubMed]
Smith, B. A., 1993, “Biology and Biomechanics of the Anterior Cruciate Ligament,” Clin. Sports Med., 12(4), pp. 637–670. [PubMed]
Woo, S. L.-Y., Gomez, M. A., Seguchi, Y., Endo, C. M., and Akeson, W. H., 1983, “Measurement of Mechanical Properties of Ligament Substance From a Bone-Ligament-Bone Preparation,” J. Orthop. Res., 1(1), pp. 22–29. [CrossRef] [PubMed]
Benjamin, M., Evans, E. J., and Copp, L., 1986, “The Histology of Tendon Attachments to Bone in Man,” J. Anat., 149, pp. 89–100. [PubMed]
Moffat, K. L., Sun, W.-H. S., Pena, P. E., Chahine, N. O., Doty, S. B., Ateshian, G. A., Hung, C. T., and Lu, H. H., 2008, “Characterization of the Structure-Function Relationship at the Ligament-to-Bone Interface,” Proc. Natl. Acad. Sci. U. S. A., 105(23), pp. 7947–7952. [CrossRef] [PubMed]
Andrish, J. T., 2001, “Anterior Cruciate Ligament Injuries in the Skeletally Immature Patient,” Am. J. Orthop., 30(2), pp. 103–110. [PubMed]
Goulet, G. C., Davidson, S., and McLean, S. G., 2014, “The Effects of Maturation on High-Risk Posterior Tibial Slope Parameters in Females,” J. Sci. Med. Sport. (in press).
McLean, S. G., and Davidson, S. P., 2013, “Maturation Effects on Combined ACL and Intercondylar Notch Geometries: Implications for Ligament Injury,” Am. J. Sports Med. (in review).
Arnoczky, S. P., Warren, R. F., and Ashlock, M. A., 1986, “Replacement of the Anterior Cruciate Ligament Using a Patellar Tendon Allograft. An Experimental Study,” J. Bone Jt. Surg., Am., 68(3), pp. 376–385.
Bach, J. M., Hull, M. L., and Patterson, H. A., 1997, “Direct Measurement of Strain in the Posterolateral Bundle of the Anterior Cruciate Ligament,” J. Biomech., 30(3), pp. 281–283. [CrossRef] [PubMed]
Butler, D. L., Kay, M. D., and Stouffer, D. C., 1988, “Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments,” J. Biomech., 19(6), pp. 425–432. [CrossRef]
Hamner, D. L., Brown, C. H., Steiner, M. E., Hecker, A. T., and Hayes, W. C., 1999, “Hamstring Tendon Grafts for Reconstruction of the Anterior Cruciate Ligament: Biomechanical Evaluation of the Use of Multiple Strands and Tensioning Techniques,” J. Bone Jt. Surg. Am., 81(4), pp. 549–557.
Butler, D. L., 1989, “Anterior Cruciate Ligament: Its Normal Response and Replacement,” J. Orthop. Res., 7(6), pp. 910–921. [CrossRef] [PubMed]
Hollis, J. M., Marcin, J. P., Horibe, S., and Woo, S. L.-Y., 1988, “Load Determination in ACL Fibres Under Knee Loading,” Trans. Orthop. Res. Soc., 13, p. 196.
Norwood, L. A., and Cross, M. J., 1979, “Anterior Cruciate Ligament: Functional Anatomy of Its Bundles in Rotatory Instabilities,” Am. J. Sports Med., 7(1), pp. 23–26. [CrossRef] [PubMed]
Kennedy, J. C., Weinberg, H. W., and Wilson, A. S., 1974, “The Anatomy and Function of the Anterior Cruciate Ligament. As Determined by Clinical and Morphological Studies,” J. Bone Jt. Surg. Am., 56(2), pp. 223–235.
Takai, S., Woo, S. L.-Y., Livesay, G. A., Adams, D. J., and Fu, F. H., 1993, “Determination of the In Situ Loads on the Human Anterior Cruciate Ligament,” J. Orthop. Res., 11(5), pp. 686–695. [CrossRef] [PubMed]
Sidles, J. A., Larson, R. V., Garbini, J. L., Downey, D. J., and Matsen, F. A. D., 1988, “Ligament Length Relationships in the Moving Knee,” J. Orthop. Res., 6(4), pp. 593–610. [CrossRef] [PubMed]
Wang, C. J., and Walker, P. S., 1973, “The Effects of Flexion and Rotation on the Length Patterns of the Ligaments of the Knee,” J. Biomech., 6(6), pp. 587–596. [CrossRef] [PubMed]
Hollis, J. M., Takai, S., Adams, D. J., Horibe, S., and Woo, S. L.-Y., 1991, “The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (ACL): A Kinematic Study,” ASME J. Biomech. Eng., 113(2), pp. 208–214. [CrossRef]
Mommersteeg, T. J., Kooloos, J. G., Blankevoort, L., Kauer, J. M., Huiskes, R., and Roeling, F. Q., 1995, “The Fibre Bundle Anatomy of Human Cruciate Ligaments,” J. Anat., 187(Pt. 2), pp. 461–471. [PubMed]
Arms, S. W., Pope, M. H., Johnson, R. J., Fischer, R. A., Arvidsson, I., and Eriksson, E., 1984, “The Biomechanics of Anterior Cruciate Ligament Rehabilitation and Reconstruction,” Am. J. Sports Med., 12(1), pp. 8–18. [CrossRef] [PubMed]
Li, G., Papannagari, R., DeFrate, L. E., Yoo, J. D., Park, S. E., and Gill, T. J., 2006, “Comparison of the ACL and ACL Graft Forces Before and After ACL Reconstruction: An In-Vitro Robotic Investigation,” Acta Orthop., 77(2), pp. 267–274. [CrossRef] [PubMed]
Tashman, S., Kolowich, P. A., Collon, D., Anderson, K., and Anderst, W., 2007, “Dynamic Function of the ACL-Reconstructed Knee During Running,” Clin. Orthop. Relat. Res., 454, pp. 66–73. [CrossRef] [PubMed]
Chaudhari, A. M., Briant, P. L., Bevill, S. L., Koo, S., and Andriacchi, T. P., 2008, “Knee Kinematics, Cartilage Morphology, and Osteoarthritis After ACL Injury,” Med. Sci. Sports Exercise, 40(2), pp. 215–222. [CrossRef]
Kanamori, A., Zeminski, J., Rudy, T. W., Li, G., Fu, F. H., and Woo, S. L.-Y., 2002, “The Effect of Axial Tibial Torque on the Function of the Anterior Cruciate Ligament: A Biomechanical Study of a Simulated Pivot Shift Test,” Arthroscopy, 18(4), pp. 394–398. [CrossRef] [PubMed]
Ma, J., 2012, “Experimental and Computational Characterizations of Native Ligaments, Tendons and Engineered 3-D Bone-Ligament-Bone Constructs in the Knee,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
Noyes, F. R., DeLucas, J. L., and Torvik, P. J., 1974, “Biomechanics of Anterior Cruciate Ligament Failure: An Analysis of Strain-Rate Sensitivity and Mechanisms of Failure in Primates,” J. Bone Jt. Surg., 56(2), pp. 236–253.
Noyes, F. R., Torvik, P. J., Hyde, W. B., and DeLucas, J. L., 1974, “Biomechanics of Ligament Failure II: An Analysis of Immobilization, Exercise, and Reconditioning Effects in Primates,” J. Bone Jt. Surg., 56(7), pp. 1406–1418.
Cabaud, H. E., Rodkey, W. G., and Feagin, J. A., 1980, “Experimental Studies of Acute Anterior Cruciate Ligament Injury and Repair,” Am. J. Sports Med., 7(1).
Cabaud, H. E., Feagin, J. A., and Rodkey, W. G., 1980, “Acute Anterior Cruciate Ligament Injury and Augmented Repair,” Am. Orthop. Soc. Sport. Med., 8(6), pp. 395–401. [CrossRef]
Butler, D. L., Noyes, F. R., and Grood, E. S., 1980, “Ligamentous Restraints to Anterior-Posterior Drawer in the Human Knee. A Biomechanical Study,” J. Bone Jt. Surg. Am., 62(2), pp. 259–270.
Butler, D. L., Grood, E. S., Noyes, F. R., and Sodd, A. N., 1985, “On the Interpretation of Our Anterior Cruciate Ligament Data,” Clin. Orthop., 196, pp. 26–34.
Fukubayashi, T., Torzilli, P. A., Sherman, M. F., and Warren, R. F., 1982, “An In Vitro Biomechanical Evaluation of Anterior-Posterior Motion of the Knee. Tibial Displacement, Rotation, and Torque,” J. Bone Jt. Surg. Am., 64(2), pp. 258–264.
Markolf, K. L., Mensch, J. S., and Amstutz, H. C., 1976, “Stiffness and Laxity of the Knee—The Contributions of the Supporting Structures. A Quantitative In Vitro Study,” J Bone Jt. Surg., Am., 58(5), pp. 583–594.
Haimes, J. L., Wroble, R. R., Grood, E. S., and Noyes, F. R., 1994, “Role of the Medial Structures in the Intact and Anterior Cruciate Ligament-Deficient Knee. Limits of Motion in the Human Knee,” Am. J. Sports Med., 22(3), pp. 402–409. [CrossRef] [PubMed]
Gollehon, D. L., Torzilli, P. A., and Warren, R. F., 1987, “The Role of the Posterolateral and Cruciate Ligaments in the Stability of the Human Knee,” J. Bone Jt. Surg., 69-A(2), pp. 233–242.
Piziali, R. L., Seering, W. P., Nagel, D. A., and Schurman, D. J., 1980, “The Function of the Primary Ligaments of the Knee in Anterior-Posterior and Medial-Lateral Motions,” J. Biomech., 13(9), pp. 777–784. [CrossRef] [PubMed]
Noyes, F. R., and Grood, E. S., 1976, “The Strength of the Anterior Cruciate Ligament in Humans and Rhesus Monkeys,” J. Bone Jt. Surg. Am., 58(8), pp. 1074–1082.
DeMorat, G., Weinhold, P., Blackburn, T., Chudik, S., and Garrett, W., 2004, “Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury,” Am. J. Sports Med., 32(2), pp. 477–483. [CrossRef] [PubMed]
Cappozzo, A., Catani, F., Leardini, A., Benedetti, M. G., and Della Croce, U., 1996, “Position and Orientation in Space of Bones During Movement: Experimental Artifacts,” Clin. Biomech., 11(2), pp. 90–100. [CrossRef]
Chao, E. Y., Laughman, R. K., Schneider, E., and Stauffer, R. N., 1983, “Normative Data of Knee Joint Motion and Ground Reaction Forces in Adult Level Walking,” J. Biomech., 16(3), pp. 219–233. [CrossRef] [PubMed]
Lafortune, M. A., Cavanagh, P. R., Sommer, H. J. D., and Kalenak, A., 1992, “Three-Dimensional Kinematics of the Human Knee During Walking,” J. Biomech., 25(4), pp. 347–357. [CrossRef] [PubMed]
McLean, S. G., and Samorezov, J. E., 2009, “Fatigue-Induced ACL Injury Risk Stems From a Degradation in Central Control,” Med. Sci. Sports Exercise, 41(8), pp. 1661–1672. [CrossRef]
Ramakrishnan, H. K., and Kadaba, M. P., 1991, “On the Estimation of Joint Kinematics During Gait,” J. Biomech., 24(10), pp. 969–977. [CrossRef] [PubMed]
Kettelkamp, D. B., Johnson, R. J., Smidt, G. L., Chao, E. Y., and Walker, M., 1970, “An Electrogoniometric Motion in Normal of Knee Gait,” J. Bone Jt. Surg., 52-A(4), pp. 775–790.
Brantigan, O. C., and Voshell, A. F., 1941, “The Mechanics of the Ligaments and Menisci of the Knee Joint,” J. Bone Jt. Surg., 23, pp. 44–66.
Lane, J. G., Irby, S. E., Kaufman, K., Rangger, C., and Daniel, D. M., 1994, “The Anterior Cruciate Ligament in Controlling Axial Rotation. An Evaluation of its Effect,” Am. J. Sports Med., 22(2), pp. 289–293. [CrossRef] [PubMed]
Reuben, J. D., Rovick, J. S., Schrager, R. J., Walker, P. S., and Boland, A. L., 1989, “Three-Dimensional Dynamic Motion Analysis of the Anterior Cruciate Ligament Deficient Knee Joint,” Am. J. Sports Med., 17(4), pp. 463–471. [CrossRef] [PubMed]
Andersen, H. N., and Dyhre-Poulsen, P., 1997, “The Anterior Cruciate Ligament Does Play a Role in Controlling Axial Rotation in the Knee,” Knee Surg. Sports Traumatol. Arthrosc., 5(3), pp. 145–149. [CrossRef] [PubMed]
Lipke, J. M., Janecki, C. J., Nelson, C. L., McLeod, P., Thompson, C., Thompson, J., and Haynes, D. W., 1981, “The Role of Incompetence of the Anterior Cruciate and Lateral Ligaments in Anterolateral and Anteromedial Instability. A Biomechanical Study of Cadaver Knees,” J. Bone Jt. Surg., Am., 63(6), pp. 954–960.
Markolf, K. L., Bargar, W. L., Shoemaker, S. C., and Amstutz, H. C., 1981, “The Role of Joint Load in Knee Stability,” J. Bone Jt. Surg., Am., 63(4), pp. 570–585.
Norwood, L. A., Andrews, J. R., Meisterling, R. C., and Glancy, G. L., 1979, “Acute Anterolateral Rotatory Instability of the Knee,” J. Bone Jt. Surg. Am., 61(5), pp. 704–709.
Seering, W. P., Piziali, R. L., Nagel, D. A., and Schurman, D. J., 1980, “The Function of the Primary Ligaments of the Knee in Varus-Valgus and Axial Rotation,” J. Biomech., 13(9), pp. 785–794. [CrossRef] [PubMed]
Shoemaker, S. C., and Markolf, K. L., 1985, “Effects of Joint Load on the Stiffness and Laxity of Ligament-Deficient Knees. An In Vitro Study of the Anterior Cruciate and Medial Collateral Ligaments,” J. Bone Jt. Surg., Am., 67(1), pp. 136–146.
Wroble, R. R., Grood, E. S., Cummings, J. S., Henderson, J. M., and Noyes, F. R., 1993, “The Role of the Lateral Extraarticular Restraints in the Anterior Cruciate Ligament-Deficient Knee,” Am. J. Sports Med., 21(2), pp. 257–262; discussion 263. [CrossRef] [PubMed]
Grood, E. S., Noyes, F. R., Butler, D. L., and Suntay, W. J., 1981, “Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees,” J. Bone Jt. Surg. Am., 63(8), pp. 1257–1269.
Nielsen, S., Ovesen, J., and Rasmussen, O., 1984, “The Anterior Cruciate Ligament of the Knee: An Experimental Study of Its Importance in Rotatory Knee Instability,” Arch. Orthop. Trauma Surg., 103(3), pp. 170–174. [CrossRef] [PubMed]
Inoue, M., McGurk Burleson, E., Hollis, J. M., and Woo, S. L.-Y., 1987, “Treatment of the Medial Collateral Ligament Injury. I: The Importance of Anterior Cruciate Ligament on the Varus-Valgus Knee Laxity,” Am. J. Sports Med., 15(1), pp. 15–21. [CrossRef] [PubMed]
Woo, S. L.-Y., Kanamori, A., Zeminski, J., Yagi, M., Papageorgiou, C., and Fu, F. H., 2002, “The Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads,” J. Bone Jt. Surg. Am., 84-A(6), pp. 907–914.
Fujie, H., Mabuchi, K., Woo, S. L.-Y., Livesay, G. A., Arai, S., and Tsukamoto, Y., 1993, “The Use of Robotics Technology to Study Human Joint Kinematics: A New Methodology,” ASME J. Biomech. Eng., 115(3), pp. 211–217. [CrossRef]
Rudy, T. W., Livesay, G. A., Woo, S. L.-Y., and Fu, F. H., 1996, “A Combined Robotic/Universal Force Sensor Approach to Determine In Situ Forces of Knee Ligaments,” J. Biomech., 29(10), pp. 1357–1360. [CrossRef] [PubMed]
Galway, H. R., Beaupre, A., and MacIntosh, D. L., 1972, “Pivot Shift: A Clinical Sign of Symptomatic Anterior Cruciate in Suffiency,” J. Bone Jt. Surg., 54, pp. 763–764.
Fujie, H., Livesay, G. A., Woo, S. L.-Y., Kashiwaguchi, S., and Blomstrom, G., 1995, “The Use of a Universal Force-Moment Sensor to Determine In-Situ Forces in Ligaments: A New Methodology,” ASME J. Biomech. Eng., 117(1), pp. 1–7. [CrossRef]
Livesay, G. A., Rudy, T. W., Woo, S. L.-Y., Runco, T. J., Sakane, M., Li, G., and Fu, F. H., 1997, “Evaluation of the Effect of Joint Constraints on the In Situ Force Distribution in the Anterior Cruciate Ligament,” J. Orthop. Res., 15(2), pp. 278–284. [CrossRef] [PubMed]
Sakane, M., Fox, R. J., Woo, S. L.-Y., Livesay, G. A., Li, G., and Fu, F. H., 1997, “In Situ Forces in the Anterior Cruciate Ligament and Its Bundles in Response to Anterior Tibial Loads,” J. Orthop. Res., 15(2), pp. 285–293. [CrossRef] [PubMed]
Gabriel, M. T., Wong, E. K., Woo, S. L.-Y., Yagi, M., and Debski, R. E., 2004, “Distribution of In Situ Forces in the Anterior Cruciate Ligament in Response to Rotatory Loads,” J. Orthop. Res., 22(1), pp. 85–89. [CrossRef] [PubMed]
Kanamori, A., Woo, S. L.-Y., Ma, C. B., Zeminski, J., Rudy, T. W., Li, G., and Livesay, G. A., 2000, “The Forces in the Anterior Cruciate Ligament and Knee Kinematics During a Simulated Pivot Shift Test: A Human Cadaveric Study Using Robotic Technology,” Arthroscopy, 16(6), pp. 633–639. [CrossRef] [PubMed]
Wineman, A., 2000, Mechanical Response of Polymers: An Introduction, Cambridge University, Cambridge, UK.
Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A., and Slauterbeck, J. L., 1995, “Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces,” J. Orthop. Res., 13(6), pp. 930–935. [CrossRef] [PubMed]
Renstrom, P., Arms, S. W., Stanwyck, T. S., Johnson, R. J., and Pope, M. H., 1986, “Strain Within the Anterior Cruciate Ligament During Hamstring and Quadriceps Activity,” Am. J. Sports Med., 14(1), pp. 83–87. [CrossRef] [PubMed]
Mizuno, K., Andrish, J. T., van den Bogert, A. J., and McLean, S. G., 2009, “Gender Dimorphic ACL Strain in Response to Combined Dynamic 3D Knee Joint Loading: Implications for ACL Injury Risk,” Knee, 16(6), pp. 432–440. [CrossRef] [PubMed]
Maletsky, L. P., and Hillberry, B. M., 2005, “Simulating Dynamic Activities Using a Five-Axis Knee Simulator,” ASME J. Biomech. Eng., 127(1), pp. 123–133. [CrossRef]
Withrow, T. J., Huston, L. J., Wojtys, E. M., and Ashton-Miller, J. A., 2006, “The Relationship Between Quadriceps Muscle Force, Knee Flexion, and Anterior Cruciate Ligament Strain in an In Vitro Simulated Jump Landing,” Am. J. Sports Med., 34(2), pp. 269–274. [CrossRef] [PubMed]
Withrow, T. J., Huston, L. J., Wojtys, E. M., and Ashton-Miller, J. A., 2008, “Effect of Varying Hamstring Tension on Anterior Cruciate Ligament Strain During In Vitro Impulsive Knee Flexion and Compression Loading,” J. Bone Jt. Surg. Am., 90(4), pp. 815–823. [CrossRef]
Oh, Y. K., Lipps, D. B., Ashton-Miller, J. A., and Wojtys, E. M., 2012, “What Strains the Anterior Cruciate Ligament During a Pivot Landing?,” Am. J. Sports Med., 40(3), pp. 574–583. [CrossRef] [PubMed]
McLean, S. G., Oh, Y. K., Palmer, M. L., Lucey, S. M., Lucarelli, D. G., Ashton-Miller, J. A., and Wojtys, E. M., 2011, “The Relationship Between Anterior Tibial Acceleration, Tibial Slope, and ACL Strain During a Simulated Jump Landing Task,” J. Bone Jt. Surg. Am., 93(14), pp. 1310–1317. [CrossRef]
Lipps, D. B., Oh, Y. K., Ashton-Miller, J. A., and Wojtys, E. M., 2012, “Morphologic Characteristics Help Explain the Gender Difference in Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing,” Am. J. Sports Med., 40(1), pp. 32–40. [CrossRef] [PubMed]
Hashemi, J., Breighner, R., Jang, T. H., Chandrashekar, N., Ekwaro-Osire, S., and Slauterbeck, J. R., 2010, “Increasing Preactivation of the Quadriceps Muscle Protects the Anterior Cruciate Ligament During the Landing Phase of a Jump: An In Vitro Simulation,” Knee, 17(3), pp. 235–241. [CrossRef] [PubMed]
Domire, Z. J., Boros, R. L., and Hashemi, J., 2011, “An Examination of Possible Quadriceps Force at the Time of Anterior Cruciate Ligament Injury During Landing: A Simulation Study,” J. Biomech., 44(8), pp. 1630–1632. [CrossRef] [PubMed]
Lipps, D. B., Wojtys, E. M., and Ashton-Miller, J. A., 2013, “Anterior Cruciate Ligament Fatigue Failures in Knees Subjected to Repeated Simulated Pivot Landings,” Am. J. Sports Med., 41(5), pp. 1058–1066. [CrossRef] [PubMed]
McLean, S. G., Su, A., and van den Bogert, A. J., 2003, “Development and Validation of a 3-D Model to Predict Knee Joint Loading During Dynamic Movement,” ASME J. Biomech. Eng., 125(6), pp. 864–874. [CrossRef]
Pflum, M. A., Shelburne, K. B., Torry, M. R., Decker, M. J., and Pandy, M. G., 2004, “Model Prediction of Anterior Cruciate Ligament Force During Drop-Landings,” Med. Sci. Sports Exercise, 36(11), pp. 1949–1958. [CrossRef]
McLean, S. G., Huang, X., Su, A., and Van Den Bogert, A. J., 2004, “Sagittal Plane Biomechanics Cannot Injure the ACL During Sidestep Cutting,” Clin. Biomech. (Bristol, Avon), 19(8), pp. 828–838. [CrossRef] [PubMed]
Shelburne, K. B., Pandy, M. G., Anderson, F. C., and Torry, M. R., 2004, “Pattern of Anterior Cruciate Ligament Force in Normal Walking,” J. Biomech., 37(6), pp. 797–805. [CrossRef] [PubMed]
Halloran, J. P., Erdemir, A., and van den Bogert, A. J., 2009, “Adaptive Surrogate Modeling for Efficient Coupling of Musculoskeletal Control and Tissue Deformation Models,” ASME J. Biomech. Eng., 131(1), p. 11014. [CrossRef]
Cerulli, G., Benoit, D. L., Lamontagne, M., Caraffa, A., and Liti, A., 2003, “In Vivo Anterior Cruciate Ligament Strain Behaviour During a Rapid Deceleration Movement: Case Report,” Knee Surg. Sports Traumatol. Arthrosc., 11(5), pp. 307–311. [CrossRef] [PubMed]
Torry, M. R., Shelburne, K. B., Peterson, D. S., Giphart, J. E., Krong, J. P., Myers, C., Steadman, J. R., and Woo, S. L.-Y., 2011, “Knee Kinematic Profiles During Drop Landings: A Biplane Fluoroscopy Study,” Med. Sci. Sports Exercise, 43(3), pp. 533–541. [CrossRef]
Torry, M. R., Myers, C., Shelburne, K. B., Peterson, D., Giphart, J. E., Pennington, W. W., Krong, J. P., Woo, S. L.-Y., and Steadman, J. R., 2011, “Relationship of Knee Shear Force and Extensor Moment on Knee Translations in Females Performing Drop Landings: A Biplane Fluoroscopy Study,” Clin. Biomech., 26(10), pp. 1019–1024. [CrossRef]
Torry, M. R., Myers, C., Pennington, W. W., Shelburne, K. B., Krong, J. P., Giphart, J. E., Steadman, J. R., and Woo, S. L.-Y., 2011, “Relationship of Anterior Knee Laxity to Knee Translations During Drop Landings: A Bi-Plane Fluoroscopy Study,” Knee Surg. Sports Traumatol. Arthrosc., 19(4), pp. 653–662. [CrossRef] [PubMed]
Berns, G. S., Hull, M. L., and Patterson, H. A., 1992, “Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading,” J. Orthop. Res., 10(2), pp. 167–176. [CrossRef] [PubMed]
Woo, S. L.-Y., 1982, “Mechanical Properties of Tendons and Ligaments. I. Quasi-Static and Nonlinear Viscoelastic Properties,” Biorheology, 19(3), pp. 385–396. [PubMed]
Butler, D. L., Guan, Y., Kay, M. D., Cummings, J. F., Feder, S. M., and Levy, M. S., 1992, “Location-Dependent Variations in the Material Properties of the Anterior Cruciate Ligament,” J. Biomech., 25(5), pp. 511–518. [CrossRef] [PubMed]
Chandrashekar, N., Mansouri, H., Slauterbeck, J., and Hashemi, J., 2006, “Sex-Based Differences in the Tensile Properties of the Human Anterior Cruciate Ligament,” J. Biomech., 39(16), pp. 2943–2950. [CrossRef] [PubMed]
Kennedy, J. C., Hawkins, R. J., Willis, R. B., and Danylchuck, K. D., 1976, “Tension Studies of Human Knee Ligaments. Yield Point, Ultimate Failure, and Disruption of the Cruciate and Tibial Collateral Ligaments,” J. Bone Jt. Surg. Am., 58(3), pp. 350–355.
Noyes, F. R., Butler, D. L., Grood, E. S., Zernicke, R. F., and Hefzy, M. S., 1984, “Biomechanical Analysis of Human Ligament Grafts Used in Knee-Ligament Repairs and Reconstructions,” J Bone Jt. Surg., Am., 66(3), pp. 344–352.
Woo, S. L.-Y., Gomez, M. A., and Akeson, W. H., 1981, “The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament,” ASME J. Biomech. Eng., 103(4), pp. 293–298. [CrossRef]
Beynnon, B. D., and Johnson, R. J., 1996, “Anterior Cruciate Ligament Injury Rehabilitation in Athletes. Biomechanical Considerations,” Sport. Med., 22(1), pp. 54–64. [CrossRef]
Hefzy, M. S., and Grood, E. S., 1986, “Sensitivity of Insertion Locations on Length Patterns of Anterior Cruciate Ligament Fibers,” ASME J. Biomech. Eng., 108(1), pp. 73–82. [CrossRef]
Jones, R. S., Nawana, N. S., Pearcy, M. J., Learmonth, D. J. A., Bickerstaff, D. R., Costi, J. J., and Paterson, R. S., 1995, “Mechanical Properties of the Human Anterior Cruciate Ligament,” Clin. Biomech. (Bristol, Avon), 10(7), pp. 339–344. [CrossRef] [PubMed]
Woo, S. L.-Y., Hollis, J. M., Adams, D. J., Lyon, R. M., and Takai, S., 1991, “Tensile Properties of the Human Femur-Anterior Cruciate Ligament-Tibia Complex: The Effects of Specimen Age and Orientation,” Am. J. Sports Med., 19(3), pp. 217–225. [CrossRef] [PubMed]
Mommersteeg, T. J., Blankevoort, L., Huiskes, R., Kooloos, J. G., and Kauer, J. M., 1996, “Characterization of the Mechanical Behavior of Human Knee Ligaments: A Numerical-Experimental Approach,” J. Biomech., 29(2), pp. 151–160. [CrossRef] [PubMed]
Butler, D. L., Kay, M. D., and Stouffer, D. C., 1986, “Comparison of Material Properties in Fascicle-Bone Units From Human Patellar Tendon and Knee Ligaments,” J. Biomech., 19(6), pp. 425–432. [CrossRef] [PubMed]
Furman, W., Marshall, J. L., and Girgis, F., 1976, “The Anterior Cruciate Ligament: A Functional Analysis Based on Postmortem Studies,” J. Bone Jt. Surg., 58-A(2), pp. 179–185.
Amis, A. A., and Dawkins, G. P. C., 1991, “Functional Anatomy of the Anterior Cruciate Ligament,” J. Bone Jt. Surg., pp. 260–267.
Kwan, M. K., Lin, T. W., and Woo, S. L.-Y., 1993, “On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament,” J. Biomech., 26(4–5), pp. 447–452. [CrossRef] [PubMed]
Beynnon, B. D., Fleming, B. C., Johnson, R. J., Nichols, C. E., Renstrom, P. A., and Pope, M. H., 1995, “Anterior Cruciate Ligament Strain Behavior During Rehabilitation Exercises In Vivo,” Am. J. Sports Med., 23(1), pp. 24–34. [CrossRef] [PubMed]
Beynnon, B. D., Johnson, R. J., Fleming, B. C., Stankewich, C. J., Renstrom, P. A., and Nichols, C. E., 1997, “The Strain Behavior of the Anterior Cruciate Ligament During Squatting and Active Flexion-Extension. A Comparison of an Open and a Closed Kinetic Chain Exercise,” Am. J. Sports Med., 25(6), pp. 823–829. [CrossRef] [PubMed]
Beynnon, B. D., Johnson, R. J., Fleming, B. C., Peura, G. D., Renstrom, P. A., Nichols, C. E., and Pope, M. H., 1997, “The Effect of Functional Knee Bracing on the Anterior Cruciate Ligament in the Weightbearing and Nonweightbearing Knee,” Am. J. Sports Med., 25(3), pp. 353–359. [CrossRef] [PubMed]
Beynnon, B. D., and Fleming, B. C., 1998, “Anterior Cruciate Ligament Strain In-Vivo: A Review of Previous Work,” J. Biomech., 31(6), pp. 519–525. [CrossRef] [PubMed]
Yamamoto, E., Hayashi, K., and Yamamoto, N., 1999, “Mechanical Properties of Collagen Fascicles From the Rabbit Patellar Tendon,” ASME J. Biomech. Eng., 121(1), pp. 124–131. [CrossRef]
Johnson, G. A., Tramaglini, D. M., Levine, R. E., Ohno, K., Choi, N. Y., and Woo, S. L.-Y., 1994, “Tensile and Viscoelastic Properties of Human Patellar Tendon,” J. Orthop. Res., 12(6), pp. 796–803. [CrossRef] [PubMed]
Thornton, G. M., Oliynyk, A., Frank, C. B., and Shrive, N. G., 1997, “Ligament Creep Cannot be Predicted From Stress Relaxation at Low Stress: A Biomechanical Study of the Rabbit Medial Collateral Ligament,” J. Orthop. Res., 15(5), pp. 652–656. [CrossRef] [PubMed]
Pioletti, D. P., Rakotomanana, L. R., and Leyvraz, P. F., 1999, “Strain Rate Effect on the Mechanical Behavior of the Anterior Cruciate Ligament-Bone Complex,” Med. Eng. Phys., 21(2), pp. 95–100. [CrossRef] [PubMed]
Smith, C. K., Hull, M. L., and Howell, S. M., 2010, “Does Graft Construct Lengthening at the Fixations Cause an Increase in Anterior Laxity Following Anterior Cruciate Ligament Reconstruction In Vivo?,” ASME J. Biomech. Eng., 132(8), p. 081001. [CrossRef]
Elliott, D. M., Robinson, P. S., Gimbel, J. A., Sarver, J. J., Abboud, J. A., Iozzo, R. V., and Soslowsky, L. J., 2003, “Effect of Altered Matrix Proteins on Quasilinear Viscoelastic Properties in Transgenic Mouse Tail Tendons,” Ann. Biomed. Eng., 31(5), pp. 599–605. [CrossRef] [PubMed]
Martelli, S., Joukhadar, A., Zaffagnini, S., Marcacci, M., Lavallee, S., and Champleboux, G., 1998, “Fiber-Based Anterior Cruciate Ligament Model for Biomechanical Simulations,” J. Orthop. Res., 16(3), pp. 379–385. [CrossRef] [PubMed]
Provenzano, P. P., Lakes, R. S., Keenan, T., and Vanderby, J. R., 2001, “Nonlinear Ligament Viscoelasticity,” Ann. Biomed. Eng., 29(10), pp. 908–914. [CrossRef] [PubMed]
Arruda, E. M., Calve, S., Dennis, R. G., Mundy, K., and Baar, K., 2006, “Regional Variation of Tibialis Anterior Tendon Mechanics Is Lost Following Denervation,” J. Appl. Physiol., 101(4), pp. 1113–1117. [CrossRef] [PubMed]
Arendt, E. A., and Dick, R., 1995, “Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. NCAA Data and Review of Literature,” Am. J. Sports Med., 23(6), pp. 694–701. [CrossRef] [PubMed]
McLean, S. G., Lipfert, S. W., and van den Bogert, A. J., 2004, “Effect of Gender and Defensive Opponent on the Biomechanics of Sidestep Cutting,” Med. Sci. Sports Exercise, 36(6), pp. 1008–1016. [CrossRef]
McLean, S. G., Neal, R. J., Myers, P. T., and Walters, M. R., 1999, “Knee Joint Kinematics During the Sidestep Cutting Maneuver: Potential for Injury in Women,” Med. Sci. Sports Exercise, 31(7), pp. 959–968. [CrossRef]
Hewett, T. E., Myer, G. D., and Ford, K. R., 2006, “Anterior Cruciate Ligament Injuries in Female Athletes: Part 1, Mechanisms and Risk Factors,” Am. J. Sports Med., 34(2), pp. 299–311. [CrossRef] [PubMed]
Myer, G. D., Ford, K. R., and Hewett, T. E., 2005, “The Effects of Gender on Quadriceps Muscle Activation Strategies During a Maneuver That Mimics a High ACL Injury Risk Position,” J. Electromyogr. Kinesiol., 15(2), pp. 181–189. [CrossRef] [PubMed]
Huston, L. J., and Wojtys, E. M., 1996, “Neuromuscular Performance Characteristics in Elite Female Athletes,” Am. J. Sports Med., 24(4), pp. 427–436. [CrossRef] [PubMed]
Gwinn, D. E., Wilckens, J. H., McDevitt, E. R., Ross, G., and Kao, T. C., 2000, “The Relative Incidence of Anterior Cruciate Ligament Injury in Men and Women at the United States Naval Academy,” Am. J. Sports Med., 28(1), pp. 98–102. [PubMed]
Yu, B., Herman, D., Preston, J., Lu, W., Kirkendall, D. T., and Garrett, W. E., 2004, “Immediate Effects of a Knee Brace With a Constraint to Knee Extension on Knee Kinematics and Ground Reaction Forces in a Stop-Jump Task,” Am. J. Sports Med., 32(5), pp. 1136–1143. [CrossRef] [PubMed]
Hewett, T. E., Ford, K. R., and Myer, G. D., 2006, “Anterior Cruciate Ligament Injuries in Female Athletes: Part 2, A Meta-Analysis of Neuromuscular Interventions Aimed at Injury Prevention,” Am. J. Sports Med., 34(3), pp. 490–498. [CrossRef] [PubMed]
McLean, S. G., Walker, K. B., and van den Bogert, A. J., 2005, “Effect of Gender on Lower Extremity Kinematics During Rapid Direction Changes: An Integrated Analysis of Three Sports Movements,” J. Sci. Med. Sport, 8(4), pp. 411–422. [CrossRef] [PubMed]
Anderson, A. F., Dome, D. C., Gautam, S., Awh, M. H., and Rennirt, G. W., 2001, “Correlation of Anthropometric Measurements, Strength, Anterior Cruciate Ligament Size, and Intercondylar Notch Characteristics to Sex Differences in Anterior Cruciate Ligament Tear Rates,” Am. J. Sports Med., 29(1), pp. 58–66. [PubMed]
Chandrashekar, N., Slauterbeck, J., and Hashemi, J., 2005, “Sex-Based Differences in the Anthropometric Characteristics of the Anterior Cruciate Ligament and its Relation to Intercondylar Notch Geometry: A Cadaveric Study,” Am. J. Sports Med., 33(10), pp. 1492–1498. [CrossRef] [PubMed]
Hashemi, J., Breighner, R., Chandrashekar, N., Hardy, D. M., Chaudhari, A. M., Shultz, S. J., Slauterbeck, J. R., and Beynnon, B. D., 2011, “Hip Extension, Knee Flexion Paradox: A New Mechanism for Non-Contact ACL Injury,” J. Biomech., 44(4), pp. 577–585. [CrossRef] [PubMed]
Muneta, T., Takakuda, K., and Yamamoto, H., 1997, “Intercondylar Notch Width and Its Relation to the Configuration and Cross-Sectional Area of the Anterior Cruciate Ligament. A Cadaveric Knee Study,” Am. J. Sports Med., 25(1), pp. 69–72. [CrossRef] [PubMed]
Hashemi, J., Chandrashekar, N., Mansouri, H., Slauterbeck, J. R., and Hardy, D. M., 2008, “The Human Anterior Cruciate Ligament: Sex Differences in Ultrastructure and Correlation With Biomechanical Properties,” J. Orthop. Res., 26(7), pp. 945–950. [CrossRef] [PubMed]
Shultz, S. J., Kirk, S. E., Johnson, M. L., Sander, T. C., and Perrin, D. H., 2004, “Relationship Between Sex Hormones and Anterior Knee Laxity Across the Menstrual Cycle,” Med. Sci. Sports Exercise, 36(7), pp. 1165–1174. [CrossRef]
Shultz, S. J., Schmitz, R. J., Nguyen, A. D., Chaudhari, A. M., Padua, D. A., McLean, S. G., and Sigward, S. M., 2010, “ACL Research Retreat V: An Update on ACL Injury Risk and Prevention, March 25-27, 2010, Greensboro, NC,” J. Athl. Train., 45(5), pp. 499–508. [CrossRef] [PubMed]
McLean, S. G., Huang, X., and van den Bogert, A. J., 2008, “Investigating Isolated Neuromuscular Control Contributions to Non-Contact Anterior Cruciate Ligament Injury Risk via Computer Simulation Methods,” Clin. Biomech., 23(7), pp. 926–936. [CrossRef]
Pomeroy, S. M., Davidson, S. P., Williams, C. J., and McLean, S. G., 2013, “Effects of Maturation on Knee Morpho-Mechanics During High Risk Landings,” Med. Sci. Sports Exercise (to be published).
Chandrashekar, N., Hashemi, J., Slauterbeck, J., and Beynnon, B. D., 2008, “Low-Load Behaviour of the Patellar Tendon Graft and Its Relevance to the Biomechanics of the Reconstructed Knee,” Clin. Biomech. (Bristol, Avon), 23(7), pp. 918–925. [CrossRef] [PubMed]
Yoshioka, Y., Siu, D., and Cooke, T. D., 1987, “The Anatomy and Functional Axes of the Femur,” J. Bone Jt. Surg. Am., 69(6), pp. 873–880.
Yoshioka, Y., Siu, D. W., Scudamore, R. A., and Cooke, T. D., 1989, “Tibial Anatomy and Functional Axes,” J. Orthop. Res., 7(1), pp. 132–137. [CrossRef] [PubMed]
Simon, R. A., Everhart, J. S., Nagaraja, H. N., and Chaudhari, A. M., 2010, “A Case-Control Study of Anterior Cruciate Ligament Volume, Tibial Plateau Slopes and Intercondylar Notch Dimensions in ACL-Injured Knees,” J. Biomech., 43(9), pp. 1702–1707. [CrossRef] [PubMed]
Stein, V., Li, L., Guermazi, A., Zhang, Y., Kent Kwoh, C., Eaton, C. B., and Hunter, D. J., 2010, “The Relation of Femoral Notch Stenosis to ACL Tears in Persons With Knee Osteoarthritis,” Osteoarthritis Cartilage, 18(2), pp. 192–199. [CrossRef] [PubMed]
Uhorchak, J. M., Scoville, C. R., Williams, G. N., Arciero, R. A., St Pierre, P., and Taylor, D. C., 2003, “Risk Factors Associated With Noncontact Injury of the Anterior Cruciate Ligament: A Prospective Four-Year Evaluation of 859 West Point Cadets,” Am. J. Sports Med., 31(6), pp. 831–842. [PubMed]
Davis, T. J., Shelbourne, K. D., and Klootwyk, T. E., 1999, “Correlation of the Intercondylar Notch Width of the Femur to the Width of the Anterior and Posterior Cruciate Ligaments,” Knee Surg. Sports Traumatol. Arthrosc., 7(4), pp. 209–214. [CrossRef] [PubMed]
Dienst, M., Schneider, G., Altmeyer, K., Voelkering, K., Georg, T., Kramann, B., and Kohn, D., 2007, “Correlation of Intercondylar Notch Cross Sections to the ACL Size: A High Resolution MR Tomographic In Vivo Analysis,” Arch. Orthop. Trauma Surg., 127(4), pp. 253–260. [CrossRef] [PubMed]
Charlton, W. P., St John, T. A., Ciccotti, M. G., Harrison, N., and Schweitzer, M., 2002, “Differences in Femoral Notch Anatomy Between Men and Women: A Magnetic Resonance Imaging Study,” Am. J. Sports Med., 30(3), pp. 329–333. [PubMed]
Stijak, L., Radonjic, V., Nikolic, V., Blagojevic, Z., Aksic, M., and Filipovic, B., 2009, “Correlation Between the Morphometric Parameters of the Anterior Cruciate Ligament and the Intercondylar Width: Gender and Age Differences,” Knee Surg. Sports Traumatol. Arthrosc., 17(7), pp. 812–817. [CrossRef] [PubMed]
Teitz, C. C., Lind, B. K., and Sacks, B. M., 1997, “Symmetry of the Femoral Notch Width Index,” Am. J. Sports Med., 25(5), pp. 687–690. [CrossRef] [PubMed]
Ireland, M. L., Ballantyne, B. T., Little, K., and McClay, I. S., 2001, “A Radiographic Analysis of the Relationship Between the Size and Shape of the Intercondylar Notch and Anterior Cruciate Ligament Injury,” Knee Surg. Sports Traumatol. Arthrosc., 9(4), pp. 200–205. [CrossRef] [PubMed]
Stijak, L., Nikolic, V., Blagojevic, Z., Radonjic, V., Santrac-Stijak, G., Stankovic, G., and Popovic, N., 2006, “Influence of Morphometric Intercondylar Notch Parameters in ACL Ruptures,” Acta Chir Iugosl., 53(4), pp. 79–83. [CrossRef] [PubMed]
Souryal, T. O., and Freeman, T. R., 1993, “Intercondylar Notch Size and Anterior Cruciate Ligament Injuries in Athletes. A Prospective Study [Published Erratum Appears in 1993, Am. J. Sports Med., 21(5), p. 723],” Am. J. Sports Med., 21(4), pp. 535–539. [CrossRef] [PubMed]
Stijak, L., Herzog, R. F., and Schai, P., 2008, “Is There an Influence of the Tibial Slope of the Lateral Condyle on the ACL Lesion? A Case-Control Study,” Knee Surg. Sports Traumatol. Arthrosc., 16(2), pp. 112–117. [CrossRef] [PubMed]
Fung, D. T., and Zhang, L. Q., 2003, “Modeling of ACL Impingement Against the Intercondylar Notch,” Clin. Biomech., 18(10), pp. 933–941. [CrossRef]
Fung, D. T., Hendrix, R. W., Koh, J. L., and Zhang, L. Q., 2007, “ACL Impingement Prediction Based on MRI Scans of Individual Knees,” Clin. Orthop. Relat. Res., 460, pp. 210–218. [PubMed]
Park, H. S., Ahn, C., Fung, D. T., Ren, Y., and Zhang, L. Q., 2010, “A Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement Against the Femoral Intercondylar Notch,” J. Biomech., 43(10), pp. 2039–2042. [CrossRef] [PubMed]
Everhart, J. S., Flanigan, D. C., Simon, R. A., and Chaudhari, A. M., 2010, “Association of Noncontact Anterior Cruciate Ligament Injury With Presence and Thickness of a Bony Ridge on the Anteromedial Aspect of the Femoral Intercondylar Notch,” Am. J. Sports Med., 38(8), pp. 1667–1673. [CrossRef] [PubMed]
Shin, C. S., Chaudhari, A. M., Dyrby, C. O., and Andriacchi, T. P., 2009, “Influence of Patellar Ligament Insertion Angle on Quadriceps Usage During Walking in Anterior Cruciate Ligament Reconstructed Subjects,” J. Orthop. Res., 27(6), pp. 730–735. [CrossRef] [PubMed]
Van Eck, C. F., Martins, C. A., Vyas, S. M., Celentano, U., van Dijk, C. N., and Fu, F. H., 2010, “Femoral Intercondylar Notch Shape and Dimensions in ACL-Injured Patients,” Knee Surg. Sports Traumatol. Arthrosc., 18(9), pp. 1257–1262. [CrossRef] [PubMed]
Brandon, M. L., Haynes, P. T., Bonamo, J. R., Flynn, M. I., Barrett, G. R., and Sherman, M. F., 2006, “The Association Between Posterior-Inferior Tibial Slope and Anterior Cruciate Ligament Insufficiency,” Arthroscopy, 22(8), pp. 894–899. [CrossRef] [PubMed]
Todd, M. S., Lalliss, S., Garcia, E., DeBerardino, T. M., and Cameron, K. L., 2010, “The Relationship Between Posterior Tibial Slope and Anterior Cruciate Ligament Injuries,” Am. J. Sports Med., 38(1), pp. 63–67. [CrossRef] [PubMed]
Hashemi, J., Chandrashekar, N., Mansouri, H., Gill, B., Slauterbeck, J. R., Schutt, R. C., Jr., Dabezies, E., and Beynnon, B. D., 2010, “Shallow Medial Tibial Plateau and Steep Medial and Lateral Tibial Slopes: New Risk Factors for Anterior Cruciate Ligament Injuries,” Am. J. Sports Med., 38(1), pp. 54–62. [CrossRef] [PubMed]
McLean, S. G., Lucey, S. M., Rohrer, S., and Brandon, C., 2010, “Knee Joint Anatomy Predicts High-Risk In Vivo Dynamic Landing Knee Biomechanics,” Clin. Biomech. (Bristol, Avon), 25(8), pp. 781–788. [CrossRef] [PubMed]
Lewis, J. L., Lew, W. D., Hill, J. A., Hanley, P., Ohland, K., Kirstukas, S., and Hunter, R. E., 1989, “Knee Joint Motion and Ligamental Forces Before and After ACL Reconstruction,” ASME J. Biomech. Eng., 111(2), pp. 97–106. [CrossRef]
Dye, S. F., Wojtys, E. M., Fu, F. H., Fithian, D. C., and Gillquist, I., 1999, “Factors Contributing to Function of the Knee Joint After Injury or Reconstruction of the Anterior Cruciate Ligament,” Instr. Course Lect., 48, pp. 185–198. [PubMed]
Harner, C. D., Giffin, J. R., Dunteman, R. C., Annunziata, C. C., and Friedman, M. J., 2001, “Evaluation and Treatment of Recurrent Instability After Anterior Cruciate Ligament Reconstruction,” Instr. Course Lect., 50, pp. 463–474. [PubMed]
Moffat, K. L., Sun, W.-H. S., Chahine, N. O., Pena, P. E., Doty, S. B., Hung, C. T., Ateshian, G. A., and Lu, H. H., 2006, “Characterization of the Mechanical Properties and Mineral Distribution of the Anterior Cruciate Ligament-To-Bone Insertion Site,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 1, pp. 2366–2369.
Scheffler, S. U., Unterhauser, F. N., and Weiler, A., 2008, “Graft Remodeling and Ligamentization After Cruciate Ligament Reconstruction,” Knee Surg. Sports Traumatol. Arthrosc., 16(9), pp. 834–842. [CrossRef] [PubMed]
Keays, S. L., Bullock-Saxton, J. E., Keays, A. C., Newcombe, P. A., and Bullock, M. I., 2007, “A 6-Year Follow-Up of the Effect of Graft Site on Strength, Stability, Range of Motion, Function, and Joint Degeneration After Anterior Cruciate Ligament Reconstruction: Patellar Tendon Versus Semitendinosus and Gracilis Tendon Graft,” Am. J. Sports Med., 35(5), pp. 729–739. [CrossRef] [PubMed]
Anders, J. O., Venbrocks, R. A., and Weinberg, M., 2008, “Proprioceptive Skills and Functional Outcome After Anterior Cruciate Ligament Reconstruction With a Bone-Tendon-Bone Graft,” Int. Orthop., 32(5), pp. 627–633. [CrossRef] [PubMed]
Hopper, D. M., Strauss, G. R., Boyle, J. J., and Bell, J., 2008, “Functional Recovery After Anterior Cruciate Ligament Reconstruction: A Longitudinal Perspective,” Arch. Phys. Med. Rehabil., 89(8), pp. 1535–1541. [CrossRef] [PubMed]
Smith, F. W., 2004, “Subjective Functional Assessments and the Return to Competitive Sport After Anterior Cruciate Ligament Reconstruction,” Br. J. Sports Med., 38(3), pp. 279–284. [CrossRef] [PubMed]
Ageberg, E., Pettersson, A., and Fridén, T., 2007, “15-Year Follow-Up of Neuromuscular Function in Patients With Unilateral Nonreconstructed Anterior Cruciate Ligament Injury Initially Treated With Rehabilitation and Activity Modification: a Longitudinal Prospective Study,” Am. J. Sports Med., 35(12), pp. 2109–2117. [CrossRef] [PubMed]
Kessler, M. A., Behrend, H., Henz, S., Stutz, G., Rukavina, A., and Kuster, M. S., 2008, “Function, Osteoarthritis and Activity After ACL-Rupture: 11 Years Follow-Up Results of Conservative Versus Reconstructive Treatment,” Knee Surg. Sports Traumatol. Arthrosc., 16(5), pp. 442–448. [CrossRef] [PubMed]
Drogset, J. O., Grontvedt, T., Robak, O. R., Molster, A., Viset, A. T., and Engebretsen, L., 2006, “A Sixteen-Year Follow-Up of Three Operative Techniques for the Treatment of Acute Ruptures of the Anterior Cruciate Ligament,” J. Bone Jt. Surg. Am., 88(5), pp. 944–952. [CrossRef]
Marcacci, M., Zaffagnini, S., Giordano, G., Iacono, F., and Lo, P. M., 2009, “Anterior Cruciate Ligament Reconstruction Associated With Extra-Articular Tenodesis: A Prospective Clinical and Radiographic Evaluation With 10- to 13-Year Follow-Up,” Am. J. Sports Med., 37(4), pp. 707–714. [CrossRef] [PubMed]
Von Porat, A., 2004, “High Prevalence of Osteoarthritis 14 Years After an Anterior Cruciate Ligament Tear in Male Soccer Players: A Study of Radiographic and Patient Relevant Outcomes,” Ann. Rheum. Dis., 63(3), pp. 269–273. [CrossRef] [PubMed]
Shelbourne, K. D., Gray, T., and Haro, M., 2009, “Incidence of Subsequent Injury to Either Knee Within 5 Years After Anterior Cruciate Ligament Reconstruction With Patellar Tendon Autograft,” Am. J. Sports Med., 37(2), pp. 246–251. [CrossRef] [PubMed]
Kaeding, C. C., Aros, B., Pedroza, A., Pifel, E., Amendola, A., Andrish, J. T., Dunn, W. R., Marx, R. G., McCarty, E. C., Parker, R. D., Wright, R. W., and Spindler, K. P., 2011, “Allograft Versus Autograft Anterior Cruciate Ligament Reconstruction: Predictors of Failure From a MOON Prospective Longitudinal Cohort,” Sports Health, 3(1), pp. 73–81. [CrossRef] [PubMed]
Spindler, K. P., and Wright, R. W., 2008, “Clinical Practice. Anterior Cruciate Ligament Tear,” N. Engl. J. Med., 359(20), pp. 2135–2142. [CrossRef] [PubMed]
Aït Si Selmi, T., Fithian, D., and Neyret, P., 2006, “The Evolution of Osteoarthritis in 103 Patients With ACL Reconstruction at 17 Years Follow-Up,” Knee, 13(5), pp. 353–358. [CrossRef] [PubMed]
Salmon, L. J., Russell, V. J., Refshauge, K., Kader, D., Connolly, C., Linklater, J., and Pinczewski, L. A., 2006, “Long-Term Outcome of Endoscopic Anterior Cruciate Ligament Reconstruction With Patellar Tendon Autograft: Minimum 13-Year Review,” Am. J. Sports Med., 34(5), pp. 721–732. [CrossRef] [PubMed]
Ballock, R. T., Woo, S. L.-Y., Lyon, R. M., Hollis, J. M., and Akeson, W. H., 1989, “Use of Patellar Tendon Autograft for Anterior Cruciate Ligament Reconstruction in the Rabbit: A Long-Term Histologic and Biomechanical Study,” J. Orthop. Res., 7(4), pp. 474–485. [CrossRef] [PubMed]
Bosch, U., Decker, B., Kasperczyk, W., Nerlich, A., Oestern, H. J., and Tscherne, H., 1992, “The Relationship of Mechanical Properties to Morphology in Patellar Tendon Autografts After Posterior Cruciate Ligament Replacement in Sheep,” J. Biomech., 25(8), pp. 821–830. [CrossRef] [PubMed]
Jackson, D. W., Grood, E. S., Goldstein, J. D., Rosen, M. A., Kurzweil, P. R., Cummings, J. F., and Simon, T. M., 1992, “A Comparison of Patellar Tendon Autograft and Allograft Used for Anterior Cruciate Ligament Reconstruction in the Goat Model,” Am. J. Sports Med., 21(2), pp. 176–185. [CrossRef]
Haraldsson, B. T., Aagaard, P., Krogsgaard, M., Alkjaer, T., Kjaer, M., and Magnusson, S. P., 2005, “Region-Specific Mechanical Properties of the Human Patella Tendon,” J. Appl. Physiol., 98(3), pp. 1006–1012. [CrossRef] [PubMed]
Chouliaras, V., Ristanis, S., Moraiti, C., Stergiou, N., and Georgoulis, A. D., 2007, “Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Quadrupled Hamstrings and Bone-Patellar Tendon-Bone Autografts: An In Vivo Study Comparing Tibial Internal-External Rotation,” Am. J. Sports Med., 35(2), pp. 189–196. [CrossRef] [PubMed]
Haut Donahue, T. L., Gregersen, C., Hull, M. L., and Howell, S. M., 2001, “Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made From Bovine Digital Extensor and Human Hamstring Tendons,” ASME J. Biomech. Eng., 123(2), pp. 162–169. [CrossRef]
Hashemi, J., Chandrashekar, N., and Slauterbeck, J., 2005, “The Mechanical Properties of the Human Patellar Tendon Are Correlated to Its Mass Density and Are Independent of Sex,” Clin. Biomech. (Bristol, Avon), 20(6), pp. 645–652. [CrossRef] [PubMed]
Clancy, W. G., Narechania, R. G., Rosenberg, T. D., Gmeiner, J. G., Wisnefske, D. D., and Lange, T. A., 1981, “Anterior and Posterior Cruciate Ligament Reconstruction in Rhesus Monkeys,” J. Bone Jt. Surg., 63-A(8), pp. 1270–1284.
Woo, S. L.-Y., Peterson, R. H., Ohland, K. J., Sites, T. J., and Danto, M. I., 1990, “The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study,” J. Orthop. Res., 8(5), pp. 712–721. [CrossRef] [PubMed]
Hart, R. A., Woo, S. L.-Y., and Newton, P. O., 1992, “Ultrastructural Morphometry of Anterior Cruciate and Medial Collateral Ligaments: An Experimental Study in Rabbits,” J. Orthop. Res., 10(1), pp. 96–103. [CrossRef] [PubMed]
Roemhildt, M. L., Coughlin, K. M., Peura, G. D., Badger, G. J., Churchill, D., Fleming, B. C., and Beynnon, B. D., 2010, “Effects of Increased Chronic Loading on Articular Cartilage Material Properties in the Lapine Tibio-Femoral Joint,” J. Biomech., 43(12), pp. 2301–2308. [CrossRef] [PubMed]
Amiel, D., Frank, C., Harwood, F., Fronek, J., and Akeson, W., 1984, “Tendons and Ligaments: A Morphological and Biochemical Comparison,” J. Orthop. Res., 1(3), pp. 257–265. [CrossRef] [PubMed]
Zec, M. L., Thistlethwaite, P., Frank, C. B., and Shrive, N. G., 2010, “Characterization of the Fatigue Behavior of the Medial Collateral Ligament Utilizing Traditional and Novel Mechanical Variables for the Assessment of Damage,” ASME J. Biomech. Eng., 132(1), p. 011001. [CrossRef]
Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M., and Soslowsky, L. J., 2003, “Variation of Biomechanical, Structural, and Compositional Properties Along the Tendon to Bone Insertion Site,” J. Orthop. Res., 21(3), pp. 413–419. [CrossRef] [PubMed]
Calve, S., Lytle, I. F., Grosh, K., Brown, D. L., and Arruda, E. M., 2010, “Implantation Increases Tensile Strength and Collagen Content of Self-Assembled Tendon Constructs,” J. Appl. Physiol., 108(4), pp. 875–881. [CrossRef] [PubMed]
Stasiak, M. E., Wiznia, D., Alzoobaee, S., Ciccotti, M. C., Imhauser, C. W., Voigt, C., Torzilli, P. A., Deng, X.-H., and Rodeo, S. A., 2012, “A Novel Device to Apply Controlled Flexion and Extension to the Rat Knee Following Anterior Cruciate Ligament Reconstruction,” ASME J. Biomech. Eng., 134(4), p. 041008. [CrossRef]
Ma, J., Goble, K., Smietana, M. J., Kostrominova, T. Y., Larkin, L. M., and Arruda, E. M., 2009, “Morphological and Functional Characteristics of Three-Dimensional Engineered Bone-Ligament-Bone Constructs Following Implantation,” ASME J. Biomech. Eng., 131(10), pp. 1010171–1010179. [CrossRef]
Setton, L. A., Mow, V. C., Muller, F. J., Pita, J. C., and Howell, D. S., 1994, “Mechanical Properties of Canine Articular Cartilage Are Significantly Altered Following Transection of the Anterior Cruciate Ligament,” J. Orthop. Res., 12(4), pp. 451–463. [CrossRef] [PubMed]
Figgie, H. E., Bahniuk, E. H., Heiple, K. G., and Davy, D. T., 1986, “The Effects of Tibial-Femoral Angle on the Failure Mechanics of the Canine Anterior Cruciate Ligament,” J. Biomech., 19(2), pp. 89–91. [CrossRef] [PubMed]
Therin, M., Christel, P., Crespeau, F., Dürselen, L., and Claes, L., 1994, “Functional Evaluation of Polyarylamide Fibers for Use in a Prosthesis for Anterior Cruciate Ligament Replacement in Sheep,” Clin. Mater., 15(1), pp. 69–75. [CrossRef] [PubMed]
Claes, L., Dürselen, L., and Rübenacker, S., 1994, “Comparative Investigation on the Biomechanical Properties of Ligament Replacement in the Sheep Knee Using Six Different Ligament Prostheses,” Clin. Mater., 15(1), pp. 15–22. [CrossRef] [PubMed]
Meller, R., Willbold, E., Hesse, E., Dreymann, B., Fehr, M., Haasper, C., Hurschler, C., Krettek, C., and Witte, F., 2008, “Histologic and Biomechanical Analysis of Anterior Cruciate Ligament Graft to Bone Healing in Skeletally Immature Sheep,” Arthroscopy, 24(11), pp. 1221–1231. [CrossRef] [PubMed]
Dustmann, M., Schmidt, T., Gangey, I., Unterhauser, F. N., Weiler, A., and Scheffler, S. U., 2008, “The Extracellular Remodeling of Free-Soft-Tissue Autografts and Allografts for Reconstruction of the Anterior Cruciate Ligament: A Comparison Study in a Sheep Model,” Knee Surg. Sports Traumatol. Arthrosc., 16(4), pp. 360–369. [CrossRef] [PubMed]
Papachristou, G., Kalliakmanis, A., Papachristou, K., Magnissalis, E., Sourlas, J., and Plessas, S., 2008, “Comparison of Fixation Methods of Double-Bundle Double-Tibial Tunnel ACL Reconstruction and Double-Bundle Single-Tunnel Technique,” Int. Orthop., 32(4), pp. 483–488. [CrossRef] [PubMed]
Fuss, F. K., 1991, “Anatomy and Function of the Cruciate Ligaments of the Domestic Pig (Sus scrofa domestica): A Comparison With Human Cruciates,” J. Anat., 178, pp. 11–20. [PubMed]
Martel, O., Cárdenes, J. F., Garcés, G., and Carta, J. A., 2009, “Influence of the Crosshead Rate on the Mechanical Properties of Fixation Systems of ACL Tendon Grafts,” J. Appl. Biomech., 25(4), pp. 313–321. [PubMed]
Duenwald, S. E., Vanderby, J. R., and Lakes, R. S., 2010, “Stress Relaxation and Recovery in Tendon and Ligament: Experiment and Modeling,” Biorheology, 47(1), pp. 1–14. [PubMed]
Maes, J. A., and Haut Donahue, T. L., 2006, “Time Dependent Properties of Bovine Meniscal Attachments: Stress Relaxation and Creep,” J. Biomech., 39(16), pp. 3055–3061. [CrossRef] [PubMed]
Amiel, D., Kleiner, J. B., Roux, R. D., Harwood, F. L., and Akeson, W. H., 1986, “The Phenomenon of ‘Ligamentization’: Anterior Cruciate Ligament Reconstruction With Autogenous Patellar Tendon,” J. Orthop. Res., 4(2), pp. 162–172. [CrossRef] [PubMed]
Blickenstaff, K., Grana, W. A., and Egle, D., 1997, “Analysis of a Semitendinosus Autograft in a Rabbit Model,” Am. J. Sports Med., 25(4), pp. 554–559. [CrossRef] [PubMed]
Grana, W. A., Egle, D. M., Mahnken, R., and Goodhart, C. W., 1994, “An Analysis of Autograft Fixation After Anterior Cruciate Ligament Reconstruction in a Rabbit Model,” Am. J. Sports Med., 22(3), pp. 344–351. [CrossRef] [PubMed]
Labs, K., Perka, C., and Schneider, F., 2002, “The Biological and Biomechanical Effect of Different Graft Tensioning in Anterior Cruciate Ligament Reconstruction: An Experimental Study,” Arch. Orthop. Trauma Surg., 122(4), pp. 193–199. [CrossRef] [PubMed]
Sakai, H., Fukui, N., Kawakami, A., and Kurosawa, H., 2000, “Biological Fixation of the Graft Within Bone After Anterior Cruciate Ligament Reconstruction in Rabbits: Effects of the Duration of Postoperative Immobilization,” J. Orthop. Sci., 5(1), pp. 43–51. [CrossRef] [PubMed]
Aune, A. K., Hukkanen, M., Madsen, J. E., Polak, J. M., and Nordsletten, L., 1996, “Nerve Regeneration During Patellar Tendon Autograft Remodelling After Anterior Cruciate Ligament Reconstruction: An Experimental and Clinical Study,” J. Orthop. Res., 14(2), pp. 193–199. [CrossRef] [PubMed]
Yamazaki, S., Yasuda, K., Tomita, F., Minami, A., and Tohyama, H., 2002, “The Effect of Graft-Tunnel Diameter Disparity on Intraosseous Healing of the Flexor Tendon Graft in Anterior Cruciate Ligament Reconstruction,” Am. J. Sports Med., 30(4), pp. 498–505. [PubMed]
Hunt, P., Scheffler, S. U., Unterhauser, F. N., and Weiler, A., 2005, “A Model of Soft-Tissue Graft Anterior Cruciate Ligament Reconstruction in Sheep.,” Arch. Orthop. Trauma Surg., 125(4), pp. 238–248. [CrossRef] [PubMed]
Seitz, H., Hausner, T., Schlenz, I., Lang, S., and Eschberger, J., 1997, “Vascular Anatomy of the Ovine Anterior Cruciate Ligament. A Macroscopic, Histological and Radiographic Study,” Arch. Orthop. Trauma Surg., 116(1–2), pp. 19–21. [CrossRef] [PubMed]
Danto, M. I., and Woo, S. L.-Y., 1993, “The Mechanical Properties of Skeletally Mature Rabbit Anterior Cruciate Ligament and Patellar Tendon Over a Range of Strain Rates,” J. Orthop. Res., 11(1), pp. 58–67. [CrossRef] [PubMed]
Radford, W. J. P., Amis, A. A., and Stead, A. C., 1996, “The Ovine Stifle as a Model for Human Cruciate Ligament Surgery,” Vet. Comp. Orthop. Traumatol., (3), pp. 44–49.
Allen, M. J., Houlton, J. E., Adams, S. B., and Rushton, N., 1998, “The Surgical Anatomy of the Stifle Joint in Sheep,” Vet. Surg., 27(6), pp. 596–605. [CrossRef] [PubMed]
Tapper, J. E., Ronsky, J. L., Powers, M. J., Sutherland, C., Majima, T., Frank, C. B., and Shrive, N. G., 2004, “In Vivo Measurement of the Dynamic 3-D Kinematics of the Ovine Stifle Joint,” ASME J. Biomech. Eng., 126(2), pp. 301–318. [CrossRef]
Murray, M. M., Weiler, A., and Spindler, K. P., 2004, “Interspecies Variation in the Fibroblast Distribution of the Anterior Cruciate Ligament,” Am. J. Sports Med., 32(6), pp. 1484–1491. [CrossRef] [PubMed]
Dürselen, L., Claes, L., Ignatius, A., and Rübenacker, S., 1996, “Comparative Animal Study of Three Ligament Prostheses for the Replacement of the Anterior Cruciate and Medial Collateral Ligament,” Biomaterials, 17(10), pp. 977–982. [CrossRef] [PubMed]
Xerogeanes, J. W., Fox, R. J., Takeda, Y., Kim, H. S., Ishibashi, Y., Carlin, G. J., and Woo, S. L.-Y., 1998, “A Functional Comparison of Animal Anterior Cruciate Ligament Models to the Human Anterior Cruciate Ligament,” Ann. Biomed. Eng., 26(3), pp. 345–352. [CrossRef] [PubMed]
Li, G., Gil, J., Kanamori, A., and Woo, S. L.-Y., 1999, “A Validated Three-Dimensional Computational Model of a Human Knee Joint,” ASME J. Biomech. Eng., 121(6), pp. 657–662. [CrossRef]
Li, G., Suggs, J., and Gill, T., 2002, “The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation,” Ann. Biomed. Eng., 30(5), pp. 713–720. [CrossRef] [PubMed]
Shin, C. S., Chaudhari, A. M., and Andriacchi, T. P., 2007, “The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study,” J. Biomech., 40(5), pp. 1145–1152. [CrossRef] [PubMed]
Yao, J., Kuang, G.-M., Wong, D. W.-C., Niu, W.-X., Zhang, M., and Fan, Y.-B., 2014, “Influence of Screw Length and Diameter on Tibial Strain Energy Density Distribution After Anterior Cruciate Ligament Reconstruction,” Acta Mech. Sin., 30(2), pp. 241–249. [CrossRef]
Peña, E., Calvo, B., Martínez, M. A., Palanca, D., and Doblaré, M., 2005, “Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics,” Clin. Biomech. (Bristol, Avon), 20(5), pp. 498–507. [CrossRef] [PubMed]
Song, Y., Debski, R. E., Musahl, V., Thomas, M., and Woo, S. L.-Y., 2004, “A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation,” J. Biomech., 37(3), pp. 383–390. [CrossRef] [PubMed]
Wang, Y., Fan, Y., and Zhang, M., 2014, “Comparison of Stress on Knee Cartilage During Kneeling and Standing Using Finite Element Models,” Med. Eng. Phys., 36(4), pp. 439–447. [CrossRef] [PubMed]
Zhang, X., Jiang, G., Wu, C., and Woo, S. L.-Y., 2008, “A Subject-Specific Finite Element Model of the Anterior Cruciate Ligament,” Conf Proc. IEEE Eng. Med. Biol. Soc., 2008, pp. 891–894.
Park, H.-S., Ahn, C., Fung, D. T., Ren, Y., and Zhang, L.-Q., 2010, “A Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement Against the Femoral Intercondylar Notch,” J. Biomech., 43(10), pp. 2039–2042. [CrossRef] [PubMed]
Limbert, G., Taylor, M., and Middleton, J., 2004, “Three-Dimensional Finite Element Modelling of the Human ACL: Simulation of Passive Knee Flexion With a Stressed and Stress-Free ACL,” J. Biomech., 37(11), pp. 1723–1731. [CrossRef] [PubMed]
Hirokawa, S., and Tsuruno, R., 2000, “Three-Dimensional Deformation and Stress Distribution in an Analytical/Computational Model of the Anterior Cruciate Ligament,” J. Biomech., 33(9), pp. 1069–1077. [CrossRef] [PubMed]
Li, G., Defrate, L. E., Rubash, H. E., and Gill, T. J., 2005, “In Vivo Kinematics of the ACL During Weight-Bearing Knee Flexion,” J. Orthop. Res., 23(2), pp. 340–344. [CrossRef] [PubMed]
Beillas, P., Papaioannou, G., Tashman, S., and Yang, K. H., 2004, “A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb,” J. Biomech., 37(7), pp. 1019–1030. [CrossRef] [PubMed]
Peña, E., Calvo, B., Martínez, M. A., and Doblaré, M., 2006, “A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint,” J. Biomech., 39(9), pp. 1686–1701. [CrossRef] [PubMed]
Dhaher, Y. Y., Kwon, T.-H., and Barry, M., 2010, “The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions,” J. Biomech., 43(16), pp. 3118–3125. [CrossRef] [PubMed]
Kiapour, A., Kiapour, A. M., Kaul, V., Quatman, C. E., Wordeman, S. C., Hewett, T. E., Demetropoulos, C. K., and Grati, F., 2014, “Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation,” ASME J. Biomech. Eng., 136(1), p. 011002. [CrossRef]
Holzapfel, G. A., 2000, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, Chichester.
Haut Donahue, T. L., Hull, M. L., Rashid, M. M., and Jacobs, C. R., 2002, “A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” ASME J. Biomech. Eng., 124(3), pp. 273–280. [CrossRef]
Bendjaballah, M. Z., Shirazi-Adl, A., and Zukor, D. J., 1997, “Finite Element in Varus-Valgus Analysis of Human Knee Joint,” Clin. Biomech., 12(3), pp. 139–148. [CrossRef]
Xie, F., Yang, L., Guo, L., Wang, Z., and Dai, G., 2009, “A Study on Construction Three-Dimensional Nonlinear Finite Element Model and Stress Distribution Analysis of Anterior Cruciate Ligament,” ASME J. Biomech. Eng., 131(12), p. 121007. [CrossRef]
Butler, D. L., Sheh, M. Y., Stouffer, D. C., Samaranayake, V. A., and Levy, M. S., 1990, “Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments,” ASME J. Biomech. Eng., 112(1), pp. 38–45. [CrossRef]
Oh, Y. K., Kreinbrink, J. L., Ashton-Miller, J. A., and Wojtys, E. M., 2011, “Effect of ACL Transection on Internal Tibial Rotation in an In Vitro Simulated Pivot Landing,” J. Bone Jt. Surg. Am., 93(4), pp. 372–380. [CrossRef]
Deneweth, J. M., Newman, K. E., Sylvia, S. M., McLean, S. G., and Arruda, E. M., 2013, “Heterogeneity of Tibial Plateau Cartilage in Response to a Physiological Compressive Strain Rate,” J. Orthop. Res., 31(3), pp. 370–375. [CrossRef] [PubMed]
Shen, Z. L., Kahn, H., Ballarini, R., and Eppell, S. J., 2011, “Viscoelastic Properties of Isolated Collagen Fibrils,” Biophys. J., 100(12), pp. 3008–3015. [CrossRef] [PubMed]
Sutton, M. A., Ke, X., Lessner, S. M., Goldbach, M., Yost, M., Zhao, F., and Schreier, H. W., 2007, “Strain Field Measurements on Mouse Carotid Arteries Using Microscopic Three-Dimensional Digital Image Correlation,” J. Biomed. Mater. Res. Part A, 86A(2), p. 569. [CrossRef]
Zhang, D., and Arola, D. D., 2004, “Applications of Digital Image Correlation to Biological Tissues,” J. Biomed. Opt., 9(4), pp. 691–699. [CrossRef] [PubMed]
Tonge, T. K., Atlan, L. S., Voo, L. M., and Nguyen, T. D., 2013, “Full-Field Bulge Test for Planar Anisotropic Tissues: Part I—Experimental Methods Applied to Human Skin Tissue,” Acta Biomater., 9(4), pp. 5913–5925. [CrossRef] [PubMed]
Tonge, T. K., Voo, L. M., and Nguyen, T. D., 2013, “Full-Field Bulge Test for Planar Anisotropic Tissues: Part II—A Thin Shell Method for Determining Material Parameters and Comparison of Two Distributed Fiber Modeling Approaches,” Acta Biomater., 9(4), pp. 5926–5942. [CrossRef] [PubMed]
Grediac, M., Pierront, F., Avrilt, S., and Toussaint, E., 2006, “The Virtual Fields Method for Extracting Constitutive Parameters From Full-Field Measurements: A Review,” Strain, 42, pp. 233–253. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

External forces and moments acting on the human leg

Grahic Jump Location
Fig. 2

For uniaxial ACL loading, the fully extended knee in the anatomical position (a) undergoes a posterior and lateral translation of the tibia relative to the femur (b) followed by a 90 deg internal rotation of the tibia (c). Adapted from Ref. [67].

Grahic Jump Location
Fig. 3

AMB separated from the PLB via a transection of the tibia at their natural separation [67]

Grahic Jump Location
Fig. 4

Load–unload responses of ovine AMB and PLB. This is representative data from a study of bundles from six ovine knees.

Grahic Jump Location
Fig. 5

Viscoelastic response of a human AMB. Nonlinear stress relaxation experiments from various initial strain levels (a). The initial and equilibrium (elastic) responses from the initial and final stress versus strain pairs in the stress relaxation experiments (b). Relaxation modulus function at 0.18 strain plotted on a logarithmic scale to demonstrate its three distinct relaxation regions (c).

Grahic Jump Location
Fig. 6

The strain rate dependent uniaxial loading response of bovine ACL. Adapted from Ref. [154].

Grahic Jump Location
Fig. 7

The initial (red) and stress-softened via preconditioning (blue) load–unload response of a hypothetical viscoelastic tissue. The equilibrium response of this tissue is illustrated by the black dashed line.

Grahic Jump Location
Fig. 8

Axial (vertical) false color strain contours on the surface of a sheep AMB (a) and PLB (b) [67]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In