0
Research Papers

In Vitro Evaluation of the Acetabular Cup Primary Stability by Impact Analysis

[+] Author and Article Information
Adrien Michel, Romain Vayron

Laboratoire Modélisation et de
Simulation Multi-Echelle,
CNRS,
UMR CNRS 8208,
61 Avenue du Général de Gaulle,
Créteil 94010, France

Romain Bosc

Service de Chirurgie Plastique,
Reconstructrice et Esthétique,
Hôpital Henri Mondor AP-HP,
CHU Paris 12,
Université Paris-Est,
51 Avenue du Maréchal de Lattre de Tassigny,
Créteil 94000, France

Guillaume Haiat

Laboratoire Modélisation et de
Simulation Multi-Echelle,
CNRS,
UMR CNRS 8208,
61 Avenue du Général de Gaulle,
Créteil 94010, France
e-mail: guillaume.haiat@univ-paris-est.fr

1Corresponding author.

Manuscript received May 22, 2014; final manuscript received December 22, 2014; published online February 2, 2015. Assoc. Editor: Joel D. Stitzel.

J Biomech Eng 137(3), 031011 (Mar 01, 2015) (6 pages) Paper No: BIO-14-1221; doi: 10.1115/1.4029505 History: Received May 22, 2014; Revised December 22, 2014; Online February 02, 2015

The implant primary stability of the acetabular cup (AC) is an important parameter for the surgical success of press-fit procedures used for the insertion of cementless hip prostheses. In previous studies by our group (Mathieu, V., Michel, A., Lachaniette, C. H. F., Poignard, A., Hernigou, P., Allain, J., and Haiat, G., 2013, “Variation of the Impact Duration During the in vitro Insertion of Acetabular Cup Implants,” Med. Eng. Phys., 35(11), pp. 1558–1563) and (Michel, A., Bosc, R., Mathieu, V., Hernigou, P., and Haiat, G., 2014, “Monitoring the Press-Fit Insertion of an Acetabular Cup by Impact Measurements: Influence of Bone Abrasion,” Proc. Inst. Mech. Eng., Part H, 228(10), pp. 1027–1034), the impact momentum and duration were shown to carry information on the press-fit insertion of the AC within bone tissue. The aim of the present study is to relate the impact momentum recorded during the AC insertion to the AC biomechanical primary stability. The experimental protocol consisted in testing 13 bovine bone samples that underwent successively series of 15 reproducible mass falls impacts (5 kg, 5 cm) followed by tangential stability testing. Each bone sample was tested with different hole sizes in order to obtain different stability configurations. The impact momentum and the tangential primary stability reach a maximum value for an interference fit equal to around 1 mm. Moreover, a correlation between the impact momentum and the stability was obtained with all samples and all configuration (R2 = 0.65). The implant primary stability can be assessed through the measurement of the impact force signal analysis. This study opens new paths for the development of a medical device which could be used as a decision support system to assist the surgeon during the insertion of the AC implant.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Topics: Stability , Bone , Signals
Your Session has timed out. Please sign back in to continue.

References

Morscher, E., Bereiter, H., and Lampert, C., 1989, “Cementless Press-Fit Cup. Principles, Experimental Data, and Three-Year Follow-Up Study,” Clin. Orthop. Relat. Res., 249, pp. 12–20. [PubMed]
Zivkovic, I., Gonzalez, M., and Amirouche, F., 2010, “The Effect of Under-Reaming on the Cup/Bone Interface of a Press Fit Hip Replacement,” ASME J. Biomech. Eng., 132(4), p. 041008. [CrossRef]
Ramamurti, B. S., Orr, T. E., Bragdon, C. R., Lowenstein, J. D., Jasty, M., and Harris, W. H., 1997, “Factors Influencing Stability at the Interface Between a Porous Surface and Cancellous Bone: A Finite Element Analysis of a Canine In Vivo Micromotion Experiment,” J. Biomed. Mater. Res., 36(2), pp. 274–280. [CrossRef] [PubMed]
Mathieu, V., Vayron, R., Richard, G., Lambert, G., Naili, S., Meningaud, J. P., and Haiat, G., 2014, “Biomechanical Determinants of the Stability of Dental Implants: Influence of the Bone-Implant Interface Properties,” J. Biomech., 47(1), pp. 3–13. [CrossRef] [PubMed]
Pilliar, R. M., Lee, J. M., and Maniatopoulos, C., 1986, “Observations on the Effect of Movement on Bone Ingrowth Into Porous-Surfaced Implants,” Clin. Orthop. Relat. Res., 208, pp. 108–113. [PubMed]
Soballe, K., Hansen, E. S., Rasmussen, H. B., Jorgensen, P. H., and Bunger, C., 1992, “Tissue Ingrowth Into Titanium and Hydroxyapatite-Coated Implants During Stable and Unstable Mechanical Conditions,” J. Orthop. Res., 10(2), pp. 285–299. [CrossRef] [PubMed]
Aspenberg, P., Goodman, S., Toksvig-Larsen, S., Ryd, L., and Albrektsson, T., 1992, “Intermittent Micromotion Inhibits Bone Ingrowth. Titanium Implants in Rabbits,” Acta Orthop. Scand., 63(2), pp. 141–145. [CrossRef] [PubMed]
Haiat, G., Wang, H. L., and Brunski, J., 2014, “Effects of Biomechanical Properties of the Bone-Implant Interface on Dental Implant Stability: From in Silico Approaches to the Patient's Mouth,” Annu. Rev. Biomed. Eng., 16, pp. 187–213. [CrossRef] [PubMed]
Fritsche, A., Bialek, K., Mittelmeier, W., Simnacher, M., Fethke, K., Wree, A., and Bader, R., 2008, “Experimental Investigations of the Insertion and Deformation Behavior of Press-Fit and Threaded Acetabular Cups for Total Hip Replacement,” J. Orthop. Sci., 13(3), pp. 240–247. [CrossRef] [PubMed]
Bobyn, J. D., Pilliar, R. M., Cameron, H. U., and Weatherly, G. C., 1980, “The Optimum Pore Size for the Fixation of Porous-Surfaced Metal Implants by the Ingrowth of Bone,” Clin. Orthop. Relat. Res., 150, pp. 263–270. [PubMed]
Clemow, A. J., Weinstein, A. M., Klawitter, J. J., Koeneman, J., and Anderson, J., 1981, “Interface Mechanics of Porous Titanium Implants,” J. Biomed. Mater. Res., 15(1), pp. 73–82. [CrossRef] [PubMed]
Cook, S. D., Walsh, K. A., and Haddad, R. J., Jr., 1985, “Interface Mechanics and Bone Growth Into Porous Co-Cr-Mo Alloy Implants,” Clin. Orthop. Relat. Res., 193, pp. 271–280. [PubMed]
Adler, E., Stuchin, S. A., and Kummer, F. J., 1992, “Stability of Press-Fit Acetabular Cups,” J. Arthroplasty, 7(3), pp. 295–301. [CrossRef] [PubMed]
Baleani, M., Fognani, R., and Toni, A., 2001, “Initial Stability of a Cementless Acetabular Cup Design: Experimental Investigation on the Effect of Adding Fins to the Rim of the Cup,” Artif. Organs, 25(8), pp. 664–669. [CrossRef] [PubMed]
Curtis, M. J., Jinnah, R. H., Wilson, V. D., and Hungerford, D. S., 1992, “The Initial Stability of Uncemented Acetabular Components,” J. Bone Jt. Surg., Br. Vol., 74(3), pp. 372–376.
Clarke, H. J., Jinnah, R. H., Warden, K. E., Cox, Q. G., and Curtis, M. J., 1991, “Evaluation of Acetabular Stability in Uncemented Prostheses,” J. Arthroplasty, 6(4), pp. 335–340. [CrossRef] [PubMed]
Hsu, J. T., Lai, K. A., Chen, Q., Zobitz, M. E., Huang, H. L., An, K. N., and Chang, C. H., 2006, “The Relation Between Micromotion and Screw Fixation in Acetabular Cup,” Comput. Methods Prog. Biomed., 84(1), pp. 34–41. [CrossRef]
Saleh, K. J., Bear, B., Bostrom, M., Wright, T., and Sculco, T. P., 2008, “Initial Stability of Press-Fit Acetabular Components: An In Vitro Biomechanical Study,” Am. J. Orthop. (Belle Mead NJ), 37(10), pp. 519–522. [PubMed]
Markel, D., Day, J., Siskey, R., Liepins, I., Kurtz, S., and Ong, K., 2011, “Deformation of Metal-Backed Acetabular Components and the Impact of Liner Thickness in a Cadaveric Model,” Int. Orthop., 35(8), pp. 1131–1137. [CrossRef] [PubMed]
Perona, P. G., Lawrence, J., Paprosky, W. G., Patwardhan, A. G., and Sartori, M., 1992, “Acetabular Micromotion as a Measure of Initial Implant Stability in Primary Hip Arthroplasty. An In Vitro Comparison of Different Methods of Initial Acetabular Component Fixation,” J. Arthroplasty, 7(4), pp. 537–547. [CrossRef] [PubMed]
Zietz, C., Fritsche, A., Kluess, D., Mittelmeier, W., and Bader, R., 2009, “Influence of Acetabular Cup Design on the Primary Implant Stability: An Experimental and Numerical Analysis,” Orthopade, 38(11), pp. 1097–1105. [CrossRef] [PubMed]
Jacofsky, D. J., McCamley, J. D., Jaczynski, A. M., Shrader, M. W., and Jacofsky, M. C., 2012, “Improving Initial Acetabular Component Stability in Revision Total Hip Arthroplasty Calcium Phosphate Cement vs Reverse Reamed Cancellous Allograft,” J. Arthroplasty, 27(2), pp. 305–309. [CrossRef] [PubMed]
Burkner, A., Fottner, A., Lichtinger, T., Teske, W., Vogel, T., Jansson, V., and von Schulze Pellengahr, C., 2012, “Primary Stability of Cementless Threaded Acetabular Cups at First Implantation and in the Case of Revision Regarding Micromotions as Indicators,” Biomed. Tech. (Berl), 57(3), pp. 169–174. [CrossRef] [PubMed]
Shalabi, M. M., Wolke, J. G. C., Cuijpers, V. M. J. I., and Jansen, J. A., 2007, “Evaluation of Bone Response to Titanium-Coated Polymethyl Methacrylate Resin (PMMA) Implants by X-Ray Tomography,” J. Mater. Sci.: Mater. Med., 18(10), pp. 2033–2039. [CrossRef] [PubMed]
Hecht, S., Adams, W. H., Narak, J., and Thomas, W. B., 2011, “Magnetic Resonance Imaging Susceptibility Artifacts due to Metallic Foreign Bodies,” Vet. Radiol. Ultrasound, 52(4), pp. 409–414. [CrossRef] [PubMed]
Pastrav, L. C., Jaecques, S. V., Jonkers, I., Perre, G. V., and Mulier, M., 2009, “In Vivo Evaluation of a Vibration Analysis Technique for the Per-Operative Monitoring of the Fixation of Hip Prostheses,” J. Orthop. Surg. Res., 4, pp. 4–10. [CrossRef] [PubMed]
Sakai, R., Kikuchi, A., Morita, T., Takahira, N., Uchiyama, K., Yamamoto, T., Moriya, M., Uchida, K., Fukushima, K., Tanaka, K., Takaso, M., Itoman, M., and Mabuchi, K., 2011, “Hammering Sound Frequency Analysis and Prevention of Intraoperative Periprosthetic Fractures During Total Hip Arthroplasty,” Hip Int., 21(6), pp. 718–723. [CrossRef] [PubMed]
Varini, E., Bialoblocka-Juszczyk, E., Lannocca, M., Cappello, A., and Cristofolini, L., 2010, “Assessment of Implant Stability of Cementless Hip Prostheses Through the Frequency Response Function of the Stem-Bone System,” Sens. Actuators, A, 163(2), pp. 526–532. [CrossRef]
Mathieu, V., Michel, A., Lachaniette, C. H. F., Poignard, A., Hernigou, P., Allain, J., and Haiat, G., 2013, “Variation of the Impact Duration During the In Vitro Insertion of Acetabular Cup Implants,” Med. Eng. Phys., 35(11), pp. 1558–1563. [CrossRef] [PubMed]
Michel, A., Bosc, R., Mathieu, V., Hernigou, P., and Haiat, G., 2014, “Monitoring the Press-Fit Insertion of an Acetabular Cup by Impact Measurements: Influence of Bone Abrasion,” Proc. Inst. Mech. Eng., Part H, 228(10), pp. 1027–1034. [CrossRef]
Giardini, S., Cornwell, P., and Meneghini, R. M., 2005, “Monitoring Femoral Component Installation Using Vibration Testing,” Biomed. Sci. Instrum., 41, pp. 13–18. [PubMed]
Meneghini, R. M., Guthrie, M., Moore, H. D., Abou-Trabi, D., Cornwell, P., and Rosenberg, A. G., 2010, “A Novel Method for Prevention of Intraoperative Fracture in Cementless Hip Arthroplasty: Vibration Analysis During Femoral Component Insertion,” Surg. Technol. Int., 20, pp. 334–339. [PubMed]
Macdonald, W., Carlsson, L. V., Charnley, G. J., and Jacobsson, C. M., 1999, “Press-Fit Acetabular Cup Fixation: Principles and Testing,” Proc. Inst. Mech. Eng., Part H, 213(1), pp. 33–39. [CrossRef]
Spears, I. R., Morlock, M. M., Pfleiderer, M., Schneider, E., and Hille, E., 1999, “The Influence of Friction and Interference on the Seating of a Hemispherical Press-Fit Cup: A Finite Element Investigation,” J. Biomech., 32(11), pp. 1183–1189. [CrossRef] [PubMed]
Spears, I. R., Pfleiderer, M., Schneider, E., Hille, E., and Morlock, M. M., 2001, “The Effect of Interfacial Parameters on Cup-Bone Relative Micromotions. A Finite Element Investigation,” J. Biomech., 34(1), pp. 113–120. [CrossRef] [PubMed]
Udofia, I., Liu, F., Jin, Z., Roberts, P., and Grigoris, P., 2007, “The Initial Stability and Contact Mechanics of a Press-Fit Resurfacing Arthroplasty of the Hip,” J. Bone Jt. Surg., Br. Vol., 89(4), pp. 549–556. [CrossRef]
Kwong, L. M., O'Connor, D. O., Sedlacek, R. C., Krushell, R. J., Maloney, W. J., and Harris, W. H., 1994, “A Quantitative In Vitro Assessment of Fit and Screw Fixation on the Stability of a Cementless Hemispherical Acetabular Component,” J. Arthroplasty, 9(2), pp. 163–170. [CrossRef] [PubMed]
Carter, D. R., Vasu, R., and Harris, W. H., 1983, “Periacetabular Stress Distributions After Joint Replacement With Subchondral Bone Retention,” Acta, Orthop. Scand., 54(1), pp. 29–35. [CrossRef]
Poumarat, G., and Squire, P., 1993, “Comparison of Mechanical Properties of Human, Bovine Bone and a New Processed Bone Xenograft,” Biomaterials, 14(5), pp. 337–340. [CrossRef] [PubMed]
Markel, D. C., Hora, N., and Grimm, M., 2002, “Press-Fit Stability of Uncemented Hemispheric Acetabular Components: A Comparison of Three Porous Coating Systems,” Int. Orthop., 26(2), pp. 72–75. [CrossRef] [PubMed]
Klika, A. K., Murray, T. G., Darwiche, H., and Barsoum, W. K., 2007, “Options for Acetabular Fixation Surfaces,” J. Long-Term Eff. Med. Implants, 17(3), pp. 187–192. [CrossRef] [PubMed]
Small, S. R., Berend, M. E., Howard, L. A., Rogge, R. D., Buckley, C. A., and Ritter, M. A., 2013, “High Initial Stability in Porous Titanium Acetabular Cups: A Biomechanical Study,” J. Arthroplasty, 28(3), pp. 510–516. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Image of the AC implant (Ceraver, Roissy, France) used in the experiments. The surface is textured and roughened to allow better osseointegration.

Grahic Jump Location
Fig. 2

Schematic representation of the experimental setup used for impaction of the AC implant

Grahic Jump Location
Fig. 3

Mechanical setup for transverse testing of AC implant stability

Grahic Jump Location
Fig. 4

Schematic description of the experimental protocol

Grahic Jump Location
Fig. 5

Schematic representation of the AC implant insertion conditions with various cavity diameters: ((a): 49 mm, (b) 49+ mm, (c) 50 mm, (d) 50+ mm, (e) d = 51 mm). The arrows in (c) indicate a stressed state of bone tissue.

Grahic Jump Location
Fig. 6

Variations of I as a function of the impact number during the press-fit insertion of a bone sample

Grahic Jump Location
Fig. 7

Five rf signals (corresponding to the time variation of the force f) measured for the last impact obtained during the press fit insertion of the AC implant. The rf signals correspond to insertion impacts in the same bone specimen with a diameter of 49 mm (black solid line), 49+ (black dashed line), 50 mm (gray solid line), 50+ (gray dashed line), and 51 mm (black dashed dotted line).

Grahic Jump Location
Fig. 8

Average and standard deviations of (a) Ilast and (b) tangential stability f as a function of hole diameter for the same sample as in Fig. 7

Grahic Jump Location
Fig. 9

Average and standard deviation of (a) indicator Ilast and (b) tangential stability f as a function of bone hole diameter for all samples pooled (significant differences are identified by an asterisk)

Grahic Jump Location
Fig. 10

Tangential stability f as a function of the indicator Ilast for the same sample as in Fig. 7

Grahic Jump Location
Fig. 11

Tangential stability f versus indicator Ilast for all data pooled from all bone samples

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In