Design Innovation Paper

Design of a Pulsatile Flow Facility to Evaluate Thrombogenic Potential of Implantable Cardiac Devices

[+] Author and Article Information
Sivakkumar Arjunon, Neelakantan Saikrishnan

The Wallace H. Coulter
School of Biomedical Engineering,
Georgia Institute of Technology and Emory University,
Atlanta, GA 30318

Pablo Hidalgo Ardana

School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30318

Shalv Madhani

Department of Bioengineering,
University of Pittsburgh,
Pittsburgh, PA 15261

Brent Foster

Radiology and Imaging Science Department,
National Institutes of Health (NIH),
Bethesda, MD 20892

Ari Glezer

School of Mechanical Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Ajit P. Yoganathan

The Wallace H. Coulter
School of Biomedical Engineering,
Georgia Institute of Technology and Emory University,
Atlanta, GA 30318
School of Chemical and Biomolecular Engineering,
Georgia Institute of Technology,
Atlanta, GA 30332

Manuscript received May 9, 2014; final manuscript received January 9, 2015; published online February 11, 2015. Assoc. Editor: Ender A. Finol.

J Biomech Eng 137(4), 045001 (Apr 01, 2015) (11 pages) Paper No: BIO-14-1203; doi: 10.1115/1.4029579 History: Received May 09, 2014; Revised January 09, 2015; Online February 11, 2015

Due to expensive nature of clinical trials, implantable cardiac devices should first be extensively characterized in vitro. Prosthetic heart valves (PHVs), an important class of these devices, have been shown to be associated with thromboembolic complications. Although various in vitro systems have been designed to quantify blood-cell damage and platelet activation caused by nonphysiological hemodynamic shear stresses in these PHVs, very few systems attempt to characterize both blood damage and fluid dynamics aspects of PHVs in the same test system. Various numerical modeling methodologies are also evolving to simulate the structural mechanics, fluid mechanics, and blood damage aspects of these devices. This article presents a completely hemocompatible small-volume test-platform that can be used for thrombogenicity studies and experimental fluid mechanics characterization. Using a programmable piston pump to drive freshly drawn human blood inside a cylindrical column, the presented system can simulate various physiological and pathophysiological conditions in testing PHVs. The system includes a modular device-mounting chamber, and in this presented case, a 23 mm St. Jude Medical (SJM) Regents® mechanical heart valve (MHV) in aortic position was used as the test device. The system was validated for its capability to quantify blood damage by measuring blood damage induced by the tester itself (using freshly drawn whole human blood). Blood damage levels were ascertained through clinically relevant assays on human blood while fluid dynamics were characterized using time-resolved particle image velocimetry (PIV) using a blood-mimicking fluid. Blood damage induced by the tester itself, assessed through Thrombin-anti-Thrombin (TAT), Prothrombin factor 1.2 (PF1.2), and hemolysis (Drabkins assay), was within clinically accepted levels. The hydrodynamic performance of the tester showed consistent, repeatable physiological pressure and flow conditions. In addition, the system contains proximity sensors to accurately capture leaflet motion during the entire cardiac cycle. The PIV results showed skewing of the leakage jet, caused by the asymmetric closing of the two leaflets. All these results are critical to characterizing the blood damage and fluid dynamics characteristics of the SJM Regents® MHV, proving the utility of this tester as a precise system for assessing the hemodynamics and thrombogenicity for various PHVs.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Wootton, D. M., and Ku, D. N., 1999, “Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis,” Ann. Rev. Biomed. Eng., 1, pp. 299–329. [CrossRef]
Ruggeri, Z. M., Orje, J. N., Habermann, R., Federici, A. B., and Reininger, A. J., 2006, “Activation-Independent Platelet Adhesion and Aggregation Under Elevated Shear Stress,” Blood, 108(6), pp. 1903–1910. [CrossRef] [PubMed]
Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., Carberry, J., Fouras, A., and Jackson, S. P., 2009, “A Shear Gradient-Dependent Platelet Aggregation Mechanism Drives Thrombus Formation,” Nat. Med., 15(6), pp. 665–673. [CrossRef] [PubMed]
Yin, W., Alemu, Y., Affeld, K., Jesty, J., and Bluestein, D., 2004, “Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves,” Ann. Biomed. Eng., 32(8), pp. 1058–1066. [CrossRef] [PubMed]
Fallon, A. M., Shah, N., Marzec, U. M., Warnock, J. N., Yoganathan, A. P., and Hanson, S. R., 2006, “Flow and Thrombosis at Orifices Simulating Mechanical Heart Valve Leakage Regions,” ASME J. Biomech. Eng., 128(1), pp. 30–39. [CrossRef]
Nanna, J. C., Wivholm, J. A., Deutsch, S., and Manning, K. B., 2011, “Flow Field Study Comparing Design Iterations of a 50 cc Left Ventricular Assist Device,” ASAIO J., 57(5), pp. 349–357. [CrossRef] [PubMed]
Roszelle, B. N., Deutsch, S., Weiss, W. J., and Manning, K. B., 2011, “Flow Visualization of a Pediatric Ventricular Assist Device During Stroke Volume Reductions Related to Weaning,” Ann. Biomed. Eng., 39(7), pp. 2046–2058. [CrossRef] [PubMed]
Schonberger, M., Deutsch, S., and Manning, K. B., 2012, “The Influence of Device Position on the Flow Within the Penn State 12 cc Pediatric Ventricular Assist Device,” ASAIO J., 58(5), pp. 481–493. [CrossRef] [PubMed]
Slepian, M. J., Alemu, Y., Girdhar, G., Soares, J. S., Smith, R. G., Einav, S., and Bluestein, D., 2013, “The Syncardia() Total Artificial Heart: In Vivo, In Vitro, and Computational Modeling Studies,” J. Biomech., 46(2), pp. 266–275. [CrossRef] [PubMed]
Thompson, L. O., Loebe, M., and Noon, G. P., 2003, “What Price Support? Ventricular Assist Device Induced Systemic Response,” ASAIO J., 49(5), pp. 518–526. [CrossRef] [PubMed]
Topper, S. R., Navitsky, M. A., Medvitz, R. B., Paterson, E. G., Siedlecki, C. A., Slattery, M. J., Deutsch, S., Rosenberg, G., and Manning, K. B., 2014, “The Use of Fluid Mechanics to Predict Regions of Microscopic Thrombus Formation in Pulsatile VADs,” Cardiovasc. Eng. Technol., 5(1), pp. 54–69. [CrossRef] [PubMed]
Trost, J. C., and Hillis, L. D., 2006, “Intra-Aortic Balloon Counterpulsation,” Am. J. Cardiol., 97(9), pp. 1391–1398. [CrossRef] [PubMed]
Zhang, T., Cheng, G., Koert, A., Zhang, J., Gellman, B., Yankey, G. K., Satpute, A., Dasse, K. A., Gilbert, R. J., Griffith, B. P., and Wu, Z. J., 2009, “Functional and Biocompatibility Performances of an Integrated Maglev Pump-Oxygenator,” Artif. Organs, 33(1), pp. 36–45. [CrossRef] [PubMed]
Busch, R., Strohbach, A., Rethfeldt, S., Walz, S., Busch, M., Petersen, S., Felix, S., and Sternberg, K., 2014, “New Stent Surface Materials: The Impact of Polymer-Dependent Interactions of Human Endothelial Cells, Smooth Muscle Cells, and Platelets,” Acta Biomater., 10(2), pp. 688–700. [CrossRef] [PubMed]
Eppihimer, M. J., Sushkova, N., Grimsby, J. L., Efimova, N., Kai, W., Larson, S., Forsyth, B., Huibregtse, B. A., Dawkins, K. D., Wilson, G. J., and Granada, J. F., 2013, “Impact of Stent Surface on Thrombogenicity and Vascular Healing: A Comparative Analysis of Metallic and Polymeric Surfaces,” Circulation, 6(4), pp. 370–377. [CrossRef] [PubMed]
Hansi, C., Arab, A., Rzany, A., Ahrens, I., Bode, C., and Hehrlein, C., 2009, “Differences of Platelet Adhesion and Thrombus Activation on Amorphous Silicon Carbide, Magnesium Alloy, Stainless Steel, and Cobalt Chromium Stent Surfaces,” Catheterization Cardiovasc. Interventions, 73(4), pp. 488–496. [CrossRef]
Kolandaivelu, K., Swaminathan, R., Gibson, W. J., Kolachalama, V. B., Nguyen-Ehrenreich, K. L., Giddings, V. L., Coleman, L., Wong, G. K., and Edelman, E. R., 2011, “Stent Thrombogenicity Early in High-Risk Interventional Settings is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings,” Circulation, 123(13), pp. 1400–1409. [CrossRef] [PubMed]
Walker, E. K., Nauman, E. A., Allain, J. P., and Stanciu, L. A., “An In Vitro Model for Preclinical Testing of Thrombogenicity of Resorbable Metallic Stents,” J. Biomed. Mater. Res. Part A (in press).
Walter, T., Rey, K. S., Wendel, H. P., Szabo, S., Suselbeck, T., Dempfle, C. E., Borggrefe, M., Swoboda, S., Beyer, M. E., and Hoffmeister, H. M., 2010, “Thrombogenicity of Sirolimus-Eluting Stents and Bare Metal Stents: Evaluation in the Early Phase After Stent Implantation,” In Vivo, 24(5), pp. 635–639. [PubMed]
Dembitsky, W. P., 2006, “REMATCH and Beyond: The Cost of Treating Heart Failure Using an Implantable Left Ventricular Assist Device,” Semin. Cardiothorac. Vasc. Anesth., 10(3), pp. 253–255. [CrossRef] [PubMed]
Paul, R., Marseille, O., Hintze, E., Huber, L., Schima, H., Reul, H., and Rau, G., 1998, “In Vitro Thrombogenicity Testing of Artificial Organs,” Int. J. Artif. Organs, 21(9), pp. 548–552. [PubMed]
Cannegieter, S. C., Rosendaal, F. R., and Briet, E., 1994, “Thromboembolic and Bleeding Complications in Patients With Mechanical Heart Valve Prostheses,” Circulation, 89(2), pp. 635–641. [CrossRef] [PubMed]
Murphy, D. W., Dasi, L. P., Vukasinovic, J., Glezer, A., and Yoganathan, A. P., 2010, “Reduction of Procoagulant Potential of b-Datum Leakage Jet Flow in Bileaflet Mechanical Heart Valves Via Application of Vortex Generator Arrays,” ASME J. Biomech. Eng., 132(7), p. 071011. [CrossRef]
Yoganathan, A. P., He, Z., and Casey Jones, S., 2004, “Fluid Mechanics of Heart Valves,” Ann. Rev. Biomed. Eng., 6(1), pp. 331–362. [CrossRef]
Ge, L., Leo, H. L., Sotiropoulos, F., and Yoganathan, A. P., 2005, “Flow in a Mechanical Bileaflet Heart Valve at Laminar and Near-Peak Systole Flow Rates: CFD Simulations and Experiments,” ASME J. Biomech. Eng., 127(5), pp. 782–797. [CrossRef]
Mair, H., Sachweh, J., Sodian, R., Brenner, P., Schmoeckel, M., Schmitz, C., Reichart, B., and Daebritz, S., 2012, “Long-Term Self-Management of Anticoagulation Therapy After Mechanical Heart Valve Replacement in Outside Trial Conditions,” Interact. Cardiovasc. Thorac. Surg., 14(3), pp. 253–257. [CrossRef] [PubMed]
Al-Atassi, T., Lam, K., Forgie, M., Boodhwani, M., Rubens, F., Hendry, P., Masters, R., Goldstein, W., Bedard, P., Mesana, T., and Ruel, M., 2012, “Cerebral Microembolization After Bioprosthetic Aortic Valve Replacement: Comparison of Warfarin Plus Aspirin Versus Aspirin Only,” Circulation, 126(11 Suppl 1), pp. S239–S244. [CrossRef] [PubMed]
Uekermann, J., Suchan, B., Daum, I., Kseibi, S., Perthel, M., and Laas, J., 2005, “Neuropsychological Deficits After Mechanical Aortic Valve Replacement,” J. Heart Valve Dis., 14(3), pp. 338–343. [PubMed]
Deklunder, G., Roussel, M., Lecroart, J. L., Prat, A., and Gautier, C., 1998, “Microemboli in Cerebral Circulation and Alteration of Cognitive Abilities in Patients With Mechanical Prosthetic Heart Valves,” Stroke, 29(9), pp. 1821–1826. [CrossRef] [PubMed]
Skjelland, M., Michelsen, A., Brosstad, F., Svennevig, J. L., Brucher, R., and Russell, D., 2008, “Solid Cerebral Microemboli and Cerebrovascular Symptoms in Patients With Prosthetic Heart Valves,” Stroke, 39(4), pp. 1159–1164. [CrossRef] [PubMed]
Shankaran, H., Alexandridis, P., and Neelamegham, S., 2003, “Aspects of Hydrodynamic Shear Regulating Shear-Induced Platelet Activation and Self-Association of Von Willebrand Factor in Suspension,” Blood, 101(7), pp. 2637–2645. [CrossRef] [PubMed]
Ruggeri, Z. M., 1997, “Mechanisms Initiating Platelet Thrombus Formation,” Thromb. Haemostasis, 78(1), pp. 611–616.
Goto, S., Ikeda, Y., Saldivar, E., and Ruggeri, Z. M., 1998, “Distinct Mechanisms of Platelet Aggregation as a Consequence of Different Shearing Flow Conditions,” J. Clin. Invest., 101(2), pp. 479–486. [CrossRef] [PubMed]
Ikeda, Y., Handa, M., Kawano, K., Kamata, T., Murata, M., Araki, Y., Anbo, H., Kawai, Y., Watanabe, K., and Itagaki, I., 1991, “The Role of Von Willebrand Factor and Fibrinogen in Platelet Aggregation Under Varying Shear Stress,” J. Clin. Invest., 87(4), pp. 1234–1240. [CrossRef] [PubMed]
Savage, B., Saldivar, E., and Ruggeri, Z. M., 1996, “Initiation of Platelet Adhesion by Arrest Onto Fibrinogen or Translocation on Von Willebrand Factor,” Cell, 84(2), pp. 289–297. [CrossRef] [PubMed]
Haj-Ali, R., Dasi, L. P., Kim, H. S., Choi, J., Leo, H. W., and Yoganathan, A. P., 2008, “Structural Simulations of Prosthetic Tri-Leaflet Aortic Heart Valves,” J. Biomech., 41(7), pp. 1510–1519. [CrossRef] [PubMed]
Dasi, L. P., Simon, H. A., Sucosky, P., and Yoganathan, A. P., 2009, “Fluid Mechanics of Artificial Heart Valves,” Clin. Exp. Pharmacol. Physiol., 36(2), pp. 225–237. [CrossRef] [PubMed]
Fraser, A. G., Daubert, J. C., Van de Werf, F., Estes, N. A., 3rd, Smith, S. C., Jr., Krucoff, M. W., Vardas, P. E., and Komajda, M., and participants, 2011, “Clinical Evaluation of Cardiovascular Devices: Principles, Problems, and Proposals for European Regulatory Reform. Report of a Policy Conference of the European Society of Cardiology,” Eur. Heart J., 32(13), pp. 1673–1686. [CrossRef] [PubMed]
Bodnar, E., 1996, “The Medtronic Parallel Valve and the Lessons Learned,” J. Heart Valve Dis., 5(6), pp. 572–573. [PubMed]
Meuris, B., 2002, “Research on Biological and Mechanical Heart Valves: Experimental Studies in Chronic Animal Models,” Verh. K. Acad. Geneeskd. Belg., 64(4), pp. 287–302. [PubMed]
Mason, R. G., and Read, M. S., 1971, “Some Species Differences in Fibrinolysis and Blood Coagulation,” J. Biomed. Mater. Res., 5(1), pp. 121–128. [CrossRef] [PubMed]
Claiborne, T. E., Girdhar, G., Gallocher-Lowe, S., Sheriff, J., Kato, Y. P., Pinchuk, L., Schoephoerster, R. T., Jesty, J., and Bluestein, D., 2011, “Thrombogenic Potential of Innovia Polymer Valves Versus Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valves,” ASAIO J., 57(1), pp. 26–31. [CrossRef] [PubMed]
Reul, H., van Son, J. A., Steinseifer, U., Schmitz, B., Schmidt, A., Schmitz, C., and Rau, G., 1993, “In Vitro Comparison of Bileaflet Aortic Heart Valve Prostheses. St. Jude Medical, CarboMedics, Modified Edwards-Duromedics, and Sorin-Bicarbon Valves,” J. Thorac. Cardiovasc. Surg., 106(3), pp. 412–420. [PubMed]
Alemu, Y., and Bluestein, D., 2007, “Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies,” Artif. Organs, 31(9), pp. 677–688. [CrossRef] [PubMed]
Martin, A. J., and Christy, J. R., 2004, “Evaluation of an In-Vitro Thrombosis Assessment Procedure by Application to the Medtronic Parallel and St. Jude Medical Valves,” J. Heart Valve Dis., 13(4), pp. 667–675. [PubMed]
Scharfschwerdt, M., Thomschke, M., and Sievers, H. H., 2009, “In-Vitro Localization of Initial Flow-Induced Thrombus Formation in Bileaflet Mechanical Heart Valves,” ASAIO J., 55(1), pp. 19–23. [CrossRef] [PubMed]
Kim, C. H., Steinseifer, U., and Schmitz-Rode, T., 2009, “Thrombogenic Evaluation of Two Mechanical Heart Valve Prostheses Using a New In-Vitro Test System,” J. Heart Valve Dis., 18(2), pp. 207–213. [PubMed]
Martin, A. J., and Christy, J. R., 2004, “An In-Vitro Technique for Assessment of Thrombogenicity in Mechanical Prosthetic Cardiac Valves: Evaluation With a Range of Valve Types,” J. Heart Valve Dis., 13(3), pp. 509–520. [PubMed]
Keggen, L. A., Black, M. M., Lawford, P. V., Hose, D. R., and Strachan, J. R., 1996, “The Use of Enzyme Activated Milk for In Vitro Simulation of Prosthetic Valve Thrombosis,” J. Heart Valve Dis., 5(1), pp. 74–83. [PubMed]
Bluestein, D., Yin, W., Affeld, K., and Jesty, J., 2004, “Flow-Induced Platelet Activation in Mechanical Heart Valves,” J. Heart Valve Dis., 13(3), pp. 501–508. [PubMed]
Lamson, T. C., Rosenberg, G., Geselowitz, D. B., Deutsch, S., Stinebring, D. R., Frangos, J. A., and Tarbell, J. M., 1993, “Relative Blood Damage in the Three Phases of a Prosthetic Heart Valve Flow Cycle,” ASAIO J., 39(3), pp. M626–M633. [CrossRef] [PubMed]
Li, M., Ku, D. N., and Forest, C. R., 2012, “Microfluidic System for Simultaneous Optical Measurement of Platelet Aggregation at Multiple Shear Rates in Whole Blood,” Lab Chip, 12(7), pp. 1355–1362. [CrossRef] [PubMed]
Xenos, M., Girdhar, G., Alemu, Y., Jesty, J., Slepian, M., Einav, S., and Bluestein, D., 2010, “Device Thrombogenicity Emulator (DTE)–Design Optimization Methodology for Cardiovascular Devices: A Study in Two Bileaflet MHV Designs,” J. Biomech., 43(12), pp. 2400–2409. [CrossRef] [PubMed]
Linde, T., Hamilton, K. F., Timms, D. L., Schmitz-Rode, T., and Steinseifer, U., 2011, “A Low-Volume Tester for the Thrombogenic Potential of Mechanical Heart Valve Prostheses,” J. Heart Valve Dis., 20(5), pp. 510–517. [PubMed]
Dasi, L. P., Murphy, D. W., Glezer, A., and Yoganathan, A. P., 2008, “Passive Flow Control of Bileaflet Mechanical Heart Valve Leakage Flow,” J. Biomech., 41(6), pp. 1166–1173. [CrossRef] [PubMed]
Fallon, A. M., Dasi, L. P., Marzec, U. M., Hanson, S. R., and Yoganathan, A. P., 2008, “Procoagulant Properties of Flow Fields in Stenotic and Expansive Orifices,” Ann. Biomed. Eng., 36(1), pp. 1–13. [CrossRef] [PubMed]
Akins, C. W., 1995, “Results With Mechanical Cardiac Valvular Prostheses,” Ann. Thorac. Surg., 60(6), pp. 1836–1844. [CrossRef] [PubMed]
Sheriff, J., Soares, J. S., Xenos, M., Jesty, J., Slepian, M. J., and Bluestein, D., 2013, “Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices,” Ann. Biomed. Eng., 41(6), pp. 1279–1296. [CrossRef] [PubMed]
Simon, H. A., Ge, L., Borazjani, I., Sotiropoulos, F., and Yoganathan, A. P., 2010, “Simulation of the Three-Dimensional Hinge Flow Fields of a Bileaflet Mechanical Heart Valve Under Aortic Conditions,” Ann. Biomed. Eng., 38(3), pp. 841–853. [CrossRef] [PubMed]
Kaufmann, T. A., Linde, T., Cuenca-Navalon, E., Schmitz, C., Hormes, M., Schmitz-Rode, T., and Steinseifer, U., 2011, “Transient, Three-Dimensional Flow Field Simulation Through a Mechanical, Trileaflet Heart Valve Prosthesis,” ASAIO J., 57(4), pp. 278–282. [CrossRef] [PubMed]
Ghanbari, H., Viatge, H., Kidane, A. G., Burriesci, G., Tavakoli, M., and Seifalian, A. M., 2009, “Polymeric Heart Valves: New Materials, Emerging Hopes,” Trends Biotechnol., 27(6), pp. 359–367. [CrossRef] [PubMed]
Claiborne, T. E., Sheriff, J., Kuetting, M., Steinseifer, U., Slepian, M. J., and Bluestein, D., 2013, “In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve,” ASME J. Biomech. Eng., 135(2), p. 021021. [CrossRef]
Fallon, A. M., Marzec, U. M., Hanson, S. R., and Yoganathan, A. P., 2007, “Thrombin Formation In Vitro in Response to Shear-Induced Activation of Platelets,” Thromb. Res., 121(3), pp. 397–406. [CrossRef] [PubMed]
Pierrakos, O., Vlachos, P. P., and Telionis, D. P., 2004, “Time-Resolved DPIV Analysis of Vortex Dynamics in a Left Ventricular Model Through Bileaflet Mechanical and Porcine Heart Valve Prostheses,” ASME J. Biomech. Eng., 126(6), pp. 714–726. [CrossRef]
Yin, W., Gallocher, S., Pinchuk, L., Schoephoerster, R. T., Jesty, J., and Bluestein, D., 2005, “Flow-Induced Platelet Activation in a St. Jude Mechanical Heart Valve, a Trileaflet Polymeric Heart Valve, and a St. Jude Tissue Valve,” Artif. Organs, 29(10), pp. 826–831. [CrossRef] [PubMed]
Yun, B. M., Wu, J., Simon, H. A., Arjunon, S., Sotiropoulos, F., Aidun, C. K., and Yoganathan, A. P., 2012, “A Numerical Investigation of Blood Damage in the Hinge Area of Aortic Bileaflet Mechanical Heart Valves During the Leakage Phase,” Ann. Biomed. Eng., 40(7), pp. 1468–1485. [CrossRef] [PubMed]
Jun, B. H., Saikrishnan, N., and Yoganathan, A. P., 2014, “Micro Particle Image Velocimetry Measurements of Steady Diastolic Leakage Flow in the Hinge of a St. Jude Medical Regent Mechanical Heart Valve,” Ann. Biomed. Eng., 42(3), pp. 526–540. [CrossRef] [PubMed]
Bluestein, D., Rambod, E., and Gharib, M., 2000, “Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves,” ASME J. Biomech. Eng., 122(2), pp. 125–134. [CrossRef]
Avrahami, I., Rosenfeld, M., Einav, S., Eichler, M., and Reul, H., 2000, “Can Vortices in the Flow Across Mechanical Heart Valves Contribute to Cavitation?,” Med. Biol. Eng. Comput., 38(1), pp. 93–97. [CrossRef] [PubMed]
Ge, L., Dasi, L. P., Sotiropoulos, F., and Yoganathan, A. P., 2008, “Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds Vs. Viscous Stresses,” Ann. Biomed. Eng., 36(2), pp. 276–297. [CrossRef] [PubMed]
Manning, K. B., Kini, V., Fontaine, A. A., Deutsch, S., and Tarbell, J. M., 2003, “Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve Under Physiologic Pulsatile Flow Using Particle Image Velocimetry,” Artif. Organs, 27(9), pp. 840–846. [CrossRef] [PubMed]
Nesbitt, W. S., Giuliano, S., Kulkarni, S., Dopheide, S. M., Harper, I. S., and Jackson, S. P., 2003, “Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth,” J. Cell Biol., 160(7), pp. 1151–1161. [CrossRef] [PubMed]
Thor, A., Rasmusson, L., Wennerberg, A., Thomsen, P., Hirsch, J. M., Nilsson, B., and Hong, J., 2007, “The Role of Whole Blood in Thrombin Generation in Contact With Various Titanium Surfaces,” Biomaterials, 28(6), pp. 966–974. [CrossRef] [PubMed]
Travis, B. R., Marzec, U. M., Ellis, J. T., Davoodi, P., Momin, T., Hanson, S. R., Harker, L. A., and Yoganathan, A. P., 2001, “The Sensitivity of Indicators of Thrombosis Initiation to a Bileaflet Prosthesis Leakage Stimulus,” J. Heart Valve Dis., 10(2), pp. 228–238. [PubMed]
Zhang, J. N., Wood, J., Bergeron, A. L., McBride, L., Ball, C., Yu, Q., Pusiteri, A. E., Holcomb, J. B., and Dong, J. F., 2004, “Effects of Low Temperature on Shear-Induced Platelet Aggregation and Activation,” J. Trauma, 57(2), pp. 216–223. [CrossRef] [PubMed]
Wolberg, A. S., Meng, Z. H., Monroe, D. M., 3rd, and Hoffman, M., 2004, “A Systematic Evaluation of the Effect of Temperature on Coagulation Enzyme Activity and Platelet Function,” J. Trauma, 56(6), pp. 1221–1228. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 3

(a) Valve holder with SJM valve, (b) test system showing the actuator at the bottom, middle test section with bypass tube, flexible bag inside the compliance chamber at the top

Grahic Jump Location
Fig. 2

Modular chambers that can be plugged into the tester to simultaneously study fluid dynamics and blood damage levels. (a) Chamber to study flow in MHV leaflet-hinges, (b) an inferior vena-cava filter design and chamber to mount the filter, and (c) a MHV with transparent ring and its chamber with an axisymmetric aortic sinus.

Grahic Jump Location
Fig. 1

Schematic of the system design showing the pump (linear actuator and motor), blood containing test section, and the pressure regulation system

Grahic Jump Location
Fig. 4

Top figure illustrates the arrangement of the sensor, emitter, and leaflets during both opening and closing of MHV. Bottom flow-curve figure shows the part of the cardiac cycle that was studied using PIV.

Grahic Jump Location
Fig. 5

Pressure variation on aortic and ventricular side of the MHV, averaged over 15 cycles, are shown after filtering high frequency oscillations. The negative section of flow curve indicates closing and leakage volumes of the MHV.

Grahic Jump Location
Fig. 6

(a) Leaflet position traces of leaflet 1 and leaflet during a single cardiac cycle. In the vertical axis, an angle of 7 deg corresponds to fully open position and an angle of 60 deg corresponds to fully closed position. (b) Spread of single-leaflet position traces sampled over 100 cycles.

Grahic Jump Location
Fig. 7

Top two rows: plot of PIV velocity magnitude in the ventricular side of the valve for two cardiac cycles. The change in direction of dotted lines (between cycle 1 and cycle 2) during the closing phase indicates the vectoring of the leakage jet due to asynchronous leaflet closing during cycle 2. Bottom two rows: PIV velocity vectors and vorticity contours for two cardiac cycles (top and bottom).

Grahic Jump Location
Fig. 8

Blood coagulation indicators: (a) TAT, (b) hemolysis, and (c) PF1.2 showing that the coagulation potential of the tester was less than that induced when the MHV was mounted in the tester



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In