Research Papers

Unidirectional Cell Crawling Model Guided by Extracellular Cues

[+] Author and Article Information
Zhanjiang Wang

State Key Laboratory
of Mechanical Transmission,
Chongqing University,
Chongqing 400030, China
e-mail: wangzhanjiang001@gmail.com

Yuxu Geng

State Key Laboratory
of Mechanical Transmission,
Chongqing University,
Chongqing 400030, China

1Corresponding author.

Manuscript received February 26, 2014; final manuscript received November 28, 2014; published online January 29, 2015. Assoc. Editor: Mohammad Mofrad.

J Biomech Eng 137(3), 031006 (Mar 01, 2015) (8 pages) Paper No: BIO-14-1092; doi: 10.1115/1.4029301 History: Received February 26, 2014; Revised November 28, 2014; Online January 29, 2015

Cell migration is a highly regulated and complex cellular process to maintain proper homeostasis for various biological processes. Extracellular environment was identified as the main affecting factors determining the direction of cell crawling. It was observed experimentally that the cell prefers migrating to the area with denser or stiffer array of microposts. In this article, an integrated unidirectional cell crawling model was developed to investigate the spatiotemporal dynamics of unidirectional cell migration, which incorporates the dominating intracellular biochemical processes, biomechanical processes and the properties of extracellular micropost arrays. The interpost spacing and the stiffness of microposts are taken into account, respectively, to study the mechanism of unidirectional cell locomotion and the guidance of extracellular influence cues on the direction of unidirectional cell crawling. The model can explain adequately the unidirectional crawling phenomena observed in experiments such as “spatiotaxis” and “durotaxis,” which allows us to obtain further insights into cell migration.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Vogel, V., and Sheetz, M., 2006, “Local Force and Geometry Sensing Regulate Cell Functions,” Nat. Rev. Mol. Cell Biol., 7(4), pp. 265–275. [CrossRef] [PubMed]
Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E., 2006, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, 126(4), pp. 677–689. [CrossRef] [PubMed]
Discher, D. E., Janmey, P., and Wang, Y. L., 2005, “Tissue Cells Feel and Respond to the Stiffness of Their Substrate,” Science, 310(5751), pp. 1139–1143. [CrossRef] [PubMed]
Chen, C. S., 2008, “Mechanotransduction—A Field Pulling Together?,” J. Cell Sci., 121(Pt 20), pp. 3285–3292. [CrossRef] [PubMed]
Bershadsky, A. D., Balaban, N. Q., and Geiger, B., 2003, “Adhesion-Dependent Cell Mechanosensitivity,”Ann. Rev. Cell Dev. Biol., 19, pp. 677–695. [CrossRef]
Lo, C. M., Wang, H. B., Dembo, M., and Wang, Y. L., 2000, “Cell Movement Is Guided by the Rigidity of the Substrate,” Biophys. J., 79(1), pp. 144–152. [CrossRef] [PubMed]
Cain, R. J., and Ridley, A. J., 2009, “Phosphoinositide 3-Kinases in Cell Migration,” Biol. Cell, 101(1), pp. 13–29. [CrossRef] [PubMed]
Rorth, P., 2009, “Collective Cell Migration,” Ann. Rev. Cell Dev. Biol., 25, pp. 407–429. [CrossRef]
Ananthakrishnan, R., and Ehrlicher, A., 2007, “The Forces Behind Cell Movement,” Int. J. Biol. Sci., 3(5), pp. 303–317. [CrossRef] [PubMed]
Lauffenburger, D. A., and Horwitz, A. F., 1996, “Cell Migration: A Physically Integrated Molecular Process,” Cell, 84(3), pp. 359–369. [CrossRef] [PubMed]
Lodish, H. F., and Darnell, J. E., 1995, Molecular Cell Biology, 3rd ed., Vol. 1, Scientific American Books/W.H.Freeman and Co., New York.
Horwitz, A. R., and Parsons, J. T., 1999, “Cell Biology—Cell Migration—Movin' On,” Science, 286(5442), pp. 1102–1103. [CrossRef] [PubMed]
Stossel, T. P., 1993, “On the Crawling of Animal Cells,” Science, 260(5111), pp. 1086–1094. [CrossRef] [PubMed]
Juliano, R. L., and Haskill, S., 1993, “Signal Transduction From the Extracellular-Matrix,” J. Cell Biol., 120(3), pp. 577–585. [CrossRef] [PubMed]
Martin, P., 1997, “Wound Healing—Aiming for Perfect Skin Regeneration,” Science, 276(5309), pp. 75–81. [CrossRef] [PubMed]
Bray, D., 2001, Cell Movements: From Molecules to Motility, 2nd ed., Garland Science Publication, New York, p. 372, xiv.
Sakamoto, K., Owada, Y., Shikama, Y., Wada, I., Waguri, S., Iwamoto, T., and Kimura, J., 2009, “Involvement of Na+/Ca2+ Exchanger in Migration and Contraction of Rat Cultured Tendon Fibroblasts,” J. Physiol.-London, 587(22), pp. 5345–5359. [CrossRef]
Love, A. C., 2003, “Evolutionary Morphology, Innovation, and the Synthesis of Evolutionary and Developmental Biology,” Biol. Philos., 18(2), pp. 309–345. [CrossRef]
Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R., 2003, “Cell Migration: Integrating Signals From Front to Back,” Science, 302(5651), pp. 1704–1709. [CrossRef] [PubMed]
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., 2008, Molecular Biology of the Cell, 5th ed., Garland Science Publication, New York. [PubMed] [PubMed]
Jabbarzadeh, E., and Abrams, C. F., 2005, “Chemotaxis and Random Motility in Unsteady Chemoattractant Fields: A Computational Study,” J. Theor. Biol., 235(2), pp. 221–232. [CrossRef] [PubMed]
Neilson, M. P., Veltman, D. M., van Haastert, P. J., Webb, S. D., Mackenzie, J. A., and Insall, R. H., 2011, “Chemotaxis: A Feedback-Based Computational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour,” PLoS Biol., 9(5), p. e1000618. [CrossRef] [PubMed]
Carter, S. B., 1967, “Haptotaxis and the Mechanism of Cell Motility,” Nature, 213(5073), pp. 256–260. [CrossRef] [PubMed]
Mallet, D. G., and Pettet, G. J., 2006, “A mathematical Model of Integrin-Mediated Haptotactic Cell Migration,” Bull. Math. Biol., 68(2), pp. 231–253. [CrossRef] [PubMed]
Izzard, C. S., and Lochner, L. R., 1980, “Formation of Cell-to-Substrate Contacts During Fibroblast Motility—An Interference-Reflexion Study,” J. Cell Sci., 42, pp. 81–116. [PubMed]
Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., and Janmey, P. A., 2005, “Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion,” Cell Motil. Cytoskeleton, 60(1), pp. 24–34. [CrossRef] [PubMed]
Peyton, S. R., and Putnam, A. J., 2005, “Extracellular Matrix Rigidity Governs Smooth Muscle Cell Motility in a Biphasic Fashion,” J. Cell. Physiol., 204(1), pp. 198–209. [CrossRef] [PubMed]
Krishnan, R., Klumpers, D. D., Park, C. Y., Rajendran, K., Trepat, X., van Bezu, J., van Hinsbergh, V. W. M., Carman, C. V., Brain, J. D., Fredberg, J. J., Butler, J. P., and Amerongen, G. P. V., 2011, “Substrate Stiffening Promotes Endothelial Monolayer Disruption Through Enhanced Physical Forces,” Am. J. Physiol.—Cell Physiol., 300(1), pp. C146–C154. [CrossRef] [PubMed]
Harris, A. K., Wild, P., and Stopak, D., 1980, “Silicone Rubber Substrata: A New Wrinkle in the Study of Cell Locomotion,” Science, 208(4440), pp. 177–179. [CrossRef] [PubMed]
Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B., and Fredberg, J. J., 2002, “Traction Fields, Moments, and Strain Energy that Cells Exert on Their Surroundings,” Am. J. Physiol.—Cell Physiol., 282(3), pp. C595–C605. [CrossRef] [PubMed]
Dembo, M., and Wang, Y. L., 1999, “Stresses at the Cell-to-Substrate Interface During Locomotion of Fibroblasts,” Biophys. J., 76(4), pp. 2307–2316. [CrossRef] [PubMed]
Van Vliet, K. J., Bao, G., and Suresh, S., 2003, “The Biomechanics Toolbox: Experimental Approaches for Living Cells and Biomolecules,” Acta Mater., 51(19), pp. 5881–5905. [CrossRef]
Pathak, A., Deshpande, V. S., McMeeking, R. M., and Evans, A. G., 2008, “The Simulation of Stress Fibre and Focal Adhesion Development in Cells on Patterned Substrates,” J. R. Soc., Interface, 5(22), pp. 507–524. [CrossRef]
du Roure, O., Saez, A., Buguin, A., Austin, R. H., Chavrier, P., Silberzan, P., and Ladoux, B., 2005, “Force Mapping in Epithelial Cell Migration,” Proc. Natl. Acad. Sci. U. S. A., 102(7), pp. 2390–2395. [CrossRef] [PubMed]
Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., and Chen, C. S., 2003, “Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force,” Proc. Natl. Acad. Sci. U. S. A., 100(4), pp. 1484–1489. [CrossRef] [PubMed]
Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P., and Ladoux, B., 2007, “Rigidity-Driven Growth and Migration of Epithelial Cells on Microstructured Anisotropic Substrates,” Proc. Natl. Acad. Sci. U. S. A., 104(20), pp. 8281–8286. [CrossRef] [PubMed]
Rabodzey, A., Alcaide, P., Luscinskas, F. W., and Ladoux, B., 2008, “Mechanical Forces Induced by the Transendothelial Migration of Human Neutrophils,” Biophys. J., 95(3), pp. 1428–1438. [CrossRef] [PubMed]
Sochol, R. D., Higa, A. T., Janairo, R. R. R., Li, S., and Lin, L., 2011, “Effects of Micropost Spacing and Stiffness on Cell Motility,” Micro Nano Lett., 6(5), pp. 323–326. [CrossRef]
Sochol, R. D., Higa, A. T., Janairo, R. R. R., Li, S., and Lin, L. W., 2011, “Unidirectional Mechanical Cellular Stimuli via Micropost Array Gradients,” Soft Matter, 7(10), pp. 4606–4609. [CrossRef]
Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I., Whitesides, G. M., and Ingber, D. E., 1994, “Engineering Cell Shape and Function,” Science, 264(5159), pp. 696–698. [CrossRef] [PubMed]
Lemmon, C. A., Sniadecki, N. J., Ruiz, S. A., Tan, J. L., Romer, L. H., and Chen, C. S., 2005, “Shear Force at the Cell-Matrix Interface: Enhanced Analysis for Microfabricated Post Array Detectors,” Mech. Chem. Biosyst., 2(1), pp. 1–16. [PubMed]
Li, B., Xie, L., Starr, Z. C., Yang, Z., Lin, J. S., and Wang, J. H., 2007, “Development of Micropost Force Sensor Array With Culture Experiments for Determination of Cell Traction Forces,” Cell Motil. Cytoskeleton, 64(7), pp. 509–518. [CrossRef] [PubMed]
Sniadecki, N. J., and Chen, C. S., 2007, “Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells,” Methods Cell Biol., 83, pp. 313–328. [CrossRef] [PubMed]
Mogilner, A., 2009, “Mathematics of Cell Motility: Have We Got Its Number?,” J. Math. Biol., 58(1–2), pp. 105–134. [CrossRef] [PubMed]
Flaherty, B., McGarry, J. P., and McHugh, P. E., 2007, “Mathematical Models of Cell Motility,” Cell Biochem. Biophys., 49(1), pp. 14–28. [CrossRef] [PubMed]
Gracheva, M. E., and Othmer, H. G., 2004, “A Continuum Model of Motility in Ameboid Cells,” Bull. Math. Biol., 66(1), pp. 167–193. [CrossRef] [PubMed]
Dokukina, I. V., and Gracheva, M. E., 2010, “A Model of Fibroblast Motility on Substrates With Different Rigidities,” Biophys. J., 98(12), pp. 2794–2803. [CrossRef] [PubMed]
Gefen, A., and Oomens, C., 2013, “Preface. Special Issue on Computational Cellular and Biomolecular Mechanics and Mechanobiology,” Comput. Methods Biomech. Biomed. Eng., 16(10), p. 1041. [CrossRef]
Deshpande, V. S., McMeeking, R. M., and Evans, A. G., 2007, “A Model for the Contractility of the Cytoskeleton Including the Effects of Stress-Fibre Formation and Dissociation,” Proc. R. Soc. A, 463(2079), pp. 787–815. [CrossRef]
Han, S. J., and Sniadecki, N. J., 2011, “Simulations of the Contractile Cycle in Cell Migration Using a Bio-Chemical-Mechanical Model,” Comput. Methods Biomech. Biomed. Eng., 14(5), pp. 459–468. [CrossRef]
Higa, A., 2012, “Cellular Mechanotransduction via Microfabricated Post Arrays,” Ph.D. thesis, University of California, Berkeley, CA.
Breckenridge, M. T., Desai, R. A., Yang, M. T., Fu, J. P., and Chen, C. S., 2014, “Substrates With Engineered Step Changes in Rigidity Induce Traction Force Polarity and Durotaxis,” Cell. Mol. Bioeng., 7(1), pp. 26–34. [CrossRef]
van Haastert, P. J., Keizer-Gunnink, I., and Kortholt, A., 2007, “Essential Role of PI3-Kinase and Phospholipase A2 in Dictyostelium Discoideum Chemotaxis,” J. Cell Biol., 177(5), pp. 809–816. [CrossRef] [PubMed]
Brundage, R. A., Fogarty, K. E., Tuft, R. A., and Fay, F. S., 1991, “Calcium Gradients Underlying Polarization and Chemotaxis of Eosinophils,” Science, 254(5032), pp. 703–706. [CrossRef] [PubMed]
Lee, J., Ishihara, A., Oxford, G., Johnson, B., and Jacobson, K., 1999, “Regulation of Cell Movement Is Mediated by Stretch-Activated Calcium Channels,” Nature, 400(6742), pp. 382–386. [CrossRef] [PubMed]
Wei, C., Wang, X., Chen, M., Ouyang, K., Song, L. S., and Cheng, H., 2009, “Calcium Flickers Steer Cell Migration,” Nature, 457(7231), pp. 901–905. [CrossRef] [PubMed]
Hahn, K., DeBiasio, R., and Taylor, D. L., 1992, “Patterns of Elevated Free Calcium and Calmodulin Activation in Living Cells,” Nature, 359(6397), pp. 736–738. [CrossRef] [PubMed]
Deshpande, V. S., McMeeking, R. M., and Evans, A. G., 2006, “A Bio-Chemo-Mechanical Model for Cell Contractility,” Proc. Natl. Acad. Sci. U. S. A., 103(38), pp. 14015–14020. [CrossRef] [PubMed]
Roberts, S. R., Knight, M. M., Lee, D. A., and Bader, D. L., 2001, “Mechanical Compression Influences Intracellular Ca2+ Signaling in Chondrocytes Seeded in Agarose Constructs,” J. Appl. Physiol., 90(4), pp. 1385–1391. [PubMed]
Wang, N., Tytell, J. D., and Ingber, D. E., 2009, “Mechanotransduction at a Distance: Mechanically Coupling the Extracellular Matrix With the Nucleus,” Nat Rev. Mol. Cell Biol., 10(1), pp. 75–82. [CrossRef] [PubMed]
Kolega, J., 1986, “Effects of Mechanical Tension on Protrusive Activity and Microfilament and Intermediate Filament Organization in an Epidermal Epithelium Moving in Culture,” J. Cell Biol., 102(4), pp. 1400–1411. [CrossRef] [PubMed]
Pellegrin, S., and Mellor, H., 2007, “Actin Stress Fibres,” J. Cell Sci., 120(Pt 20), pp. 3491–3499. [CrossRef] [PubMed]
Tojkander, S., Gateva, G., and Lappalainen, P., 2012, “Actin Stress Fibers—Assembly, Dynamics and Biological Roles,” J. Cell Sci., 125(Pt 8), pp. 1855–1864. [CrossRef] [PubMed]
McGarry, J. P., Fu, J., Yang, M. T., Chen, C. S., McMeeking, R. M., Evans, A. G., and Deshpande, V. S., 2009, “Simulation of the Contractile Response of Cells on an Array of Micro-Posts,” Philos. Trans. R. Soc., A, 367(1902), pp. 3477–3497. [CrossRef]
Hill, A. V., 1938, “The Heat of Shortening and the Dynamic Constants of Muscle,” Proc. R. Soc. London, Ser. B, 126(843), pp. 136–195. [CrossRef]
Mitrossilis, D., Fouchard, J., Guiroy, A., Desprat, N., Rodriguez, N., Fabry, B., and Asnacios, A., 2009, “Single-Cell Response to Stiffness Exhibits Muscle-Like Behavior,” Proc. Natl. Acad. Sci. U. S. A., 106(43), pp. 18243–18248. [CrossRef] [PubMed]
Warshaw, D. M., Desrosiers, J. M., Work, S. S., and Trybus, K. M., 1990, “Smooth Muscle Myosin Cross-Bridge Interactions Modulate Actin Filament Sliding Velocity In Vitro,” J. Cell Biol., 111(2), pp. 453–463. [CrossRef] [PubMed]
Chen, W. T., 1981, “Mechanism of Retraction of the Trailing Edge During Fibroblast Movement,” J. Cell Biol., 90(1), pp. 187–200. [CrossRef] [PubMed]
Naumanen, P., Lappalainen, P., and Hotulainen, P., 2008, “Mechanisms of Actin Stress Fibre Assembly,” J. Microsc., 231(3), pp. 446–454. [CrossRef] [PubMed]
Small, J. V., Rottner, K., Kaverina, I., and Anderson, K. I., 1998, “Assembling an Actin Cytoskeleton for Cell Attachment and Movement,” Biochim. Biophys. Acta, 1404(3), pp. 271–281. [CrossRef] [PubMed]
Wang, N., Ostuni, E., Whitesides, G. M., and Ingber, D. E., 2002, “Micropatterning Tractional Forces in Living Cells,” Cell Motil. Cytoskeleton, 52(2), pp. 97–106. [CrossRef] [PubMed]
Park, J., Ryu, J., Choi, S. K., Seo, E., Cha, J. M., Ryu, S., Kim, J., Kim, B., and Lee, S. H., 2005, “Real-Time Measurement of the Contractile Forces of Self-Organized Cardiomyocytes on Hybrid Biopolymer Microcantilevers,” Anal. Chem., 77(20), pp. 6571–6580. [CrossRef] [PubMed]
Galbraith, C. G., and Sheetz, M. P., 1997, “A Micromachined Device Provides a New Bend on Fibroblast Traction Forces,” Proc. Natl. Acad. Sci. U. S. A., 94(17), pp. 9114–9118. [CrossRef] [PubMed]
Layton, B. E., Allen, K. B., Myers, K. A., Stokes, M. D., and Baas, P. W., 2005, “Towards a Method for Peripheral Nervous System Axonal Stiffness Measurements With MEMS-Based Microgrippers,” Proceedings of the 2005 2nd InternatinoalIEEE/EMBS Conference on Neural Engineering, Arlington, VA, Mar. 16–19, pp. 403–405 [CrossRef].
Cheng, Q., Almasri, M., Sun, Z., and Meininger, G. A., 2010, “Micropost Array for Force Mapping of Vascular Smooth Muscle Cells,” Proceedings of the 2010 IEEE Sensors, pp. 1583–1586.
Cheng, Q., Sun, Z., Meininger, G., and Almasri, M., 2013, “PDMS Elastic Micropost Arrays for Studying Vascular Smooth Muscle Cells,” Sens. Actuators, B, 188, pp. 1055–1063. [CrossRef]
Parsons, J. T., Horwitz, A. R., and Schwartz, M. A., 2010, “Cell Adhesion: Integrating Cytoskeletal Dynamics and Cellular Tension,” Nat. Rev. Mol. Cell Biol., 11(9), pp. 633–643. [CrossRef] [PubMed]
Del Alamo, J. C., Meili, R., Alonso-Latorre, B., Rodriguez-Rodriguez, J., Aliseda, A., Firtel, R. A., and Lasheras, J. C., 2007, “Spatio-Temporal Analysis of Eukaryotic Cell Motility by Improved Force Cytometry,” Proc. Natl. Acad. Sci. U. S. A., 104(33), pp. 13343–13348. [CrossRef] [PubMed]
Burton, K., Park, J. H., and Taylor, D. L., 1999, “Keratocytes Generate Traction Forces in Two Phases,” Mol. Biol. Cell, 10(11), pp. 3745–3769. [CrossRef] [PubMed]
Roy, P., Petroll, W. M., Chuong, C. J., Cavanagh, H. D., and Jester, J. V., 1999, “Effect of Cell Migration on the Maintenance of Tension on a Collagen Matrix,” Ann. Biomed. Eng., 27(6), pp. 721–730. [CrossRef] [PubMed]
Yang, M. T., Sniadecki, N. J., and Chen, C. S., 2007, “Geometric Considerations of Micro- to Nanoscale Elastomeric Post Arrays to Study Cellular Traction Forces,” Adv. Mater., 19(20), pp. 3119–3123. [CrossRef]
Han, S. J., Bielawski, K. S., Ting, L. H., Rodriguez, M. L., and Sniadecki, N. J., 2012, “Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship Between Traction Forces and Focal Adhesions,” Biophys. J., 103(4), pp. 640–648. [CrossRef] [PubMed]
Chodniewicz, D., and Klemke, R. L., 2004, “Guiding Cell Migration Through Directed Extension and Stabilization of Pseudopodia,” Exp. Cell Res., 301(1), pp. 31–37. [CrossRef] [PubMed]
Saez, A., Buguin, A., Silberzan, P., and Ladoux, B., 2005, “Is the Mechanical Activity of Epithelial Cells Controlled by Deformations or Forces?,” Biophys. J., 89(6), pp. L52–L54. [CrossRef] [PubMed]
Trichet, L., Le Digabel, J., Hawkins, R. J., Vedula, S. R., Gupta, M., Ribrault, C., Hersen, P., Voituriez, R., and Ladoux, B., 2012, “Evidence of a Large-Scale Mechanosensing Mechanism for Cellular Adaptation to Substrate Stiffness,” Proc. Natl. Acad. Sci. U. S. A., 109(18), pp. 6933–6938. [CrossRef] [PubMed]
Weng, S., and Fu, J., 2011, “Synergistic Regulation of Cell Function by Matrix Rigidity and Adhesive Pattern,” Biomaterials, 32(36), pp. 9584–9593. [CrossRef] [PubMed]
Schwarz, U., 2007, “Soft Matters in Cell Adhesion: Rigidity Sensing on Soft Elastic Substrates,” Soft Matter, 3(3), pp. 263–266. [CrossRef]
Bischofs, I. B., and Schwarz, U. S., 2003, “Cell Organization in Soft Media due to Active Mechanosensing,” Proc. Natl. Acad. Sci. U. S. A., 100(16), pp. 9274–9279. [CrossRef] [PubMed]
Chen, C. S., Tan, J., and Tien, J., 2004, “Mechanotransduction at Cell-Matrix and Cell–Cell Contacts,” Ann. Rev. Biomed. Eng., 6, pp. 275–302. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic illustration about mechanics of cell migration. (Top) the relationship between the length of stress fibers segment and interpost interval. (Bottom) the relationship between the local tension generated by stress fiber contraction and the deflection of micropost.

Grahic Jump Location
Fig. 2

Schematic illustration (top) and simulation results of spatiotemporal micropost deflection in each stage of cell migration on different micropost substrates: (a) post density D = 1 with post stiffness Ks = 1.5; (b) post density D = 2 with post stiffness Ks = 1.5; and (c) post density D = 1 with post stiffness Ks = 3.0

Grahic Jump Location
Fig. 3

Simulation results of the strain energy stored in the array of microposts on different micropost arrays: (a) post density D = 1 or 2 with the same post stiffness Ks = 1.5; (b) post stiffness Ks = 1.5 or 3.0 with the same post density D = 1; (c) post density D = 2 and post stiffness Ks = 1.5 compared with post density D = 1 and post stiffness Ks = 3.0



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In