0
Review Article

Device-Based In Vitro Techniques for Mechanical Stimulation of Vascular Cells: A Review

[+] Author and Article Information
Caleb A. Davis

Department of Biomedical Engineering,
Texas A&M University,
College Station, TX 77843-3120
e-mail: calebadavis@tamu.edu

Steve Zambrano

Department of Biomedical Engineering,
Texas A&M University,
College Station, TX 77843-3120
e-mail: s1234@tamu.edu

Pratima Anumolu

Department of Biomedical Engineering,
Texas A&M University,
College Station, TX 77843-3120
e-mail: anumolupratima@gmail.com

Alicia C. B. Allen

Department of Biomedical Engineering,
The University of Texas at Austin,
Austin, TX 78712-1801
e-mail: alicia.allen@utexas.edu

Leonardo Sonoqui

Department of Biomedical Engineering,
Texas A&M University,
College Station, TX 77843-3120
e-mail: lsonoqui@tamu.edu

Michael R. Moreno

Department of Mechanical Engineering,
Department of Biomedical Engineering,
Texas A&M University,
College Station, TX 77843-3123
e-mail: michael.moreno@tamu.edu

1Corresponding author.

Manuscript received October 28, 2013; final manuscript received July 25, 2014; published online February 5, 2015. Assoc. Editor: Carlijn V. C. Bouten.

J Biomech Eng 137(4), 040801 (Apr 01, 2015) (22 pages) Paper No: BIO-13-1508; doi: 10.1115/1.4029016 History: Received October 28, 2013; Revised July 25, 2014; Online February 05, 2015

The most common cause of death in the developed world is cardiovascular disease. For decades, this has provided a powerful motivation to study the effects of mechanical forces on vascular cells in a controlled setting, since these cells have been implicated in the development of disease. Early efforts in the 1970 s included the first use of a parallel-plate flow system to apply shear stress to endothelial cells (ECs) and the development of uniaxial substrate stretching techniques (Krueger et al., 1971, “An in Vitro Study of Flow Response by Cells,” J. Biomech., 4(1), pp. 31–36 and Meikle et al., 1979, “Rabbit Cranial Sutures in Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress,” Calcif. Tissue Int., 28(2), pp. 13–144). Since then, a multitude of in vitro devices have been designed and developed for mechanical stimulation of vascular cells and tissues in an effort to better understand their response to in vivo physiologic mechanical conditions. This article reviews the functional attributes of mechanical bioreactors developed in the 21st century, including their major advantages and disadvantages. Each of these systems has been categorized in terms of their primary loading modality: fluid shear stress (FSS), substrate distention, combined distention and fluid shear, or other applied forces. The goal of this article is to provide researchers with a survey of useful methodologies that can be adapted to studies in this area, and to clarify future possibilities for improved research methods.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Chien, S., 2007, “Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell,” Am. J. Physiol Heart Circ. Physiol., 292(3), pp. H1209–H1224. [CrossRef] [PubMed]
Hoffman, B. D., Grashoff, C., and Schwartz, M. A., 2011, “Dynamic Molecular Processes Mediate Cellular Mechanotransduction,” Nature, 475(7356), pp. 316–323. [CrossRef] [PubMed]
Stegemann, J. P., Hong, H., and Nerem, R. M., 2005, “Mechanical, Biochemical, and Extracellular Matrix Effects on Vascular Smooth Muscle Cell Phenotype,” J. Appl. Physiol., 98(6), pp. 2321–2327. [CrossRef] [PubMed]
Haga, J. H., Li, Y. S., and Chien, S., 2007, “Molecular Basis of the Effects of Mechanical Stretch on Vascular Smooth Muscle Cells,” J. Biomech., 40(5), pp. 947–960. [CrossRef] [PubMed]
Li, Y. S., Haga, J. H., and Chien, S., 2005, “Molecular Basis of the Effects of Shear Stress on Vascular Endothelial Cells,” J. Biomech., 38(10), pp. 1949–1971. [CrossRef] [PubMed]
Johnson, B. D., Mather, K. J., and Wallace, J. P., 2011, “Mechanotransduction of Shear in the Endothelium: Basic Studies and Clinical Implications,” Vasc. Med., 16(5), pp. 365–377. [CrossRef] [PubMed]
Brown, T. D., 2000, “Techniques for Mechanical Stimulation of Cells In Vitro: A Review,” J. Biomech., 33(1), pp. 3–14. [CrossRef] [PubMed]
Humphrey, J. D., and Delange, S. L., 2004, An Introduction to Biomechanics: Solids and Fluids, Analysis and Design, Springer, New York.
Ruel, J., Lemay, J., Dumas, G., Doillon, C., and Charara, J., 1995, “Development of a Parallel Plate Flow Chamber for Studying Cell Behavior Under Pulsatile Flow,” ASAIO J., 41(4), pp. 876–883. [CrossRef] [PubMed]
Bacabac, R. G., Smit, T. H., Cowin, S. C., Van Loon, J. J., Nieuwstadt, F., Heethaar, R., and Klein-Nulend, J., 2005, “Dynamic Shear Stress in Parallel-Plate Flow Chambers,” J. Biomech., 38(1), pp. 159–167. [CrossRef] [PubMed]
Krueger, J. W., Young, D. F., and Cholvin, N. R., 1971, “An In Vitro Study of Flow Response by Cells,” J. Biomech., 4(1), pp. 31–36. [CrossRef] [PubMed]
Mengistu, M., Brotzman, H., Ghadiali, S., and Lowe-Krentz, L., 2011, “Fluid Shear Stress-Induced Jnk Activity Leads to Actin Remodeling for Cell Alignment,” J. Cell Physiol., 226(1), pp. 110–121. [CrossRef] [PubMed]
Levesque, M. J., and Nerem, R. M., 1985, “The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress,” ASME J. Biomech. Eng., 107(4), pp. 341–347. [CrossRef]
Papadaki, M., and Mclntire, L. V., 1999, “Quantitative Measurement of Shear-Stress Effects on Endothelial Cells,” Tissue Engineering Methods and Protocols, Humana Press, Totowa, NJ.
Sakariassen, K. S., Aarts, P. A., De Groot, P. G., Houdijk, W. P., and Sixma, J. J., 1983, “A Perfusion Chamber Developed to Investigate Platelet Interaction in Flowing Blood With Human Vessel Wall Cells, Their Extracellular Matrix, and Purified Components,” J. Lab. Clin. Med., 102(4), pp. 522–535. [PubMed]
Frangos, J. A., Mcintire, L. V., and Eskin, S. G., 1988, “Shear Stress Induced Stimulation of Mammalian Cell Metabolism,” Biotechnol. Bioeng., 32(8), pp. 1053–1060. [CrossRef] [PubMed]
Chappell, D. C., Varner, S. E., Nerem, R. M., Medford, R. M., and Alexander, R. W., 1998, “Oscillatory Shear Stress Stimulates Adhesion Molecule Expression in Cultured Human Endothelium,” Circ. Res., 82(5), pp. 532–539. [CrossRef] [PubMed]
Dekker, R. J., Van Soest, S., Fontijn, R. D., Salamanca, S., De Groot, P. G., Vanbavel, E., Pannekoek, H., and Horrevoets, A. J., 2002, “Prolonged Fluid Shear Stress Induces a Distinct Set of Endothelial Cell Genes, Most Specifically Lung Kruppel-Like Factor (Klf2),” Blood, 100(5), pp. 1689–1698. [CrossRef] [PubMed]
Liu, Y., Chen, B. P.-C., Lu, M., Zhu, Y., Stemerman, M. B., Chien, S., and Shyy, J. Y.-J., 2002, “Shear Stress Activation of Srebp1 in Endothelial Cells is Mediated by Integrins,” Arterioscler. Thromb. Vasc. Biol., 22(1), pp. 76–81. [CrossRef] [PubMed]
Hale, J., McDonald, D., and Womersley, J., 1955, “Velocity Profiles of Oscillating Arterial Flow, With Some Calculations of Viscous Drag and the Reynolds Number,” J. Physiol., 128(3), pp. 629–640. [CrossRef] [PubMed]
Hsiai, T. K., Cho, S. K., Wong, P. K., Ing, M., Salazar, A., Sevanian, A., Navab, M., Demer, L. L., and Ho, C.-M., 2003, “Monocyte Recruitment to Endothelial Cells in Response to Oscillatory Shear Stress,” FASEB J., 17(12), pp. 1648–1657. [CrossRef] [PubMed]
Frangos, J. A., Eskin, S. G., Mcintire, L. V., and Ives, C., 1985, “Flow Effects on Prostacyclin Production by Cultured Human Endothelial Cells,” Science, 227(4693), pp. 1477–1479. [CrossRef] [PubMed]
Hsieh, H. Y., Camci-Unal, G., Huang, T. W., Liao, R., Chen, T. J., Paul, A., Tseng, F. G., and Khademhosseini, A., 2014, “Gradient Static-Strain Stimulation in a Microfluidic Chip for 3D Cellular Alignment,” Lab. Chip, 14(3), pp. 482–493. [CrossRef] [PubMed]
Yalcin, H. C., Perry, S. F., and Ghadiali, S. N., 2007, “Influence of Airway Diameter and Cell Confluence on Epithelial Cell Injury in an In Vitro Model of Airway Reopening,” J. Appl. Physiol., 103(5), pp. 1796–1807. [CrossRef] [PubMed]
Kosaki, K., Ando, J., Korenaga, R., Kurokawa, T., and Kamiya, A., 1998, “Fluid Shear Stress Increases the Production of Granulocyte-Macrophage Colony-Stimulating Factor by Endothelial Cells via Mrna Stabilization,” Circ. Res., 82(7), pp. 794–802. [CrossRef] [PubMed]
Osborn, E. A., Rabodzey, A., Dewey, C. F., Jr., and Hartwig, J. H., 2006, “Endothelial Actin Cytoskeleton Remodeling During Mechanostimulation With Fluid Shear Stress,” Am. J. Physiol. Cell Physiol., 290(2), pp. C444–C452. [CrossRef] [PubMed]
Go, Y. M., Park, H. Y., Maland, M. C., and Jo, H. J., 1999, “In Vitro System to Study Role of Blood Flow on Nitric Oxide Production and Cell Signaling in Endothelial Cells,” Nitric Oxide, Pt C, 301, pp. 513–522.
Rennier, K., and Ji, J. Y., 2013, “Effect of Shear Stress and Substrate on Endothelial Dapk Expression, Caspase Activity, and Apoptosis,” BMC Res. Notes, 6(1), p. 10. [CrossRef] [PubMed]
Usami, S., Chen, H.-H., Zhao, Y., Chien, S., and Skalak, R., 1993, “Design and Construction of a Linear Shear Stress Flow Chamber,” Ann. Biomed. Eng., 21(1), pp. 77–83. [CrossRef] [PubMed]
Sakamoto, N., Saito, N., Han, X., Ohashi, T., and Sato, M., 2010, “Effect of Spatial Gradient in Fluid Shear Stress on Morphological Changes in Endothelial Cells in Response to Flow,” Biochem. Biophys. Res. Commun., 395(2), pp. 264–269. [CrossRef] [PubMed]
Chiu, J.-J., Chen, L.-J., Lee, P.-L., Lee, C.-I., Lo, L.-W., Usami, S., and Chien, S., 2003, “Shear Stress Inhibits Adhesion Molecule Expression in Vascular Endothelial Cells Induced by Coculture With Smooth Muscle Cells,” Blood, 101(7), pp. 2667–2674. [CrossRef] [PubMed]
Kladakis, S. M., and Nerem, R. M., 2004, “Endothelial Cell Monolayer Formation: Effect of Substrate and Fluid Shear Stress,” Endothelium, 11(1), pp. 29–44. [CrossRef] [PubMed]
Go, Y. M., Boo, Y. C., Park, H., Maland, M. C., Patel, R., Pritchard, K. A., Jr., Fujio, Y., Walsh, K., Darley-Usmar, V., and Jo, H., 2001, “Protein Kinase B/Akt Activates C-Jun Nh(2)-Terminal Kinase by Increasing No Production in Response to Shear Stress,” J. Appl. Physiol., 91(4), pp. 1574–1581. [PubMed]
Melchior, B., and Frangos, J. A., 2014, “Distinctive Subcellular Akt-1 Responses to Shear Stress in Endothelial Cells,” J. Cell Biochem., 115(1), pp. 121–129. [CrossRef] [PubMed]
Nguyen, K. T., Eskin, S. G., Patterson, C., Runge, M. S., and Mcintire, L. V., 2001, “Shear Stress Reduces Protease Activated Receptor-1 Expression in Human Endothelial Cells,” Ann. Biomed. Eng., 29(2), pp. 145–152. [CrossRef] [PubMed]
Kang, H., Bayless, K. J., and Kaunas, R., 2008, “Fluid Shear Stress Modulates Endothelial Cell Invasion into Three-Dimensional Collagen Matrices,” Am. J. Physiol. Heart Circ. Physiol., 295(5), pp. H2087–H2097. [CrossRef] [PubMed]
Ahsan, T., and Nerem, R. M., 2010, “Fluid Shear Stress Promotes an Endothelial-Like Phenotype During the Early Differentiation of Embryonic Stem Cells,” Tissue Eng. Part A, 16(11), pp. 3547–3553. [CrossRef] [PubMed]
Ozawa, N., Shichiri, M., Iwashina, M., Fukai, N., Yoshimoto, T., and Hirata, Y., 2004, “Laminar Shear Stress Up-Regulates Inducible Nitric Oxide Synthase in the Endothelium,” Hypertens. Res.: Off. J. Jpn. Soc. Hypertens., 27(2), p. 93. [CrossRef]
Wolfe, R. P., Leleux, J., Nerem, R. M., and Ahsan, T., 2012, “Effects of Shear Stress on Germ Lineage Specification of Embryonic Stem Cells,” Integr. Biol., 4(10), pp. 1263–1273. [CrossRef]
Cunningham, K. S., and Gotlieb, A. I., 2005, “The Role of Shear Stress in the Pathogenesis of Atherosclerosis,” Lab. Invest., 85(1), pp. 9–23. [CrossRef] [PubMed]
Sato, M., Ohshima, N., and Nerem, R., 1996, “Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress,” J. Biomech., 29(4), pp. 461–467. [CrossRef] [PubMed]
Sato, M., Nagayama, K., Kataoka, N., Sasaki, M., and Hane, K., 2000, “Local Mechanical Properties Measured by Atomic Force Microscopy for Cultured Bovine Endothelial Cells Exposed to Shear Stress,” J. Biomech., 33(1), pp. 127–135. [CrossRef] [PubMed]
Chun, T.-H., Itoh, H., Ogawa, Y., Tamura, N., Takaya, K., Igaki, T., Yamashita, J., Doi, K., Inoue, M., and Masatsugu, K., 1997, “Shear Stress Augments Expression of C-Type Natriuretic Peptide and Adrenomedullin,” Hypertension, 29(6), pp. 1296–1302. [CrossRef] [PubMed]
Ives, C. L., Eskin, S. G., and Mcintire, L. V., 1986, “Mechanical Effects on Endothelial Cell Morphology: In Vitro Assessment,” In Vitro Cell Dev. Biol., 22(9), pp. 500–507. [CrossRef] [PubMed]
Potter, C. M., Schobesberger, S., Lundberg, M. H., Weinberg, P. D., Mitchell, J. A., and Gorelik, J., 2012, “Shape and Compliance of Endothelial Cells After Shear Stress In Vitro or From Different Aortic Regions: Scanning Ion Conductance Microscopy Study,” PLoS One, 7(2), p. e31228. [CrossRef] [PubMed]
Shyy, Y. J., Hsieh, H. J., Usami, S., and Chien, S., 1994, “Fluid Shear Stress Induces a Biphasic Response of Human Monocyte Chemotactic Protein 1 Gene Expression in Vascular Endothelium,” Proc. Natl. Acad. Sci. U S A., 91(11), pp. 4678–4682. [CrossRef] [PubMed]
Hsieh, H. J., Li, N. Q., and Frangos, J. A., 1993, “Pulsatile and Steady Flow Induces c-fos Expression in Human Endothelial Cells,” J Cell Physiol, 154, pp. 143–151.
Dewey, C. F., Jr., Bussolari, S. R., Gimbrone, M. A., Jr., and Davies, P. F., 1981, “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress,” ASME J. Biomech. Eng., 103(3), pp. 177–185. [CrossRef]
Bussolari, S. R., Dewey, C. F., Jr., and Gimbrone, M. A., Jr., 1982, “Apparatus for Subjecting Living Cells to Fluid Shear Stress,” Rev. Sci. Instrum., 53(12), pp. 1851–1854. [CrossRef] [PubMed]
Davies, P. F., Remuzzi, A., Gordon, E. J., Dewey, C. F., Jr., and Gimbrone, M. A., Jr., 1986, “Turbulent Fluid Shear Stress Induces Vascular Endothelial Cell Turnover In Vitro,” Proc. Natl. Acad. Sci. U S A, 83(7), pp. 2114–2117. [CrossRef] [PubMed]
Ley, K., Lundgren, E., Berger, E., and Arfors, K.-E., 1989, “Shear-Dependent Inhibition of Granulocyte Adhesion to Cultured Endothelium by Dextran Sulfate,” Blood, 73(5), pp. 1324–1330. [PubMed]
Yoshizumi, M., Kurihara, H., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T., and Yazaki, Y., 1989, “Hemodynamic Shear Stress Stimulates Endothelin Production by Cultured Endothelial Cells,” Biochem. Biophys. Res. Commun., 161(2), pp. 859–864. [CrossRef] [PubMed]
Schnittler, H.-J., Franke, R. P., Akbay, U., Mrowietz, C., and Drenckhahn, D., 1993, “Improved In Vitro Rheological System for Studying the Effect of Fluid Shear Stress on Cultured Cells,” Am. J. Physiol.Cell Physiol., 265(1), pp. C289–C298.
Depaola, N., Gimbrone, M. A., Jr., Davies, P. F., and Dewey, C. F., Jr., 1992, “Vascular Endothelium Responds to Fluid Shear Stress Gradients,” Arterioscler. Thromb., 12(11), pp. 1254–1257. [CrossRef] [PubMed]
Okahara, K., Kambayashi, J.-I., Ohnishi, T., Fujiwara, Y., Kawasaki, T., and Monden, M., 1995, “Shear Stress Induces Expression of Cnp Gene in Human Endothelial Cells,” FEBS Lett., 373(2), pp. 108–110. [CrossRef] [PubMed]
Malek, A. M., and Izumo, S., 1996, “Mechanism of Endothelial Cell Shape Change and Cytoskeletal Remodeling in Response to Fluid Shear Stress,” J. Cell Sci., 109(Pt 4), pp. 713–726. [PubMed]
Topper, J. N., Cai, J., Falb, D., and Gimbrone, M. A., Jr., 1996, “Identification of Vascular Endothelial Genes Differentially Responsive to Fluid Mechanical Stimuli: Cyclooxygenase-2, Manganese Superoxide Dismutase, and Endothelial Cell Nitric Oxide Synthase Are Selectively Up-Regulated by Steady Laminar Shear Stress,” Proc. Natl. Acad. Sci. U S A., 93(19), pp. 10417–10422. [CrossRef] [PubMed]
Rieder, M., Carmona, R., Krieger, J., Pritchard, K., and Greene, A., 1997, “Suppression of Angiotensin-Converting Enzyme Expression and Activity by Shear Stress,” Circ. Res., 80(3), pp. 312–319. [CrossRef] [PubMed]
Palumbo, R., Gaetano, C., Antonini, A., Pompilio, G., Bracco, E., Rönnstrand, L., Heldin, C.-H., and Capogrossi, M. C., 2002, “Different Effects of High and Low Shear Stress on Platelet-Derived Growth Factor Isoform Release by Endothelial Cells Consequences for Smooth Muscle Cell Migration,” Arterioscler. Thromb. Vasc. Biol., 22(3), pp. 405–411. [CrossRef] [PubMed]
Bongrazio, M., Pries, A. R., and Zakrzewicz, A., 2003, “The Endothelium as Physiological Source of Properdin: Role of Wall Shear Stress,” Mol. immunol., 39(11), pp. 669–675. [CrossRef] [PubMed]
Magid, R., Murphy, T., and Galis, Z. S., 2003, “Expression of Matrix Metalloproteinase-9 in Endothelial Cells Is Differentially Regulated by Shear Stress Role of C-Myc,” J. Biol. Chem., 278(35), pp. 32994–32999. [CrossRef] [PubMed]
Sorescu, G. P., Sykes, M., Weiss, D., Platt, M. O., Saha, A., Hwang, J., Boyd, N., Boo, Y. C., Vega, J. D., and Taylor, W. R., 2003, “Bone Morphogenic Protein 4 Produced in Endothelial Cells by Oscillatory Shear Stress Stimulates an Inflammatory Response,” J. Biol. Chem., 278(33), pp. 31128–31135. [CrossRef] [PubMed]
Davis, M. E., Grumbach, I. M., Fukai, T., Cutchins, A., and Harrison, D. G., 2004, “Shear Stress Regulates Endothelial Nitric-Oxide Synthase Promoter Activity Through Nuclear Factor κB Binding,” J. Biol. Chem., 279(1), pp. 163–168. [CrossRef] [PubMed]
Pearce, M. J., Mcintyre, T. M., Prescott, S. M., Zimmerman, G. A., and Whatley, R. E., 1996, “Shear Stress Activates Cytosolic Phospholipase a2Cpla2 and Map Kinase in Human Endothelial Cells,” Biochem. Biophys. Res. Commun., 218(2), pp. 500–504. [CrossRef] [PubMed]
Hendrickson, R. J., Cahill, P. A., Sitzmann, J. V., and Redmond, E. M., 1999, “Ethanol Enhances Basal and Flow-Stimulated Nitric Oxide Synthase Activity In Vitro by Activating an Inhibitory Guanine Nucleotide Binding Protein,” J. Pharmacol. Exp. Ther., 289(3), pp. 1293–1300. [PubMed]
Chakraborty, A., Chakraborty, S., Jala, V. R., Haribabu, B., Sharp, M. K., and Berson, R. E., 2012, “Effects of Biaxial Oscillatory Shear Stress on Endothelial Cell Proliferation and Morphology,” Biotechnol. Bioeng., 109(3), pp. 695–707. [CrossRef] [PubMed]
Potter, C. M., Lundberg, M. H., Harrington, L. S., Warboys, C. M., Warner, T. D., Berson, R. E., Moshkov, A. V., Gorelik, J., Weinberg, P. D., and Mitchell, J. A., 2011, “Role of Shear Stress in Endothelial Cell Morphology and Expression of Cyclooxygenase Isoforms,” Arterioscler. Thromb. Vasc. Biol., 31(2), pp. 384–391. [CrossRef] [PubMed]
Elhadj, S., Akers, R. M., and Forsten-Williams, K., 2003, “Chronic Pulsatile Shear Stress Alters Insulin-Like Growth Factor-I (Igf-I) Binding Protein Release In Vitro,” Ann. Biomed. Eng., 31(2), pp. 163–170. [CrossRef] [PubMed]
Redmond, E. M., Cahill, P. A., and Sitzmann, J. V., 1995, “Perfused Transcapillary Smooth Muscle and Endothelial Cell Co-Culture—A Novelin Vitro Model,” In Vitro Cell. Dev. Biol.:Anim., 31(8), pp. 601–609. [CrossRef] [PubMed]
Gutierrez, E., Petrich, B. G., Shattil, S. J., Ginsberg, M. H., Groisman, A., and Kasirer-Friede, A., 2008, “Microfluidic Devices for Studies of Shear-Dependent Platelet Adhesion,” Lab Chip, 8(9), pp. 1486–1495. [CrossRef] [PubMed]
Chau, L., Doran, M., and Cooper-White, J., 2009, “A Novel Multishear Microdevice for Studying Cell Mechanics,” Lab. Chip, 9(13), pp. 1897–1902. [CrossRef] [PubMed]
Chung, S., Sudo, R., Mack, P. J., Wan, C. R., Vickerman, V., and Kamm, R. D., 2009, “Cell Migration Into Scaffolds Under Co-Culture Conditions in a Microfluidic Platform,” Lab Chip, 9(2), pp. 269–275. [CrossRef] [PubMed]
Song, J. W., Cavnar, S. P., Walker, A. C., Luker, K. E., Gupta, M., Tung, Y. C., Luker, G. D., and Takayama, S., 2009, “Microfluidic Endothelium for Studying the Intravascular Adhesion of Metastatic Breast Cancer Cells,” PLoS One, 4(6), p. e5756. [CrossRef] [PubMed]
Gunther, A., Yasotharan, S., Vagaon, A., Lochovsky, C., Pinto, S., Yang, J., Lau, C., Voigtlaender-Bolz, J., and Bolz, S. S., 2010, “A Microfluidic Platform for Probing Small Artery Structure and Function,” Lab Chip, 10(18), pp. 2341–2349. [CrossRef] [PubMed]
Van Der Meer, A. D., Vermeul, K., Poot, A. A., Feijen, J., and Vermes, I., 2010, “Flow Cytometric Analysis of the Uptake of Low-Density Lipoprotein by Endothelial Cells in Microfluidic Channels,” Cytometry A, 77(10), pp. 971–975. [CrossRef] [PubMed]
Tsai, M., Kita, A., Leach, J., Rounsevell, R., Huang, J. N., Moake, J., Ware, R. E., Fletcher, D. A., and Lam, W. A., 2012, “In Vitro Modeling of the Microvascular Occlusion and Thrombosis That Occur in Hematologic Diseases Using Microfluidic Technology,” J. Clin. Invest., 122(1), pp. 408–418. [CrossRef] [PubMed]
Voyvodic, P. L., Min, D., and Baker, A. B., 2012, “A Multichannel Dampened Flow System for Studies on Shear Stress-Mediated Mechanotransduction,” Lab Chip, 12(18), pp. 3322–3330. [CrossRef] [PubMed]
Kandlikar, S., Garimella, S., Li, D., Colin, S., and King, M. R., 2005, Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, Oxford, UK.
Reinhart-King, C. A., Fujiwara, K., and Berk, B. C., 2008, “Physiologic Stress-Mediated Signaling in the Endothelium,” Methods Enzymol., 443, pp. 25–44. [CrossRef] [PubMed]
Gaver, III, D. P., and Kute, S. M., 1998, “A Theoretical Model Study of the Influence of Fluid Stresses on a Cell Adhering to a Microchannel Wall,” Biophys. J., 75(2), pp. 721–733. [CrossRef] [PubMed]
Sdougos, H., Bussolari, S., and Dewey, C., 1984, “Secondary Flow and Turbulence in a Cone-and-Plate Device,” J. Fluid Mech., 138, pp. 379–404. [CrossRef]
Spruell, C., and Baker, A. B., 2012, “Analysis of a High-Throughput Cone-and-Plate Apparatus for the Application of Defined Spatiotemporal Flow to Cultured Cells,” Biotechnol. Bioeng., 110(6) pp. 1782–1793. [CrossRef]
Hubbe, M. A., 1981, “Adhesion and Detachment of Biological Cells In Vitro,” Progress Surf. Sci., 11(2), pp. 65–137. [CrossRef]
Nalayanda, D. D., Puleo, C., Fulton, W. B., Sharpe, L. M., Wang, T. H., and Abdullah, F., 2009, “An Open-Access Microfluidic Model for Lung-Specific Functional Studies at an Air-Liquid Interface,” Biomed. Microdevices, 11(5), pp. 1081–1089. [CrossRef] [PubMed]
Zervantonakis, I. K., Kothapalli, C. R., Chung, S., Sudo, R., and Kamm, R. D., 2011, “Microfluidic Devices for Studying Heterotypic Cell-Cell Interactions and Tissue Specimen Cultures Under Controlled Microenvironments,” Biomicrofluidics, 5(1), p. 13406. [CrossRef] [PubMed]
Zheng, W., Jiang, B., Wang, D., Zhang, W., Wang, Z., and Jiang, X., 2012, “A Microfluidic Flow-Stretch Chip for Investigating Blood Vessel Biomechanics,” Lab Chip, 12(18), pp. 3441–3450. [CrossRef] [PubMed]
Anwar, M. A., Shalhoub, J., Lim, C. S., Gohel, M. S., and Davies, A. H., 2012, “The Effect of Pressure-Induced Mechanical Stretch on Vascular Wall Differential Gene Expression,” J. Vasc. Res., 49(6), pp. 463–478. [CrossRef] [PubMed]
Lehoux, S., and Tedgui, A., 2003, “Cellular Mechanics and Gene Expression in Blood Vessels,” J. Biomech., 36(5), pp. 631–643. [CrossRef] [PubMed]
Couet, F., Meghezi, S., and Mantovani, D., 2012, “Fetal Development, Mechanobiology and Optimal Control Processes Can Improve Vascular Tissue Regeneration in Bioreactors: An Integrative Review,” Med. Eng. Phys., 34(3), pp. 269–278. [CrossRef] [PubMed]
Kurpinski, K., Park, J., Thakar, R. G., and Li, S., 2006, “Regulation of Vascular Smooth Muscle Cells and Mesenchymal Stem Cells by Mechanical Strain,” Mol. Cell Biomech., 3(1), pp. 21–34. [PubMed]
Balestrini, J. L., Skorinko, J. K., Hera, A., Gaudette, G. R., and Billiar, K. L., 2010, “Applying Controlled Non-Uniform Deformation for In Vitro Studies of Cell Mechanobiology,” Biomech. Model. Mechanobiol., 9(3), pp. 329–344. [CrossRef] [PubMed]
Bell, B. J., Nauman, E., and Voytik-Harbin, S. L., 2012, “Multiscale Strain Analysis of Tissue Equivalents Using a Custom-Designed Biaxial Testing Device,” Biophys. J., 102(6), pp. 1303–1312. [CrossRef] [PubMed]
Butcher, J. T., Barrett, B. C., and Nerem, R. M., 2006, “Equibiaxial Strain Stimulates Fibroblastic Phenotype Shift in Smooth Muscle Cells in an Engineered Tissue Model of the Aortic Wall,” Biomaterials, 27(30), pp. 5252–5258. [CrossRef] [PubMed]
Clark, C. B., Burkholder, T. J., and Frangos, J. A., 2001, “Uniaxial Strain System to Investigate Strain Rate Regulation In Vitro,” Rev. Sci. Instrum., 72(5), pp. 2415–2422.
Huang, L., Mathieu, P. S., and Helmke, B. P., 2010, “A Stretching Device for High-Resolution Live-Cell Imaging,” Ann. Biomed. Eng., 38(5), pp. 1728–1740. [CrossRef] [PubMed]
Raif El, M., Seedhom, B. B., Pullan, M. J., and Toyoda, T., 2007, “Cyclic Straining of Cell-Seeded Synthetic Ligament Scaffolds: Development of Apparatus and Methodology,” Tissue Eng., 13(3), pp. 629–640. [CrossRef] [PubMed]
Rosenblatt, N., Hu, S., Chen, J., Wang, N., and Stamenovic, D., 2004, “Distending Stress of the Cytoskeleton is a Key Determinant of Cell Rheological Behavior,” Biochem. Biophys. Res. Commun., 321(3), pp. 617–622. [CrossRef] [PubMed]
Ursekar, C. P., Teo, S. K., Hirata, H., Harada, I., Chiam, K. H., and Sawada, Y., 2014, “Design and Construction of an Equibiaxial Cell Stretching System That Is Improved for Biochemical Analysis,” PLoS One, 9(3), p. e90665. [CrossRef] [PubMed]
Wang, J. H., Goldschmidt-Clermont, P., Wille, J., and Yin, F. C., 2001, “Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching,” J. Biomech., 34(12), pp. 1563–1572. [CrossRef] [PubMed]
Meikle, M. C., Reynolds, J. J., Sellers, A., and Dingle, J. T., 1979, “Rabbit Cranial Sutures In Vitro: A New Experimental Model for Studying the Response of Fibrous Joints to Mechanical Stress,” Calcif. Tissue Int., 28(2), pp. 137–144. [CrossRef] [PubMed]
Imsirovic, J., Derricks, K., Buczek-Thomas, J. A., Rich, C. B., Nugent, M. A., and Suki, B., 2013, “A Novel Device to Stretch Multiple Tissue Samples With Variable Patterns: Application for mRNA Regulation in Tissue-Engineered Constructs,” Biomatter, 3(3), p. e24650. [CrossRef]
Akbari, S., and Shea, H. R., 2012, “Microfabrication and Characterization of an Array of Dielectric Elastomer Actuators Generating Uniaxial Strain to Stretch Individual Cells,” J. Micromech. Microeng., 22(4), p. 045020. [CrossRef]
Zhou, J., and Niklason, L. E., 2012, “Microfluidic Artificial “Vessels” for Dynamic Mechanical Stimulation of Mesenchymal Stem Cells,” Integr. Biol., 4(12), pp. 1487–1497. [CrossRef]
Dolle, J. P., Morrison, B., 3rd, Schloss, R. S., and Yarmush, M. L., 2013, “An Organotypic Uniaxial Strain Model Using Microfluidics,” Lab Chip, 13(3), pp. 432–442. [CrossRef] [PubMed]
Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Hsin, H. Y., and Ingber, D. E., 2010, “Reconstituting Organ-Level Lung Functions on a Chip,” Science, 328(5986), pp. 1662–1668. [CrossRef] [PubMed]
Matsumoto, T., Yung, Y. C., Fischbach, C., Kong, H. J., Nakaoka, R., and Mooney, D. J., 2007, “Mechanical Strain Regulates Endothelial Cell Patterning In Vitro,” Tissue Eng., 13(1), pp. 207–217. [CrossRef] [PubMed]
Yung, Y. C., Vandenburgh, H., and Mooney, D. J., 2009, “Cellular Strain Assessment Tool (CSAT): Precision-Controlled Cyclic Uniaxial Tensile Loading,” J. Biomech., 42(2), pp. 178–182. [CrossRef] [PubMed]
Gerstmair, A., Fois, G., Innerbichler, S., Dietl, P., and Felder, E., 2009, “A Device for Simultaneous Live Cell Imaging During Uni-Axial Mechanical Strain or Compression,” J. Appl. Physiol., 107(2), pp. 613–620. [CrossRef] [PubMed]
Iba, T., and Sumpio, B. E., 1991, “Morphological Response of Human Endothelial Cells Subjected to Cyclic Strain In Vitro,” Microvasc. Res., 42(3), pp. 245–254. [CrossRef] [PubMed]
Grabner, B., Varga, F., Fratzl-Zelman, N., Luegmayr, E., Glantschnig, H., Rumpler, M., Tatschl, A., Fratzl, P., and Klaushofer, K., 2000, “A New Stretching Apparatus for Applying Anisotropic Mechanical Strain to Bone Cells In-Vitro,” Rev. Sci. Instrum., 71(9), pp. 3522–3529. [CrossRef]
Ohashi, T., Masuda, M., Matsumoto, T., and Sato, M., 2007, “Nonuniform Strain of Substrate Induces Local Development of Stress Fibers in Endothelial Cells Under Uniaxial Cyclic Stretching,” Clin. Hemorheol. Microcirc., 37(1–2), pp. 37–46. [PubMed]
Hu, J.-J., Liu, Y.-C., Chen, G.-W., Wang, M.-X., and Lee, P.-Y., 2013, “Development of Fibroblast-Seeded Collagen Gels Under Planar Biaxial Mechanical Constraints: A Biomechanical Study,” Biomech. Model. Mechanobiol., 12(5), pp. 849–868. [CrossRef] [PubMed]
Wang, J. H., Goldschmidt-Clermont, P., and Yin, F. C., 2000, “Contractility Affects Stress Fiber Remodeling and Reorientation of Endothelial Cells Subjected to Cyclic Mechanical Stretching,” Ann. Biomed. Eng., 28(10), pp. 1165–1171. [CrossRef] [PubMed]
Lee, J., Wong, M., Smith, Q., and Baker, A. B., 2013, “A Novel System for Studying Mechanical Strain Waveform-Dependent Responses in Vascular Smooth Muscle Cells,” Lab Chip, 13(23), pp. 4573–4582. [CrossRef] [PubMed]
Park, J. S., Chu, J. S., Cheng, C., Chen, F., Chen, D., and Li, S., 2004, “Differential Effects of Equiaxial and Uniaxial Strain on Mesenchymal Stem Cells,” Biotechnol. Bioeng., 88(3), pp. 359–368. [CrossRef] [PubMed]
Rana, O. R., Zobel, C., Saygili, E., Brixius, K., Gramley, F., Schimpf, T., Mischke, K., Frechen, D., Knackstedt, C., Schwinger, R. H., and Schauerte, P., 2008, “A Simple Device to Apply Equibiaxial Strain to Cells Cultured on Flexible Membranes,” Am. J. Physiol. Heart Circ. Physiol., 294(1), pp. H532–H540. [CrossRef] [PubMed]
Richardson, W. J., Metz, R. P., Moreno, M. R., Wilson, E., and Moore, J. E., Jr., 2011, “A Device to Study the Effects of Stretch Gradients on Cell Behavior,” ASME J. Biomech. Eng., 133(10), p. 101008. [CrossRef]
Sotoudeh, M., Jalali, S., Usami, S., Shyy, J. Y., and Chien, S., 1998, “A Strain Device Imposing Dynamic and Uniform Equi-Biaxial Strain to Cultured Cells,” Ann. Biomed. Eng., 26(2), pp. 181–189. [CrossRef] [PubMed]
Kreutzer, J., Ikonen, L., Hirvonen, J., Pekkanen-Mattila, M., Aalto-Setala, K., and Kallio, P., 2014, “Pneumatic Cell Stretching System for Cardiac Differentiation and Culture,” Med. Eng. Phys., 36(4), pp. 496–501. [CrossRef] [PubMed]
“Flexcell FlexFlow: Shear Stress Device,” Accessed Sept. 20, 2013, FlexCell International Corporation, http://www.flexcellint.com/catalog/FlexFlow.pdf
“FlexFlow Manual,” Accessed Sept. 20, 2013, FlexCell International Corporation, http://www.flexcellint.com/documents/FlexFlowManualRev071510.pdf
Higgins, S., Lee, J. S., Ha, L., and Lim, J. Y., 2013, “Inducing Neurite Outgrowth by Mechanical Cell Stretch,” Biores. Open Access, 2(3), pp. 212–216. [CrossRef] [PubMed]
Lau, J. J., Wang, R. M., and Black, L. D., 3rd, 2014, “Development of an Arbitrary Waveform Membrane Stretcher for Dynamic Cell Culture,” Ann. Biomed. Eng., 42(5), pp. 1062–1073. [CrossRef] [PubMed]
Ahmed, W. W., Kural, M. H., and Saif, T. A., 2010, “A Novel Platform for In Situ Investigation of Cells and Tissues Under Mechanical Strain,” Acta Biomater, 6(8), pp. 2979–2990. [CrossRef] [PubMed]
Kluge, J. A., Leisk, G. G., Cardwell, R. D., Fernandes, A. P., House, M., Ward, A., Dorfmann, A. L., and Kaplan, D. L., 2011, “Bioreactor System Using Noninvasive Imaging and Mechanical Stretch for Biomaterial Screening,” Ann. Biomed. Eng., 39(5), pp. 1390–1402. [CrossRef] [PubMed]
Fu, S., Fan, J., Liu, L., Jiao, H., Gan, C., Tian, J., Chen, W., Yang, Z., and Yin, Z., 2013, “A Uniaxial Cell Stretcher In Vitro Model Simulating Tissue Expansion of Plastic Surgery,” J. Craniofacial Surg., 24(4), pp. 1431–1435. [CrossRef]
Lehnich, H., Simm, A., Weber, B., and Bartling, B., 2012, “Development of a Cyclic Multi-Axial Strain Cell Culture Device,” Biomed. Tech., 57(Suppl. 1), pp. 677–680. [CrossRef]
Reimann, S., Rath-Deschner, B., Deschner, J., Keilig, L., Jäger, A., and Bourauel, C., 2009, “Development of an Experimental Device for the Application of Static and Dynamic Tensile Strain on Cells,” 4th European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, Nov. 23–27, P.Verdonck, M.Nyssen, and J.Haueisen, eds., Springer, Berlin, Heidelberg, Vol. 22, pp. 2019–2022. [CrossRef]
Moraes, C., Likhitpanichkul, M., Lam, C. J., Beca, B. M., Sun, Y., and Simmons, C. A., 2013, “Microdevice Array-Based Identification of Distinct Mechanobiological Response Profiles in Layer-Specific Valve Interstitial Cells,” Integr. Biol., 5(4), pp. 673–680. [CrossRef]
Zhao, S., Suciu, A., Ziegler, T., Moore, J. E., Jr., Burki, E., Meister, J. J., and Brunner, H. R., 1995, “Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton,” Arterioscler. Thromb. Vasc. Biol., 15(10), pp. 1781–1786. [CrossRef] [PubMed]
Kwak, B. R., Silacci, P., Stergiopulos, N., Hayoz, D., and Meda, P., 2005, “Shear Stress and Cyclic Circumferential Stretch, but Not Pressure, Alter Connexin43 Expression in Endothelial Cells,” Cell Commun. Adhes., 12(5–6), pp. 261–270. [CrossRef] [PubMed]
Zulliger, M. A., Montorzi, G., and Stergiopulos, N., 2002, “Biomechanical Adaptation of Porcine Carotid Vascular Smooth Muscle to Hypo and Hypertension In Vitro,” J. Biomech., 35(6), pp. 757–765. [CrossRef] [PubMed]
Andersson, M., Karlsson, L., Svensson, P. A., Ulfhammer, E., Ekman, M., Jernas, M., Carlsson, L. M., and Jern, S., 2005, “Differential Global Gene Expression Response Patterns of Human Endothelium Exposed to Shear Stress and Intraluminal Pressure,” J. Vasc. Res., 42(5), pp. 441–452. [CrossRef] [PubMed]
Cheng, C. P., Parker, D., and Taylor, C. A., 2002, “Quantification of Wall Shear Stress in Large Blood Vessels Using Lagrangian Interpolation Functions With Cine Phase-Contrast Magnetic Resonance Imaging,” Ann. Biomed. Eng., 30(8), pp. 1020–1032. [CrossRef] [PubMed]
He, X., Ku, D. N., and Moore, Jr., J. E., 1993, “Simple Calculation of the Velocity Profiles for Pulsatile Flow in a Blood Vessel Using Mathematica,” Ann. Biomed. Eng., 21(1), pp. 45–49. [CrossRef] [PubMed]
Benbrahim, A., L'italien, G. J., Milinazzo, B. B., Warnock, D. F., Dhara, S., Gertler, J. P., Orkin, R. W., and Abbott, W. M., 1994, “A Compliant Tubular Device to Study the Influences of Wall Strain and Fluid Shear Stress on Cells of the Vascular Wall,” J. Vasc. Surg., 20(2), pp. 184–194. [CrossRef] [PubMed]
Estrada, R., Giridharan, G. A., Nguyen, M. D., Roussel, T. J., Shakeri, M., Parichehreh, V., Prabhu, S. D., and Sethu, P., 2011, “Endothelial Cell Culture Model for Replication of Physiological Profiles of Pressure, Flow, Stretch, and Shear Stress in Vitro,” Anal Chem, 83(8), pp. 3170–3177. [CrossRef]
Dancu, M. B., and Tarbell, J. M., 2006, “Large Negative Stress Phase Angle (Spa) Attenuates Nitric Oxide Production in Bovine Aortic Endothelial Cells,” ASME J. Biomech. Eng., 128(3), pp. 329–334. [CrossRef]
Wang, D., and Tarbell, J., 1995, “Nonlinear Analysis of Oscillatory Flow, With a Nonzero Mean, in an Elastic Tube (Artery),” ASME J. Biomech. Eng., 117(1), pp. 127–135. [CrossRef]
Dutta, A., Wang, D., and Tarbell, J., 1992, “Numerical Analysis of Flow in an Elastic Artery Model,” ASME J. Biomech. Eng., 114(1), pp. 26–33. [CrossRef]
Wang, D., and Tarbell, J., 1992, “Nonlinear Analysis of Flow in an Elastic Tube (Artery): Steady Streaming Effects,” J. Fluid Mech., 239, pp. 341–358. [CrossRef]
Qiu, Y., and Tarbell, J. M., 2000, “Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery,” ASME J. Biomech. Eng., 122(1), pp. 77–85. [CrossRef]
Gambillara, V., Thacher, T., Silacci, P., and Stergiopulos, N., 2008, “Effects of Reduced Cyclic Stretch on Vascular Smooth Muscle Cell Function of Pig Carotids Perfused Ex Vivo,” Am. J. Hypertens., 21(4), pp. 425–431. [CrossRef] [PubMed]
Thacher, T., Da Silva, R. F., and Stergiopulos, N., 2009, “Differential Effects of Reduced Cyclic Stretch and Perturbed Shear Stress Within the Arterial Wall and on Smooth Muscle Function,” Am. J. Hypertens., 22(12), pp. 1250–1257. [CrossRef] [PubMed]
Thacher, T. N., Silacci, P., Stergiopulos, N., and Da Silva, R. F., 2010, “Autonomous Effects of Shear Stress and Cyclic Circumferential Stretch Regarding Endothelial Dysfunction and Oxidative Stress: An Ex Vivo Arterial Model,” J. Vasc. Res., 47(4), pp. 336–345. [CrossRef] [PubMed]
Gambillara, V., Montorzi, G., Haziza-Pigeon, C., Stergiopulos, N., and Silacci, P., 2005, “Arterial Wall Response to Ex Vivo Exposure to Oscillatory Shear Stress,” J. Vasc. Res., 42(6), pp. 535–544. [CrossRef] [PubMed]
Thacher, T., Gambillara, V., Da Silva, R. F., Silacci, P., and Stergiopulos, N., 2010, “Reduced Cyclic Stretch, Endothelial Dysfunction, and Oxidative Stress: An Ex Vivo Model,” Cardiovasc. Pathol., 19(4), pp. e91–e98. [CrossRef] [PubMed]
Thompson, M., Budd, J., Eady, S., James, R., and Bell, P., 1994, “Effect of Pulsatile Shear Stress on Endothelial Attachment to Native Vascular Surfaces,” Br. J. Surg., 81(8), pp. 1121–1127. [CrossRef] [PubMed]
Moore, J. E., Jr., Burki, E., Suciu, A., Zhao, S., Burnier, M., Brunner, H. R., and Meister, J. J., 1994, “A Device for Subjecting Vascular Endothelial Cells to Both Fluid Shear Stress and Circumferential Cyclic Stretch,” Ann. Biomed. Eng., 22(4), pp. 416–422. [CrossRef] [PubMed]
Harada, N., Masuda, M., and Fujiwara, K., 1995, “Fluid Flow and Osmotic Stress Induce Tyrosine Phosphorylation of an Endothelial Cell 128 kDa Surface Glycoprotein,” Biochem. Biophys. Res. Commun., 214(1), pp. 69–74. [CrossRef] [PubMed]
Benbrahim, A., L'italien, G. J., Kwolek, C. J., Petersen, M. J., Milinazzo, B., Gertler, J. P., Abbott, W. M., and Orkin, R. W., 1996, “Characteristics of Vascular Wall Cells Subjected to Dynamic Cyclic Strain and Fluid Shear Conditions In Vitro,” J. Surg. Res., 65(2), pp. 119–127. [CrossRef] [PubMed]
Ziegler, T., Bouzourene, K., Harrison, V. J., Brunner, H. R., and Hayoz, D., 1998, “Influence of Oscillatory and Unidirectional Flow Environments on the Expression of Endothelin and Nitric Oxide Synthase in Cultured Endothelial Cells,” Arterioscler. Thromb. Vasc. Biol., 18(5), pp. 686–692. [CrossRef] [PubMed]
Peng, X., Recchia, F. A., Byrne, B. J., Wittstein, I. S., Ziegelstein, R. C., and Kass, D. A., 2000, “In Vitro System to Study Realistic Pulsatile Flow and Stretch Signaling in Cultured Vascular Cells,” Am. J. Physiol. Cell Physiol., 279(3), pp. C797–C805.
Qiu, Y., and Tarbell, J. M., 2000, “Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production,” J. Vasc. Res., 37(3), pp. 147–157. [CrossRef] [PubMed]
Shin, H. Y., Smith, M. L., Toy, K. J., Williams, P. M., Bizios, R., and Gerritsen, M. E., 2002, “Vegf-C Mediates Cyclic Pressure-Induced Endothelial Cell Proliferation,” Physiol. Genomics, 11(3), pp. 245–251. [PubMed]
Montorzi, G., Silacci, P., Zulliger, M., and Stergiopulos, N., 2004, “Functional, Mechanical and Geometrical Adaptation of the Arterial Wall of a Non-Axisymmetric Artery In Vitro,” J. Hypertens., 22(2), pp. 339–347. [CrossRef] [PubMed]
Jeong, S. I., Kwon, J. H., Lim, J. I., Cho, S. W., Jung, Y., Sung, W. J., Kim, S. H., Kim, Y. H., Lee, Y. M., Kim, B. S., Choi, C. Y., and Kim, S. J., 2005, “Mechano-Active Tissue Engineering of Vascular Smooth Muscle Using Pulsatile Perfusion Bioreactors and Elastic PLCL Scaffolds,” Biomaterials, 26(12), pp. 1405–1411. [CrossRef] [PubMed]
Nakadate, H., Hirose, Y., Sekizuka, E., and Minamitani, H., “A New In Vitro Pulsatile Perfusion System That Mimics Physiological Transmural Pressure and Shear Stress in Any Size of In Vivo Vessel,” J. Biomech. Sci. Eng., 3(1), pp. 25–37. [CrossRef]
O'Cearbhaill, E. D., Punchard, M. A., Murphy, M., Barry, F. P., Mchugh, P. E., and Barron, V., 2008, “Response of Mesenchymal Stem Cells to the Biomechanical Environment of the Endothelium on a Flexible Tubular Silicone Substrate,” Biomaterials, 29(11), pp. 1610–1619. [CrossRef] [PubMed]
Berardi, D. E., and Tarbell, J. M., 2009, “Stretch and Shear Interactions Affect Intercellular Junction Protein Expression and Turnover in Endothelial Cells,” Cell Mol. Bioeng., 2(3), pp. 320–331. [CrossRef] [PubMed]
Punchard, M. A., O'cearbhaill, E. D., Mackle, J. N., Mchugh, P. E., Smith, T. J., Stenson-Cox, C., and Barron, V., 2009, “Evaluation of Human Endothelial Cells Post Stent Deployment in a Cardiovascular Simulator In Vitro,” Ann. Biomed. Eng., 37(7), pp. 1322–1330. [CrossRef] [PubMed]
Estrada, R., Giridharan, G. A., Nguyen, M. D., Prabhu, S. D., and Sethu, P., 2011, “Microfluidic Endothelial Cell Culture Model to Replicate Disturbed Flow Conditions Seen in Atherosclerosis Susceptible Regions,” Biomicrofluidics, 5(3), p. 032006. [CrossRef]
Maul, T. M., Chew, D. W., Nieponice, A., and Vorp, D. A., 2011, “Mechanical Stimuli Differentially Control Stem Cell Behavior: Morphology, Proliferation, and Differentiation,” Biomech. Model. Mechanobiol., 10(6), pp. 939–953. [CrossRef] [PubMed]
Reichenberg, Y., and Lanir, Y., 2011, “A Flow Bio-Reactor for Studying the Effects of Haemodynamic Forces on the Morphology and Rheology of Cylindrically Cultured Endothelial Cells,” J. Med. Eng. Technol., 35(5), pp. 231–238. [CrossRef] [PubMed]
Reichenberg, Y., and Lanir, Y., 2012, “Duration of Microbead Seeding on Endothelial Cells Significantly Affects Their Response to Magnetic Excitation,” Phys. Rev. E: Stat. Nonlinear Soft Matter Phys., 85(4 Pt 1), p. 041915. [CrossRef]
Ghriallais, R. N., Mcnamara, L., and Bruzzi, M., 2013, “Comparison of In Vitro Human Endothelial Cell Response to Self-Expanding Stent Deployment in a Straight and Curved Peripheral Artery Simulator,” J. R. Soc. Interface, 10(81), p. 20120965. [CrossRef] [PubMed]
Grenon, S. M., Jeanne, M., Aguado-Zuniga, J., Conte, M. S., and Hughes-Fulford, M., 2013, “Effects of Gravitational Mechanical Unloading in Endothelial Cells: Association Between Caveolins, Inflammation and Adhesion Molecules,” Sci. Rep., 3, p. 1494. [CrossRef]
Maeda, E., Hagiwara, Y., Wang, J. H., and Ohashi, T., 2013, “A New Experimental System for Simultaneous Application of Cyclic Tensile Strain and Fluid Shear Stress to Tenocytes In Vitro,” Biomed. Microdevices, 15(6), pp. 1067–1075. [CrossRef] [PubMed]
Shojaei, S., Tafazzoli-Shahdpour, M., Shokrgozar, M. A., and Haghighipour, N., 2013, “Effects of Mechanical and Chemical Stimuli on Differentiation of Human Adipose-Derived Stem Cells Into Endothelial Cells,” Int. J. Artif. Organs, 36(9), pp. 663–673. [CrossRef] [PubMed]
Colombo, A., Zahedmanesh, H., Toner, D. M., Cahill, P. A., and Lally, C., 2010, “A Method to Develop Mock Arteries Suitable for Cell Seeding and In-Vitro Cell Culture Experiments,” J. Mech. Behav. Biomed. Mater., 3(6), pp. 470–477. [CrossRef] [PubMed]
Pazos, V., Mongrain, R., and Tardif, J. C., 2010, “Deformable Mock Stenotic Artery With a Lipid Pool,” ASME J. Biomech. Eng., 132(3), p. 034501. [CrossRef]
Estrada, R., Giridharan, G., Prabhu, S. D., and Sethu, P., 2011, “Endothelial Cell Culture Model of Carotid Artery Atherosclerosis,” Annual International Conference of IEEE Engineering Medicine Biology Society, Boston, MA, Aug. 30–Sept. 3, pp. 186–189. [CrossRef]
Hammer, S., Jeays, A., Allan, P. L., Hose, R., Barber, D., Easson, W. J., and Hoskins, P. R., 2009, “Acquisition of 3-D Arterial Geometries and Integration With Computational Fluid Dynamics,” Ultrasound Med. Biol., 35(12), pp. 2069–2083. [CrossRef] [PubMed]
Zambrano, S., Thompson, R. S., and Moreno, M. R., “Stress Angle Device: An In Vitro System for Reproducing the Mechanical Environment Associated With Regions Susceptible to Vascular Disease for the Study of Endothelial Cells,” Presentation at the Annual Meeting of the Biomedical Engineering Society, Seattle, WA., Sept. 25–28.
Osawa, M., Masuda, M., Kusano, K., and Fujiwara, K., 2002, “Evidence for a Role of Platelet Endothelial Cell Adhesion Molecule-1 in Endothelial Cell Mechanosignal Transduction: Is It a Mechanoresponsive Molecule?,” J. Cell Biol., 158(4), pp. 773–785. [CrossRef] [PubMed]
Osawa, M., Masuda, M., Harada, N., Lopes, R. B., and Fujiwara, K., 1997, “Tyrosine Phosphorylation of Platelet Endothelial Cell Adhesion Molecule-1 (Pecam-1, Cd31) in Mechanically Stimulated Vascular Endothelial Cells,” Eur. J. Cell Biol., 72(3), pp. 229–237. [PubMed]

Figures

Grahic Jump Location
Fig. 1

ECs on the inner lumen of an artery experience cyclic circumferential stretching (white arrows on cutout) due to pulsatile pressure as well as FSS (black arrows on cutout) caused by the blood flow

Grahic Jump Location
Fig. 2

Three common methods for applying FSS to cultured cells. The cone and plate system provides Couette flow caused by the spinning of the cone. In an orbital shaker, rotational inertia causes fluid flow over the cultured cells. In a parallel-plate system, the flow over the cells is pressure-driven.

Grahic Jump Location
Fig. 3

Modified POC mini-chamber first described by Yalcin et al. [24] and adapted by Mengistu et al. [12] for shear stress experiments with ECs

Grahic Jump Location
Fig. 4

T-shaped flow chamber used by Sakamoto et al. [30]. The design simulates a vessel bifurcation and creates shear stress gradients on the cultured cells.

Grahic Jump Location
Fig. 5

Illustration of four types of strain which can be applied to cells cultured on a flexible membrane. Uniaxial tests may be unconstrained (top left) or constrained (top right) in the axis perpendicular to stretch; constraining this axis essentially applies a force to counteract the Poisson effect. By definition, we consider a “biaxial” test to be one in which force is applied in two perpendicular axes (bottom left), while an “equiaxial” test applies stretch equally in all directions (bottom right).

Grahic Jump Location
Fig. 6

In each of the strain modalities shown in this figure, cells are cultured on a flexible membrane in a circular well. Platen driven strain: The substrate is cyclically stretched by moving a stiff platen vertically with respect to the membrane. The platen may be a cylindrical post (left) or a hollow cylinder (right). Vacuum driven strain: The membrane is cyclically stretched by applying a vacuum in the chamber underneath the cell substrate. To maintain in-plane distension, the cell culture area may be positioned atop a stationary central post (right). Prong driven strain: The membrane is cyclically stretched by moving a stiff rounded prong vertically with respect to the membrane (left). Modifications can allow the prong to move back and forth or in a circular pattern in the horizontal plane as well (right).

Grahic Jump Location
Fig. 7

The device adapted by Huang et al. [95] for uniaxial or equiaxial distension of cultured cells. They also demonstrated its utility for live-cell imaging. (a) Front view of the cell stretcher. (b) Cross-sectional view of the membrane holder ring and indenter ring; the elastic membrane is secured in the circular groove at the bottom. (c) Modular indenter designs allow for application of different strain profiles, e.g., equiaxial and uniaxial.

Grahic Jump Location
Fig. 8

The Flexcell Flexflow device [120,121], which allows for simultaneous application of FSS and cyclic stretching of cultured cells. The device is also designed to permit live-cell imaging.

Grahic Jump Location
Fig. 9

At vessel bifurcations such as the carotid, fluid flow may change from straight laminar flow to something resembling a helical pattern (see also Ref. [173]). In the straight vessel (bottom), FSS (black arrows) usually acts perpendicular to the circumferential stretching (white arrows). At the bifurcation (top), the relative angle of the FSS and CS is not perpendicular, and the forces may actually be parallel to one another. Atherosclerosis tends to develop at curvatures and bifurcations more often than in straight vessels.

Grahic Jump Location
Fig. 10

Device developed by Moreno et al. to apply cyclic substrate stretching and FSS to cultured vascular cells simultaneously [174] (left). This device allows researchers to arbitrarily set the stress angle between shear stress and stretch, from perpendicular to parallel. Idealized computational fluid dynamics of the flow chamber (right).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In