Research Papers

Computational Simulation of the Adaptive Capacity of Vein Grafts in Response to Increased Pressure

[+] Author and Article Information
Abhay B. Ramachandra

Department of Mechanical and
Aerospace Engineering,
University of California San Diego,
9500 Gilman Drive,
La Jolla, CA 92093

Sethuraman Sankaran

Senior Computational Scientist HeartFlow, Inc.,
1400 Seaport Blvd., Building B,
Redwood City, CA 94063

Jay D. Humphrey

Department of Biomedical Engineering,
Yale University,
55 Prospect Street,
New Haven, CT 06520

Alison L. Marsden

Department of Mechanical
and Aerospace Engineering,
University of California San Diego,
9500 Gilman Drive,
La Jolla, CA 92093
e-mail: amarsden@ucsd.edu

1Corresponding author.

Manuscript received March 21, 2014; final manuscript received October 17, 2014; published online January 29, 2015. Assoc. Editor: Kristen Billiar.

J Biomech Eng 137(3), 031009 (Mar 01, 2015) (10 pages) Paper No: BIO-14-1128; doi: 10.1115/1.4029021 History: Received March 21, 2014; Revised October 17, 2014; Online January 29, 2015

Vein maladaptation, leading to poor long-term patency, is a serious clinical problem in patients receiving coronary artery bypass grafts (CABGs) or undergoing related clinical procedures that subject veins to elevated blood flow and pressure. We propose a computational model of venous adaptation to altered pressure based on a constrained mixture theory of growth and remodeling (G&R). We identify constitutive parameters that optimally match biaxial data from a mouse vena cava, then numerically subject the vein to altered pressure conditions and quantify the extent of adaptation for a biologically reasonable set of bounds for G&R parameters. We identify conditions under which a vein graft can adapt optimally and explore physiological constraints that lead to maladaptation. Finally, we test the hypothesis that a gradual, rather than a step, change in pressure will reduce maladaptation. Optimization is used to accelerate parameter identification and numerically evaluate hypotheses of vein remodeling.

Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.


Sankaran, S., Esmaily Moghadam, M., Kahn, A. M., Guccione, J., Tseng, E., and Marsden, A. L., 2012, “Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery,” Ann. Biomed. Eng., 40(10), pp. 2228–2242. [CrossRef] [PubMed]
Humphrey, J. D., 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs, Springer, NY.
Lüscher, T. F., Turina, M., and Braunwald, E., 1994, Coronary Artery Graft Disease: Mechanisms and Prevention, Springer-Verlag, Berlin, Germany.
Kanterman, R. Y., Vesely, T. M., Pilgram, T. K., Guy, B. W., Windus, D. W., and Picus, D., 1995, “Dialysis Access Grafts: Anatomic Location of Venous Stenosis and Results of Angioplasty,” Radiology, 195(1), pp. 135–139. [CrossRef] [PubMed]
Cox, J. L., Chiasson, D. A., and Gotlieb, A. I., 1991, “Stranger in a Strange Land: The Pathogenesis of Saphenous Vein Graft Stenosis With Emphasis on Structural and Functional Differences Between Veins and Arteries,” Prog. Cardiovasc. Dis., 34(1), pp. 45–68. [CrossRef] [PubMed]
Sokolis, D. P., 2008, “Passive Mechanical Properties and Constitutive Modeling of Blood Vessels in Relation to Microstructure,” Med. Biol. Eng. Comput., 46(12), pp. 1187–1199. [CrossRef] [PubMed]
Shelton, M. E., Forman, M. E., Virmani, R., Bajaj, A., Stoney, W. S., and Atkinson, J. B., 1988, “A Comparison of Morphologic and Angiographic Findings in Long-Term Internal Mammary Artery and Saphenous Vein Bypass Grafts,” J.Am. Coll. Cardiol., 11(2), pp. 297–307. [CrossRef] [PubMed]
Liu, S. Q., and Fung, Y. C., 1998, “Changes in the Organization of the Smooth Muscle Cells in Rat Vein Grafts,” Ann. Biomed. Eng., 26(1), pp. 86–95. [CrossRef] [PubMed]
Liu, S. Q., 1998, “Influence of Tensile Strain on Smooth Muscle Cell Orientation in Rat Blood Vessels,” ASME J. Biomech. Eng., 120(3), pp. 313–320. [CrossRef]
Galt, S. W., Zwolak, R. W., Wagner, R. J., and Gilbertson, J. J., 1993, “Differential Response of Arteries and Vein Grafts to Blood Flow Reduction,” J. Vasc. Surg., 17(3), pp. 563–570. [CrossRef] [PubMed]
Fillinger, M., Cronenwett, J. L., Besso, S., Walsh, D. B., and Zwolak, R. M., 1994, “Vein Adaptation to the Hemodynamic Environment of Infrainguinal Grafts,” J. Vasc. Surg., 19(6), pp. 970–979. [CrossRef] [PubMed]
Baek, S., Rajagopal, K. R., and Humphrey, J. D., 2006, “A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms,” ASME J. Biomech. Eng., 128(1), pp. 142–149. [CrossRef]
Eberth, J. F., Cardamone, L., and Humphrey, J. D., 1995, “Evolving Biaxial Mechanical Properties of Mouse Carotid Arteries in Hypertension,” J. Biomech., 21, pp. 460–471.
Humphrey, J. D., Baek, S., and Niklason, L. E., 2007, “Biochemomechanics of Cerebral Vasospasm and Its Resolution: I. A New Hypothesis and Theoretical Framework,” Ann. Biomed. Eng., 35(9), pp. 1485–1497. [CrossRef] [PubMed]
Baek, S., Valentin, A., and Humphrey, J. D., 2007, “Biochemomechanics of Cerebral Vasospasm and Its Resolution: II. Constitutive Relations and Model Simulations,” Ann. Biomed. Eng., 35(9), pp. 1498–1509. [CrossRef] [PubMed]
Dobrin, P., Littooy, F. N., and Endean, E. D., 1989, “Mechanical Factors Predisposing to Intimal Hyperplasia and Medial Thickening in Autogenous Vein Grafts,” Surgery, 105, pp. 393–400. [PubMed]
Tran-Son-Tay, R., Hwang, M., Garbey, M., Jiang, Z., Ozaki, C. K., and Berceli, S., 2008, “An Experiment-Based Model of Vein Graft Remodeling Induced by Shear Stress,” Ann. Biomed. Eng., 36(7), pp. 1083–1091. [CrossRef] [PubMed]
Lee, Y. U., Naito, Y., Kurobe, H., Breuer, C. K., and Humphrey, J. D., 2013, “Biaxial Mechanical Properties of the Inferior Vena Cava in C57BL/6 and CB-17 SCID/bg Mice,” J. Biomech., 46(13), pp. 2277–2282. [CrossRef] [PubMed]
Valentin, A., Cardamone, L., Baek, S., and Humphrey, J. D., 2009, “Complementary Vasoactivity and Matrix Remodelling in Arterial Adaptations to Altered Flow and Pressure,” J. R. Soc. Interface, 6(32), pp. 293–306. [CrossRef] [PubMed]
Humphrey, J. D., and Rajagopal, K. R., 2002, “A Constrained Mixture Model for Growth and Remodeling of Soft Tissues,” Math. Models Methods Appl. Sci., 12(3), pp. 407–430. [CrossRef]
Gleason, R. L., and Humphrey, J. D., 2004, “A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover,” J. Vasc. Res., 41(4), pp. 352–363. [CrossRef] [PubMed]
Karšaj, I., and Humphrey, J. D., 2012, “A Multilayered Wall Model of Arterial Growth and Remodeling,” Mech. Mater., 44, pp. 110–119. [CrossRef] [PubMed]
Humphrey, J. D., and Taylor, C. A., 2008, “Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models,” Ann. Rev. Biomed. Eng., 10, pp. 221–246. [CrossRef]
Sokolis, D. P., 2013, “Experimental Investigation and Constitutive Modeling of the 3D Histomechanical Properties of Vein Tissue,” Biomech. Modell. Mechanobiol., 12(3), pp. 431–451. [CrossRef]
Fung, Y. C., 1993, Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, NY.
Rachev, A., and Hayashi, K., 1999, “Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries,” Ann. Biomed. Eng., 27(4), pp. 459–468. [CrossRef] [PubMed]
Zhang, R., Gashev, A. A., Zawieja, D. C., and Davis, M. J., 2007, “Length–Tension Relationships of Small Arteries, Veins, and Lymphatics From the Rat Mesenteric Microcirculation,” Am. J. Physiol. Heart Circ. Physiol., 292, pp. H1943–H1952. [CrossRef] [PubMed]
Langille, B. L., 1996, “Arterial Remodeling: Relation to Hemodynamics,” Can. J. Physiol. Pharmacol., 74(7), pp. 834–841. [CrossRef] [PubMed]
Holzapfel, G. A., Gasser, T. C., and Ogden, R. W., 2000, “A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” J. Elast. Phys. Sci. Solids, 61, pp. 1–48. [CrossRef]
Marsden, A. L., Wang, M., Dennis, J. E., and Moin, P., 2007, “Trailing-Edge Noise Reduction Using Derivative-Free Optimization and Large-Eddy Simulation,” J. Fluid Mech., 572, pp. 13–36. [CrossRef]
Marsden, A. L., Wang, M., Dennis, J. E., Jr., and Moin, P., 2004, “Suppression of Vortex-Shedding Noise via Derivative-Free Shape Optimization,” Phys. Fluids, 16(10), pp. L83–L86. [CrossRef]
Yang, W., Feinstein, J. A., and Marsden, A. L., 2010, “Constrained Optimization of an Idealized Y-Shaped Baffle for the Fontan Surgery at Rest and Exercise,” Comput. Methods Appl. Mech. Eng., 199(33–36), pp. 2135–2149. [CrossRef]
Booker, A. J., Dennis, J. E., Jr., Frank, P. D., Serafini, D. B., Torczon, V., and Trosset, M. W., 1999, “A Rigorous Framework for Optimization of Expensive Functions by Surrogates,” Struct. Optim., 17(1), pp. 1–13. [CrossRef]
Marsden, A. L., Wang, M., Dennis, J. E., Jr., and Moin, P., 2004, “Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework,” Optim. Eng., 5(2), pp. 235–262. [CrossRef]
Sankaran, S., and Marsden, A. L., 2010, “The Impact of Uncertainty on Shape Optimization of Idealized Bypass Graft Models in Unsteady Flow,” Phys. Fluids, 22(12), p. 121902. [CrossRef]
Sankaran, S., Humphrey, J. D., and Marsden, A. L., 2013, “An Efficient Framework for optimization and Parameter Sensitivity Analysis in Arterial Growth and Remodeling Computations,” Comput. Methods Appl. Mech. Eng., 256, pp. 200–210. [CrossRef] [PubMed]
Audet, C., and Dennis, J. E., Jr., 2006, “Mesh Adaptive Direct Search Algorithms for Constrained Optimization,” SIAM J. Optim., 17(1), pp. 188–217. [CrossRef]
Nissen, R., Cardinale, G. J., and Udenfriend, S., 1978, “Increased Turnover of Arterial Collagen in Hypertensive Rats,” Proc. Natl. Acad. Sci. U.S.A., 75(1), pp. 451–453. [CrossRef] [PubMed]
Xu, C., Lee, S., Singh, T. M., Sho, E., Li, X., Sho, M., Masuda, H., and Zarins, C. K., 2001, “Molecular Mechanisms of Aortic Wall Remodeling in Response to Hypertension,” J. Vasc. Surg., 33(3), pp. 570–578. [CrossRef] [PubMed]
Sassani, S. G., Theofani, A., Sokrates, T., and Sokolis, D. P., 2013, “Time-Course of Venous Wall Biomechanical Adaptation in Pressure and Flow-Overload: Assessment by a Microstructure-Based Material Model,” J. Biomech., 46(14), pp. 2451–2462. [CrossRef] [PubMed]
Dajnowiec, D., and Langille, B., 2007, “Arterial Adaptations to Chronic Changes in Haemodynamic Function: Coupling Vasomotor Tone to Structural Remodelling,” Clin. Sci., 113, pp. 15–23. [CrossRef] [PubMed]
Humphrey, J. D., 2008, “Mechanisms of Arterial Remodeling in Hypertension Coupled Roles of Wall Shear and Intramural Stress,” Hypertension, 52, pp. 195–200. [CrossRef] [PubMed]
Hwang, M., Berceli, S. A., Garbey, M., Kim, N. H., and Tran-Son-Tay, R., 2012, “The Dynamics of Vein Graft Remodeling Induced by Hemodynamic Forces: A Mathematical Model,” Biomech. Modell. Mechanobiol., 11(3–4), pp. 411–423. [CrossRef]
Wagenseil, J. E., and Mecham, R. P., 2009, “Vascular Extracellular Matrix and Arterial Mechanics,” Physiol. Rev., 89, pp. 957–989. [CrossRef] [PubMed]
Kritharis, E. P., Kakisis, J. D., Giagini, A. T., Manos, T., Stergiopulos, N., Tsangaris, S., and Sokolis, D. P., 2010, “Biomechanical, Morphological and Zero-Stress State Characterization of Jugular Vein Remodeling in Arteriovenous Fistulas for Hemodialysis,” Biorheology, 47, pp. 297–319. [PubMed]
El-Kurdi, M. S., Hong, Y. I., Stankus, J. J., Soletti, L., Wagner, W. R., and Vorp, D. A., 2008, “Transient Elastic Support for Vein Grafts Using a Constricting Microfibrillar Polymer Wrap,” Biomaterials, 29(22), pp. 3213–3220. [CrossRef] [PubMed]
Liu, S. Q., Moore, M. M., and Yap, C., 2000, “Prevention of Mechanical Stretch-Induced Endothelial and Smooth Muscle Cell Injury in Experimental Vein Grafts,” ASME J. Biomech. Eng., 122(1), pp. 31–38. [CrossRef]
Rhodin, J. A. G., 2011, “Architecture of the Vessel Wall,” Compr. Physiol., pp. 1–31. [CrossRef]
Kamiya, A., Bukhari, R., and Togawa, T., 1984, “Adaptive Regulation of Wall Shear Stress Optimizing Vascular Tree Function,” Bull. Math. Biol., 46(1), pp. 127–137. [CrossRef] [PubMed]
Kudo, F. A., Muto, A., Maloney, S., Pimiento, J. M., Bergaya, S., Fitzgerald, T. N., Westvik, T. S., Frattini, J., Breuer, C., Cha, C., Nishibe, T., Tellides, G., Sessa, W. C., and Dardik, A., 2007, “Venous Identity Is Lost but Arterial Identity Is Not Gained During Vein Graft Adaptation,” Arteriosclerosis, 27, pp. 1562–1571. [CrossRef]
Lüscher, T. F., 1991, “Vascular Biology of Coronary Bypass Grafts,” Curr. Opin. Cardiol., 6, pp. 868–876. [CrossRef] [PubMed]
Manos, T. A., Sokolis, D. P., Giagini, A. T., Davos, C. H., Kakisis, J. D., Kritharis, E. P., Stergiopulos, N., Karayannacos, P. E., and Tsangaris, S., 2010, “Local Hemodynamics and Intimal Hyperplasia at the Venous Side of a Porcine Arteriovenous Shunt,” IEEE Trans. Inf. Tech. Biomed., 14(3), pp. 681–690. [CrossRef]
Ku, D. N., Giddens, D. P., Zarins, C. K., and Glagov, S., 1985, “Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation Between Plaque Location and Low Oscillating Shear Stress,” Arterioscler., Thromb., Vasc. Biol., 5, pp. 293–302. [CrossRef]
Karšaj, I., Sorić, J., and Humphrey, J. D., 2010, “A 3-D Framework for Arterial Growth and Remodeling in Response to Altered Hemodynamics,” Int. J. Eng. Sci., 48(11), pp. 1357–1372. [CrossRef] [PubMed]
Švejcar, J., Přerovsk `y, I., Linhart, J., and Kruml, J., 1962, “Content of Collagen, Elastin, and Water in Walls of the Internal Saphenous Vein in Man,” Circ. Res., 2, pp. 296–300. [CrossRef]


Grahic Jump Location
Fig. 1

Schema of a G&R framework illustrating the configurations of a vessel (i.e., constrained mixture) and its constituents at instant s = 0, without hemodynamic perturbations, and at G&R time s, with hemodynamic perturbation. The G&R framework enforces mechanical equilibrium at each instant while accounting for the evolving constituent mass fractions, natural configurations, and strain energy densities as the constituents turn over.

Grahic Jump Location
Fig. 4

Biaxial stress–stretch data (dashed lines) for a mouse vena cava and the associated best-fits achieved in the parameter estimation: (a) σθ − λθ, (b) σz − λθ

Grahic Jump Location
Fig. 3

Flowchart of the SMF used for identifying the optimal parameter set for vein G&R

Grahic Jump Location
Fig. 5

Summary of (a) radius and (b) thickness evolution with time for numerical experiment 3 for case 2: K1k & K2k≤20 and Ghm≤1.8. The radius curves are within a 10% deviation. The arrows indicate the thickness for an ideal adaptation. Thickness curves exhibit a larger deviation from an ideal adaptation for a larger pressure.

Grahic Jump Location
Fig. 6

Comparison of cost functions (Jadapt) for a step change in load with pγmod, a gradual change in load pγmod, and the optimized values from numerical experiment 3. All values reported are for case 2: K1k and K2k≤20 and Ghm≤1.8. Adaptation for a gradual change in load with pγmod is comparable to the best possible adaptation a vein can achieve.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In