Research Papers

Contribution of Collagen Fiber Undulation to Regional Biomechanical Properties Along Porcine Thoracic Aorta

[+] Author and Article Information
Shahrokh Zeinali-Davarani, Yunjie Wang, Ming-Jay Chow

Department of Mechanical Engineering,
Boston University,
Boston, MA 02215

Raphaël Turcotte

Department of Biomedical Engineering,
Boston University,
Boston, MA 02215
Advanced Microscopy Program,
Center for Systems Biology
and Wellman Center for Photomedicine,
Massachusetts General Hospital,
Harvard Medical School,
Boston, MA 02114

Yanhang Zhang

Department of Mechanical Engineering,
Boston University,
Boston, MA 02215
Department of Biomedical Engineering,
Boston University,
Boston, MA 02215
e-mail: yanhang@bu.edu

1Corresponding author.

Manuscript received August 13, 2014; final manuscript received December 24, 2014; published online February 20, 2015. Assoc. Editor: Hai-Chao Han.

J Biomech Eng 137(5), 051001 (May 01, 2015) (10 pages) Paper No: BIO-14-1394; doi: 10.1115/1.4029637 History: Received August 13, 2014; Revised December 24, 2014; Online February 20, 2015

As major extracellular matrix components, elastin, and collagen play crucial roles in regulating the mechanical properties of the aortic wall and, thus, the normal cardiovascular function. The mechanical properties of aorta, known to vary with age and multitude of diseases as well as the proximity to the heart, have been attributed to the variations in the content and architecture of wall constituents. This study is focused on the role of layer-specific collagen undulation in the variation of mechanical properties along the porcine descending thoracic aorta. Planar biaxial tensile tests are performed to characterize the hyperelastic anisotropic mechanical behavior of tissues dissected from four locations along the thoracic aorta. Multiphoton microscopy is used to image the associated regional microstructure. Exponential-based and recruitment-based constitutive models are used to account for the observed mechanical behavior while considering the aortic wall as a composite of two layers with independent properties. An elevated stiffness is observed in distal regions compared to proximal regions of thoracic aorta, consistent with sharper and earlier collagen recruitment estimated for medial and adventitial layers in the models. Multiphoton images further support our prediction that higher stiffness in distal regions is associated with less undulation in collagen fibers. Recruitment-based models further reveal that regardless of the location, collagen in the media is recruited from the onset of stretching, whereas adventitial collagen starts to engage with a delay. A parameter sensitivity analysis is performed to discriminate between the models in terms of the confidence in the estimated model parameters.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer, New York.
Kassab, G. S., 2006, “Biomechanics of the Cardiovascular System: The Aorta as an Illustratory Example,” J. R. Soc. Interface, 3(11), pp. 719–740. [CrossRef] [PubMed]
Burton, A. C., 1954, “Relation of Structure to Function of the Tissues of the Wall of Blood Vessels,” Physiol. Rev., 34(4), pp. 619–642. [PubMed]
Wolinsky, H., and Glagov, S., 1964, “Structural Basis for the Static Mechanical Properties of the Aortic Media,” Circ. Res., 14(5), pp. 400–413. [CrossRef] [PubMed]
Roach, M. R., and Burton, A. C., 1957, “The Reason for the Shape of the Distensibility Curves of Arteries,” Can. J. Biochem. Physiol., 35(8), pp. 681–690. [CrossRef] [PubMed]
Fung, Y. C., Fronek, K., and Patitucci, P., 1979, “Pseudoelasticity of Arteries and the Choice of Its Mathematical Expression,” Am. Physiol. Soc., 237(5), pp. H620–H631.
Tsamis, A., Krawiec, J. T., and Vorp, D. A., 2013, “Elastin and Collagen Fibre Microstructure of the Human Aorta in Ageing and Disease: A Review,” J. R. Soc. Interface, 10(83), p. 20121004. [CrossRef] [PubMed]
García-Herrera, C. M., Celentano, D. J., Cruchaga, M. A., Rojo, F. J., Atienza, J. M., Guinea, G. V., and Goicolea, J. M., 2012, “Mechanical Characterisation of the Human Thoracic Descending Aorta: Experiments and Modelling,” Comput. Methods Biomech. Biomed. Eng., 15(2), pp. 185–193. [CrossRef]
Zou, Y., and Zhang, Y., 2009, “An Experimental and Theoretical Study on the Anisotropy of Elastin Network,” Ann. Biomed. Eng., 37(8), pp. 1572–1583. [CrossRef] [PubMed]
Rouleau, L., Tremblay, D., Cartier, R., Mongrain, R., and Leask, R. L., 2012, “Regional Variations in Canine Descending Aortic Tissue Mechanical Properties Change With Formalin Fixation,” Cardiovasc. Pathol., 21(5), pp. 390–397. [CrossRef] [PubMed]
Kim, J., Hong, J. W., and Baek, S., 2013, “Longitudinal Differences in the Mechanical Properties of the Thoracic Aorta Depend on Circumferential Regions,” J. Biomed. Mater. Res. A., 101(5), pp. 1525–1529. [CrossRef] [PubMed]
Labrosse, M. R., Beller, C. J., Mesana, T., and Veinot, J. P., 2009, “Mechanical Behavior of Human Aortas: Experiments, Material Constants and 3D Finite Element Modeling Including Residual Stress,” ASME J. Biomech. Eng., 42(8), pp. 996–1004. [CrossRef]
Roccabianca, S., Figueroa, C. A., Tellides, G., and Humphrey, J. D., 2014, “Quantification of Regional Differences in Aortic Stiffness in the Aging Human,” J. Mech. Behav. Biomed. Mater., 29, pp. 618–634. [CrossRef] [PubMed]
Harkness, M. L., Harkness, R. D., and McDonald, D. A., 1957, “The Collagen and Elastin Content of the Arterial Wall in the Dog,” Proc. R. Soc. London, Ser. B, 146(925), pp. 541–551. [CrossRef]
Sokolis, D. P., 2007, “Passive Mechanical Properties and Structure of the Aorta: Segmental Analysis,” Acta Physiol., 190(4), pp. 277–289. [CrossRef]
Halloran, B. G., Davis, V. A., McManus, B. M., Lynch, T. G., and Baxter, B. T., 1995, “Localization of Aortic Disease Is Associated With Intrinsic Differences in Aortic Structure,” J. Surg. Res., 59(1), pp. 17–22. [CrossRef] [PubMed]
Cheuk, B. L., and Cheng, S. W., 2005, “Expression of Integrin Alpha5beta1 and the Relationship to Collagen and Elastin Content in Human Suprarenal and Infrarenal Aortas,” Vasc. Endovasc. Surg., 39(3), pp. 245–251. [CrossRef]
Wolinsky, H., and Glagov, S., 1969, “Comparison of Abdominal and Thoracic Aortic Medial Structure in Mammals,” Circ. Res., 25(6), pp. 677–686. [CrossRef] [PubMed]
Sokolis, D. P., Boudoulas, H., Kavantzas, N. G., Kostomitsopoulos, N., Agapitos, E. V., and Karayannacos, P. E., 2002, “A Morphometric Study of the Structural Characteristics of the Aorta in Pigs Using an Image Analysis Method,” Anat., Histol., Embryol., 31(1), pp. 21–30. [CrossRef]
Purslow, P. P., 1983, “Positional Variations in Fracture Toughness, Stiffness and Strength of Descending Thoracic Pig Aorta,” ASME J. Biomech. Eng., 16(11), pp. 947–953. [CrossRef]
Guo, X., and Kassab, G. S., 2003, “Variation of Mechanical Properties Along the Length of the Aorta in C57bl/6 Mice,” Am. J. Physiol. Heart Circ. Physiol., 285(6), pp. H2614–H2622. [CrossRef] [PubMed]
Haskett, D., Johnson, G., Zhou, A., Utzinger, U., and Vande Geest, J., 2010, “Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location,” Biomech. Model Mechanobiol., 9(6), pp. 725–736. [CrossRef] [PubMed]
Rachev, A., Greenwald, S., and Shazly, T., 2013, “Are Geometrical and Structural Variations Along the Length of the Aorta Governed by a Principle of “Optimal Mechanical Operation?,” ASME J. Biomech. Eng., 135(8), p. 081006. [CrossRef]
Martin, C., Pham, T., and Sun, W., 2011, “Significant Differences in the Material Properties Between Aged Human and Porcine Aortic Tissues,” Eur. J. Cardiothorac. Surg., 40(1), pp. 28–34. [CrossRef] [PubMed]
Lillie, M. A., Armstrong, T. E., Gérard, S. G., Shadwick, R. E., and Gosline, J. M., 2012, “Contribution of Elastin and Collagen to the Inflation Response of the Pig Thoracic Aorta: Assessing Elastin's Role in Mechanical Homeostasis,” ASME J. Biomech. Eng., 45(12), pp. 2133–2141. [CrossRef]
Lindeman, J. H. N., Ashcroft, B. A., Beenakker, J. W. M., Es, M. V., Koekkoek, N. B. R., Prins, F. A., Tielemans, J. F., Abdul-Hussien, H., Bank, R. A., and Oosterkamp, T. H., 2010, “Distinct Defects in Collagen Microarchitecture Underlie Vessel-Wall Failure in Advanced Abdominal Aneurysms and Aneurysms in Marfan Syndrome,” Proc. Natl. Acad. Sci. U. S. A., 107(2), pp. 862–865. [CrossRef] [PubMed]
Chow, M. J., Turcotte, R., Lin, C. P., and Zhang, Y., 2014, “Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen,” Biophys. J., 106(12), pp. 2684–2692. [CrossRef] [PubMed]
Chow, M. J., Mondonedo, J. R., Johnson, V. M., and Zhang, Y., 2013, “Progressive Structural and Biomechanical Changes in Elastin Degraded Aorta,” Biomech. Model. Mechanobiol., 12(2), pp. 361–372. [CrossRef] [PubMed]
Sacks, M. S., 1999, “A Method for Planar Biaxial Mechanical Testing That Includes In-Plane Shear,” ASME J. Biomech. Eng., 121(5), pp. 551–555. [CrossRef]
Holzapfel, G. A., Gasser, T. C., and Ogden, R. W., 2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elasticity, 61(3), pp. 1–48. [CrossRef]
Humphrey, J. D., 2003, “Continuum Biomechanics of Soft Biological Tissues,” Proc. R. Soc. London, Ser. A, 459(2029), pp. 3–46. [CrossRef]
Holzapfel, G. A., and Ogden, R. W., 2010, “Constitutive Modelling of Arteries,” Proc. R. Soc. London, Ser. A, 466(2118), pp. 1551–1597. [CrossRef]
Alastrué, V., Sáez, P., Martínez, M. A., and Doblaré, M., 2010, “On the Use of the Bingham Statistical Distribution in Microsphere-Based Constitutive Models for Arterial Tissue,” Mech. Res. Commun., 37(8), pp. 700–706. [CrossRef]
Gasser, T. C., Ogden, R. W., and Holzapfel, G. A., 2006, “Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations,” J. R. Soc. Interface, 3(6), pp. 15–35. [CrossRef] [PubMed]
Schriefl, A. J., Zeindlinger, G., Pierce, D. M., Regitnig, P., and Holzapfel, G. A., 2012, “Determination of the Layer-Specific Distributed Collagen Fibre Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries,” J. R. Soc. Interface, 9(71), pp. 1275–1286. [CrossRef] [PubMed]
Sommer, G., Regitnig, P., Költringer, L., and Holzapfel, G. A., 2010, “Biaxial Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at Physiological and Supraphysiological Loadings,” Am. J. Physiol. Heart Circ. Physiol., 298(3), pp. H898–H912. [CrossRef] [PubMed]
von Maltzahn, W. W., Besdo, D., and Wiemer, W., 1981, “Elastic Properties of Arteries: A Nonlinear Two-Layer Cylindrical Model,” ASME J. Biomech. Eng., 14(6), pp. 389–397. [CrossRef]
Sokolis, D. P., Kritharis, E. P., and Iliopoulos, D. C., 2012, “Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms,” Med. Biol. Eng. Comput., 50(12), pp. 1227–1237. [CrossRef] [PubMed]
Holzapfel, G. A., 2000, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, New York.
Badel, P., Avril, S., Lessner, S., and Sutton, M., 2012, “Mechanical Identification of Layer-Specific Properties of Mouse Carotid Arteries Using 3D-DIC and a Hyperelastic Anisotropic Constitutive Model,” Comput. Methods Biomech. Biomed. Eng., 15(1), pp. 37–48. [CrossRef]
Lanir, Y., 1979, “A Structural Theory for the Homogeneous Biaxial Stress–Strain Relationships in Flat Collagenous Tissues,” ASME J. Biomech. Eng., 12(6), pp. 423–436. [CrossRef]
Wuyts, F. L., Vanhuyse, V. J., Langewouters, G. J., Decraemer, W. F., Raman, E. R., and Buyle, S., 1995, “Elastic Properties of Human Aortas in Relation to Age and Atherosclerosis: A Structural Model,” Phys. Med. Biol., 40(10), pp. 1577–1597. [CrossRef] [PubMed]
Zulliger, M. A., Frideza, P., Hayashi, K., and Stergiopulos, N., 2004, “A Strain Energy Function for Arteries Accounting for Wall Composition and Structure,” ASME J. Biomech. Eng., 37(7), pp. 989–1000. [CrossRef]
Cacho, F., Elbischger, P. J., Rodríguez, J. F., Doblaré, M., and Holzapfel, G. A., 2007, “A Constitutive Model for Fibrous Tissues Considering Collagen Fiber Crimp,” Int. J. Nonlinear Mech., 42, pp. 391–402. [CrossRef]
Sacks, M. S., 2003, “Incorporation of Experimentally-Derived Fiber Orientation Into a Structural Constitutive Model for Planar Collagenous Tissues,” ASME J. Biomech. Eng., 125(2), pp. 280–287. [CrossRef]
Sacks, M. S., and Sun, W., 2003, “Multiaxial Mechanical Behavior of Biological Materials,” Annu. Rev. Biomed. Eng., 5(1), pp. 251–284. [CrossRef] [PubMed]
Hill, M. R., Duan, X., Gibson, G. A., Watkins, S., and Robertson, A. M., 2012, “A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall,” ASME J. Biomech. Eng., 45(5), pp. 762–771. [CrossRef]
Rezakhaniha, R., Fonck, E., Genoud, C., and Stergiopulos, N., 2011, “Role of Elastin Anisotropy in Structural Strain Energy Functions of Arterial Tissue,” Biomech. Model. Mechanobiol., 10(4), pp. 599–611. [CrossRef] [PubMed]
Zeinali-Davarani, S., Chow, M. J., Turcotte, R., and Zhang, Y., 2013, “Characterization of Biaxial Mechanical Behavior of Porcine Aorta Under Gradual Elastin Degradation,” Ann. Biomed. Eng., 41(7), pp. 1528–1538. [CrossRef] [PubMed]
Zulliger, M. A., and Stergiopulos, N., 2007, “Structural Strain Energy Function Applied to the Ageing of the Human Aorta,” ASME J. Biomech. Eng., 40(14), pp. 3061–3069. [CrossRef]
Agianniotis, A., Rezakhaniha, R., and Stergiopulos, N., 2011, “A Structural Constitutive Model Considering Angular Dispersion and Waviness of Collagen Fibres of Rabbit Facial Veins,” Biomed. Eng., 10, p. 18. [CrossRef]
Buck, R. C., 1987, “Collagen Fibril Diameter in the Common Carotid Artery of the Rat,” Connect. Tissue Res., 16(2), pp. 121–129. [CrossRef] [PubMed]
Merrilees, M. J., Tiang, K. M., and Scott, L., 1987, “Changes in Collagen Fibril Diameters Across Artery Walls Including a Correlation With Glycosaminoglycan Content,” Connect. Tissue Res., 16(3), pp. 237–257. [CrossRef] [PubMed]
Dingemans, K. P., Teeling, P., Lagendijk, J. H., and Becker, A. E., 2000, “Extracellular Matrix of the Human Aortic Media: An Ultrastructural Histochemical and Immunohistochemical Study of the Adult Aortic Media,” Anat. Rec., 258(1), pp. 1–14. [CrossRef] [PubMed]
Eriksen, H. A., Pajala, A., Leppilahti, J., and Risteli, J., 2002, “Increased Content of Type III Collagen at the Rupture Site of Human Achilles Tendon,” J. Orthop. Res., 20(6), pp. 1352–1357. [CrossRef] [PubMed]
Wagner, H. P., and Humphrey, J. D., 2011, “Differential Passive and Active Biaxial Mechanical Behaviors of Muscular and Elastic Arteries: Basilar Versus Common Carotid,” ASME J. Biomech. Eng., 133(5), p. 051009. [CrossRef]
Ellwein, L. M., Tran, H. T., Zapata, C., Novak, V., and Olufsen, M. S., 2008, “Sensitivity Analysis and Model Assessment: Mathematical Models for Arterial Blood Flow and Blood Pressure,” Cardiovasc. Eng., 8(2), pp. 94–108. [CrossRef] [PubMed]
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, Wiley, New York.
Zoumi, A., Lu, X., Kassab, G. S., and Tromberg, B. J., 2004, “Imaging Coronary Artery Microstructure Using Second-Harmonic and Two-Photon Fluorescence Microscopy,” Biophys. J., 87(4), pp. 2778–2786. [CrossRef] [PubMed]
Veilleux, I., Spencer, J. A., Biss, D. P., and Lin, C. P., 2008, “In Vivo Cell Tracking With Video Rate Multimodality Laser Scanning Microscopy,” IEEE J. Sel. Top. Quantum Electron., 14(1), pp. 10–18. [CrossRef]
Meijering, E., Jacob, M., Sarria, J. C., Steiner, P., Hirling, H., and Unser, M., 2004, “Design and Validation of a Tool for Neurite Tracing and Analysis in Fluorescence Microscopy Images,” Cytometry, Part A, 58(2), pp. 167–176. [CrossRef]
Meijering, E., 2010, “Neuron Tracing in Perspective,” Cytometry, Part A, 77(7), pp. 693–704. [CrossRef]
Schriefl, A. J., Collins, M. J., Pierce, D. M., Holzapfel, G. A., Niklason, L. E., and Humphrey, J. D., 2012, “Remodeling of Intramural Thrombus and Collagen in an Ang-II Infusion ApoE/Model of Dissecting Aortic Aneurysms,” Thromb. Res., 130(3), pp. e139–e146. [CrossRef] [PubMed]
Fata, B., Carruthers, C. A., Gibson, G., Watkins, S. C., Gottlieb, D., Mayer, J. E., and Sacks, M. S., 2013, “Regional Structural and Biomechanical Alterations of the Ovine Main Pulmonary Artery During Postnatal Growth,” ASME J. Biomech. Eng., 135(3–4), p. 021022. [CrossRef]
Rezakhaniha, R., Agianniotis, A., Schrauwen, J. T. C., Griffa, A., Sage, D., Bouten, C. V. C., van de Vosse, F. N., Unser, M., and Stergiopulos, N., 2012, “Experimental Investigation of Collagen Waviness and Orientation in the Arterial Adventitia Using Confocal Laser Scanning Microscopy,” Biomech. Model. Mechanobiol., 11(3–4), pp. 461–473. [CrossRef] [PubMed]
Wang, R., Brewster, L. P., and Gleason, R. L., 2013, “In-Situ Characterization of the Uncrimping Process of Arterial Collagen Fibers Using Two-Photon Confocal Microscopy and Digital Image Correlation,” ASME J. Biomech. Eng., 46(15), pp. 2726–2729. [CrossRef]
Tanaka, T. T., and Fung, Y. C., 1974, “Elastic and Inelastic Properties of the Canine Aorta and Their Variation Along the Aortic Tree,” ASME J. Biomech. Eng., 7(4), pp. 357–370. [CrossRef]
Fonck, E., Prod'hom, G., Roy, S., Augsburger, L., Rufenacht, D. A., and Stergiopulos, N., 2007, “Effect of Elastin Degradation on Carotid Wall Mechanics as Assessed by a Constituent-Based Biomechanical Model,” Am. J. Physiol. Heart. Circ. Physiol., 292(6), pp. H2754–H2763. [CrossRef] [PubMed]
Ferruzzi, J., Collins, M. J., Yeh, A. T., and Humphrey, J. D., 2011, “Mechanical Assessment of Elastin Integrity in Fibrillin-1-Deficient Carotid Arteries: Implications for Marfan Syndrome,” Cardiovasc. Res., 92(2), pp. 287–295. [CrossRef] [PubMed]
Yu, Q., Zhou, J., and Fung, Y. C., 1993, “Neutral Axis Location in Bending and Young's Modulus of Different Layers of Arterial Wall,” Am. J. Physiol., 265(1), pp. H52–H60. [PubMed]
O'Connell, M. K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R., L., Zarins, C. K., Denk, W., and Taylor, C. A., 2008, “The Three-Dimensional Micro- and Nanostructure of the Aortic Medial Lamellar Unit Measured Using 3D Confocal and Electron Microscopy Imaging,” Matrix Biol., 27(3), pp. 171–181. [CrossRef] [PubMed]
Holzapfel, G. A., Sommer, G., Gasser, T. C., and Regitnig, P., 2005, “Determination of Layer-Specific Mechanical Properties of Human Coronary Arteries With Nonatherosclerotic Intimal Thickening and Related Constitutive Modeling,” Am. J. Physiol. Heart Circ. Physiol., 289(5), pp. H2048–H2058. [CrossRef] [PubMed]
Aoki, T., Ohashi, T., Matsumoto, T., and Sato, M., 1997, “The Pipette Aspiration Applied to the Local Stiffness Measurement of Soft Tissues,” Ann. Biomed. Eng., 25(3), pp. 581–587. [CrossRef] [PubMed]
Valentín, A., and Humphrey, J. D., 2009, “Parameter Sensitivity Study of a Constrained Mixture Model of Arterial Growth and Remodeling,” ASME J. Biomech. Eng., 131(10), p. 101006. [CrossRef]
Ogden, R. W., Saccomandi, G., and Sgura, I., 2004, “Fitting Hyperelastic Models to Experimental Data,” Comput. Mech., 34(6), pp. 484–502. [CrossRef]
Zeinali-Davarani, S., Choi, J., and Baek, S., 2009, “On Parameter Estimation for Biaxial Mechanical Behavior of Arteries,” ASME J. Biomech. Eng., 42(4), pp. 524–530. [CrossRef]
Han, H. C., and Fung, Y. C., 1991, “Species Dependence of the Zero-Stress State of Aorta: Pig Versus Rat,” ASME J. Biomech. Eng., 113(4), pp. 446–451. [CrossRef]
Wan, W., Dixon, J. B., and Gleason, R. L.Jr., 2012, “Constitutive Modeling of Mouse Carotid Arteries Using Experimentally Measured Microstructural Parameters,” Biophys. J., 102(12), pp. 2916–2925. [CrossRef] [PubMed]
Gasser, T. C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., and Roy, J., 2012, “Spatial Orientation of Collagen Fibers in the Abdominal Aortic Aneurysm's Wall and Its Relation to Wall Mechanics,” Acta Biomater., 8(8), pp. 3091–3103. [CrossRef] [PubMed]
Lokshin, O., and Lanir, Y., 2009, “Micro and Macro Rheology of Planar Tissues,” Biomaterials, 30(17), pp. 3118–3127. [CrossRef] [PubMed]
Gleason, R. L., Taber, L. A., and Humphrey, J. D., 2004, “A 2D Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries,” ASME J. Biomech. Eng., 126(3), pp. 371–381. [CrossRef]
Valentín, A., Cardamone, L., Baek, S., and Humphrey, J. D., 2009, “Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure,” J. R. Soc. Interface, 6(32), pp. 293–306. [CrossRef] [PubMed]
Hansen, L., Wan, W., and Gleason, R. L., 2009, “Microstructurally Motivated Constitutive Modeling of Mouse Arteries Cultured Under Altered Axial Stretch,” ASME J. Biomech. Eng., 131(10), p. 101015. [CrossRef]
Bellini, C., Ferruzzi, J., Roccabianca, S., Di Martino, E. S., and Humphrey, J. D., 2014, “A Microstructurally Motivated Model of Arterial Wall Mechanics With Mechanobiological Implications,” Ann. Biomed. Eng., 42(3), pp. 488–502. [CrossRef] [PubMed]
Zeinali-Davarani, S., Raguin, L. G., Vorp, D. A., and Baek, S., 2011, “Identification of In Vivo Material and Geometric Parameters of a Human Aorta: Toward Patient Specific Modeling of Abdominal Aortic Aneurysm,” Biomech. Model Mechanobiol., 10(5), pp. 689–699. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 7

Mean and standard deviation of adventitial collagen fibers straightness measured at proximal and distal regions (p < 0.05)

Grahic Jump Location
Fig. 1

Representative stress–stretch responses for proximal ((a) and (b)) and distal ((c) and (d)) regions of thoracic aorta in the longitudinal and circumferential directions using biaxial loading protocols: fl:fc = 1:2, 2:3, 1:1, 3:2, 2:1 (fl:fc is the ratio of tensions applied in the longitudinal and circumferential directions). The curves estimated using model B are shown as solid lines while the model response predicted for the equibiaxial tension protocol (fl:fc = 1:1) are shown as dashed lines.

Grahic Jump Location
Fig. 2

Average longitudinal (a) and circumferential (b) tangent modulus at multiple locations (proximal, midproximal, mid-distal, and distal) along the descending thoracic aorta

Grahic Jump Location
Fig. 3

Recruitment distribution densities estimated for medial and adventitial collagen fibers in the proximal ((a) and (c)) and distal ((b) and (d)) thoracic aorta using models B (top panels) and C (bottom panels)

Grahic Jump Location
Fig. 4

Three-dimensional contour plots of strain energy stored in media and adventitia given the estimated parameters of model B for proximal ((a) and (b)) and distal ((c) and (d)) regions of Artery 2

Grahic Jump Location
Fig. 5

Sensitivity coefficients of longitudinal and circumferential stress with respect to the constitutive parameters associated with collagen for model A ((a) and (b)), model B ((c) and (d)), and model C ((e) and (f))

Grahic Jump Location
Fig. 6

Representative SHG images of collagen in media and adventitia and 2PEF images of elastin in media of proximal (left column) and distal (right column) regions of thoracic aortas. Adventitial collagen fibers are highly undulated in the proximal region compared to the distal region while there is no obvious difference in medial elastin and collagen waviness between proximal and distal region (images 360 × 360 μm).



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In