0
Research Papers

Inverse Finite Element Modeling for Characterization of Local Elastic Properties in Image-Guided Failure Assessment of Human Trabecular Bone

[+] Author and Article Information
Alexander Zwahlen

Institute for Biomechanics,
ETH Zurich,
Vladimir-Prelog-Weg 3,
Zurich CH-8093, Switzerland
e-mail: azwahlen@ethz.ch

David Christen

Institute for Biomechanics,
ETH Zurich,
Vladimir-Prelog-Weg 3,
Zurich CH-8093, Switzerland
e-mail: davidchristen@gmail.com

Davide Ruffoni

Institute for Biomechanics,
ETH Zurich,
Vladimir-Prelog-Weg 3,
Zurich CH-8093, Switzerland
e-mail: druffoni@ulg.ac.be

Philipp Schneider

Institute for Biomechanics,
ETH Zurich,
Vladimir-Prelog-Weg 3,
Zurich CH-8093, Switzerland
e-mail: p.schneider@soton.ac.uk

Werner Schmölz

Department of Trauma Surgery,
Medical University Innsbruck,
Anichstrasse 35,
Innsbruck A-6020, Austria
e-mail: Werner.schmoelz@uki.at

Ralph Müller

Institute for Biomechanics,
ETH Zurich,
Vladimir-Prelog-Weg 3,
Zurich CH-8093, Switzerland
e-mail: ram@ethz.ch

1Corresponding author.

Manuscript received September 5, 2014; final manuscript received October 21, 2014; accepted manuscript posted November 5, 2014; published online December 10, 2014. Assoc. Editor: Blaine Christiansen.

J Biomech Eng 137(1), 011012 (Jan 01, 2015) (9 pages) Paper No: BIO-14-1439; doi: 10.1115/1.4028991 History: Received September 05, 2014; Revised October 21, 2014; Accepted November 05, 2014; Online December 10, 2014

The local interpretation of microfinite element (μFE) simulations plays a pivotal role for studying bone structure–function relationships such as failure processes and bone remodeling. In the past μFE simulations have been successfully validated on the apparent level, however, at the tissue level validations are sparse and less promising. Furthermore, intratrabecular heterogeneity of the material properties has been shown by experimental studies. We proposed an inverse μFE algorithm that iteratively changes the tissue level Young’s moduli such that the μFE simulation matches the experimental strain measurements. The algorithm is setup as a feedback loop where the modulus is iteratively adapted until the simulated strain matches the experimental strain. The experimental strain of human trabecular bone specimens was calculated from time-lapsed images that were gained by combining mechanical testing and synchrotron radiation microcomputed tomography (SRμCT). The inverse μFE algorithm was able to iterate the heterogeneous distribution of moduli such that the resulting μFE simulations matched artificially generated and experimentally measured strains.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Christen, D., Levchuk, A., Schori, S., Schneider, P., Boyd, S. K., and Müller, R., 2012, “Deformable Image Registration and 3D Strain Mapping for the Quantitative Assessment of Cortical Bone Microdamage,” J. Mech. Behav. Biomed. Mater., 8, pp. 184–193. [CrossRef] [PubMed]
Donaldson, F., Ruffoni, D., Schneider, P., Levchuk, A., Zwahlen, A., Pankaj, P., and Müller, R., 2014, “Modeling Microdamage Behavior of Cortical Bone,” Biomech. Model. Mechanobiol., 13(6), pp. 1227–1242. [CrossRef] [PubMed]
Green, J. O., Nagaraja, S., Diab, T., Vidakovic, B., and Guldberg, R. E., 2011, “Age-Related Changes in Human Trabecular Bone: Relationship Between Microstructural Stress and Strain and Damage Morphology,” J. Biomech., 44(12), pp. 2279–2285. [CrossRef] [PubMed]
Nagaraja, S., Lin, A. S. P., and Guldberg, R. E., 2007, “Age-Related Changes in Trabecular Bone Microdamage Initiation,” Bone, 40(4), pp. 973–980. [CrossRef] [PubMed]
Harrison, N. M., McDonnell, P., Mullins, L., Wilson, N., O'mahoney, D., and Mchugh, P. E., 2013, “Failure Modelling of Trabecular Bone Using a Non-Linear Combined Damage and Fracture Voxel Finite Element Approach,” Biomech. Model. Mechanobiol., 12(2), pp. 225–241. [CrossRef] [PubMed]
Hambli, R., 2013, “Micro-CT Finite Element Model and Experimental Validation of Trabecular Bone Damage and Fracture,” Bone, 56(2), pp. 363–374. [CrossRef] [PubMed]
Fang, G., Ji, B., Liu, X. S., and Guo, X. E., 2010, “Quantification of Trabecular Bone Microdamage Using the Virtual Internal Bond Model and the Individual Trabeculae Segmentation Technique,” Comput. Methods Biomech. Biomed. Eng., 13(5), pp. 605–615. [CrossRef]
Bevill, G., and Keaveny, T. M., 2009, “Trabecular Bone Strength Predictions Using Finite Element Analysis of Micro-Scale Images at Limited Spatial Resolution,” Bone, 44(4), pp. 579–584. [CrossRef] [PubMed]
Verhulp, E., Van Rietbergen, B., Müller, R., and Huiskes, R., 2008, “Micro-Finite Element Simulation of Trabecular-Bone Post-Yield Behaviour--Effects of Material Model, Element Size and Type,” Comput. Methods Biomech. Biomed. Eng., 11(4), pp. 389–395. [CrossRef]
Kosmopoulos, V., and Keller, T. S., 2008, “Predicting Trabecular Bone Microdamage Initiation and Accumulation Using a Non-Linear Perfect Damage Model,” Med. Eng. Phys., 30(6), pp. 725–732. [CrossRef] [PubMed]
Stolken, J. S., and Kinney, J. H., 2003, “On the Importance of Geometric Nonlinearity in Finite-Element Simulations of Trabecular Bone Failure,” Bone, 33(4), pp. 494–504. [CrossRef] [PubMed]
Tomar, V., 2008, “Modeling of Dynamic Fracture and Damage in Two-Dimensional Trabecular Bone Microstructures Using the Cohesive Finite Element Method,” ASME J. Biomech. Eng., 130(2), p. 021021. [CrossRef]
Niebur, G. L., Feldstein, M. J., Yuen, J. C., Chen, T. J., and Keaveny, T. M., 2000, “High-Resolution Finite Element Models with Tissue Strength Asymmetry Accurately Predict Failure of Trabecular Bone,” J. Biomech., 33(12), pp. 1575–1583. [CrossRef] [PubMed]
Christen, D., Zwahlen, A., and Müller, R., 2014, “Reproducibility for Linear and Nonlinear Micro-Finite Element Simulations with Density Derived Material Properties of the Human Radius,” J. Mech. Behav. Biomed. Mater., 29, pp. 500–507. [CrossRef] [PubMed]
MacNeil, J. A., and Boyd, S. K., 2008, “Bone Strength at the Distal Radius can be Estimated From High-Resolution Peripheral Quantitative Computed Tomography and the Finite Element Method,” Bone, 42(6), pp. 1203–1213. [CrossRef] [PubMed]
Varga, P., Pahr, D. H., Baumbach, S., and Zysset, P. K., 2010, “HR-pQCT Based FE Analysis of the most Distal Radius Section Provides an Improved Prediction of Colles' Fracture Load in vitro,” Bone, 47(5), pp. 982–988. [CrossRef] [PubMed]
Pistoia, W., Van Rietbergen, B., Lochmuller, E. M., Lill, C. A., Eckstein, F., and Ruegsegger, P., 2002, “Estimation of Distal Radius Failure Load with Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images,” Bone, 30(6), pp. 842–848. [CrossRef] [PubMed]
Boutroy, S., Van Rietbergen, B., Sornay-Rendu, E., Munoz, F., Bouxsein, M. L., and Delmas, P. D., 2008, “Finite Element Analysis Based on in Vivo HR-pQCT Images of the Distal Radius Is Associated with Wrist Fracture in Postmenopausal Women,” J. Bone Miner. Res., 23(3), pp. 392–399. [CrossRef] [PubMed]
Melton, L., Christen, D., Riggs, B., Achenbach, S., Müller, R., Van Lenthe, G., Amin, S., Atkinson, E., and Khosla, S., 2010, “Assessing Forearm Fracture Risk in Postmenopausal Women,” Osteoporosis Int., 21(7), pp. 1161–1169. [CrossRef]
Vilayphiou, N., Boutroy, S., Sornay-Rendu, E., Van Rietbergen, B., Munoz, F., Delmas, P. D., and Chapurlat, R., 2010, “Finite Element Analysis Performed on Radius and Tibia HR-pQCT Images and Fragility Fractures at all Sites in Postmenopausal Women,” Bone, 46(4), pp. 1030–1037. [CrossRef] [PubMed]
Chevalley, T., Bonjour, J. P., Van Rietbergen, B., Ferrari, S., and Rizzoli, R., 2013, “Fracture History of Healthy Premenopausal Women is Associated with a Reduction of Cortical Microstructural Components at the Distal Radius,” Bone, 55(2), pp. 377–383. [CrossRef] [PubMed]
Nishiyama, K. K., MacDonald, H. M., Hanley, D. A., and Boyd, S. K., 2013, “Women with Previous Fragility Fractures Can Be Classified Based on Bone Microarchitecture and Finite Element Analysis Measured with HR-pQCT,” Osteoporosis Int., 24(5), pp. 1733–1740. [CrossRef]
Vilayphiou, N., Boutroy, S., Szulc, P., Van Rietbergen, B., Munoz, F., Delmas, P. D., and Chapurlat, R., 2011, “Finite Element Analysis Performed on Radius and Tibia HR-pQCT Images and Fragility Fractures at all Sites in Men,” J. Bone Miner. Res., 26(5), pp. 965–973. [CrossRef] [PubMed]
Frost, H. M., 1990, “Skeletal Structural Adaptations to Mechanical Usage (Satmu): 1. Redefining Wolff's Law: The Bone Modeling Problem,” Anat. Rec., 226(4), pp. 403–413. [CrossRef] [PubMed]
Robling, A. G., Castillo, A. B., and Turner, C. H., 2006, “Biomechanical and Molecular Regulation of Bone Remodeling,” Annu. Rev. Biomed. Eng., 8, pp. 455–498. [CrossRef] [PubMed]
Herman, B. C., Cardoso, L., Majeska, R. J., Jepsen, K. J., and Schaffler, M. B., 2010, “Activation of Bone Remodeling After Fatigue: Differential Response to Linear Microcracks and Diffuse Damage,” Bone, 47(4), pp. 766–772. [CrossRef] [PubMed]
Sugiyama, T., Meakin, L. B., Browne, W. J., Galea, G. L., Price, J. S., and Lanyon, L. E., 2012, “Bones' Adaptive Response to Mechanical Loading is Essentially Linear Between the Low Strains Associated with Disuse and the High Strains Associated with the Lamellar/Woven Bone Transition,” J. Bone Miner. Res., 27(8), pp. 1784–1793. [CrossRef] [PubMed]
Ellman, R., Spatz, J., Cloutier, A., Palme, R., Christiansen, B. A., and Bouxsein, M. L., 2013, “Partial Reductions in Mechanical Loading Yield Proportional Changes in Bone Density, Bone Architecture, and Muscle Mass,” J. Bone Miner. Res., 28(4), pp. 875–885. [CrossRef] [PubMed]
Christen, P., Ito, K., Ellouz, R., Boutroy, S., Sornay-Rendu, E., Chapurlat, R. D., and Van Rietbergen, B., 2014, “Bone Remodelling in Humans is Load-Driven but Not Lazy,” Nat. Commun., 5, p. 4855. [CrossRef] [PubMed]
Schulte, F. A., Ruffoni, D., Lambers, F. M., Christen, D., Webster, D. J., Kuhn, G., and Müller, R., 2013, “Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level,” PLoS One, 8(4), p. e62172. [CrossRef]
Mc Donnell, P., Harrison, N., Liebschner, M. a. K., and McHugh, P. E., 2009, “Simulation of Vertebral Trabecular Bone Loss Using Voxel Finite Element Analysis,” J. Biomech., 42(16), pp. 2789–2796. [CrossRef] [PubMed]
Christen, P., Ito, K., Müller, R., Rubin, M. R., Dempster, D. W., Bilezikian, J. P., and Van Rietbergen, B., 2012, “Patient-Specific Bone Modelling and Remodelling Simulation of Hypoparathyroidism Based on Human Iliac Crest Biopsies,” J. Biomech., 45(14), pp. 2411–2416. [CrossRef] [PubMed]
Tsubota, K., Suzuki, Y., Yamada, T., Hojo, M., Makinouchi, A., and Adachi, T., 2009, “Computer Simulation of Trabecular Remodeling in Human Proximal Femur Using Large-Scale Voxel FE Models: Approach to Understanding Wolff's Law,” J. Biomech., 42(8), pp. 1088–1094. [CrossRef] [PubMed]
Schulte, F. A., Zwahlen, A., Lambers, F. M., Kuhn, G., Ruffoni, D., Betts, D., Webster, D. J., and Müller, R., 2013, “Strain-Adaptive in Silico Modeling of Bone Adaptation—A Computer Simulation Validated by in Vivo Micro-Computed Tomography Data,” Bone, 52(1), pp. 485–492. [CrossRef] [PubMed]
Verbruggen, S. W., Vaughan, T. J., and McNamara, L. M., 2012, “Strain Amplification in Bone Mechanobiology: A Computational Investigation of the in vivo Mechanics of Osteocytes,” J. R. Soc. Interface, 9(75), pp. 2735–2744. [CrossRef] [PubMed]
Bouxsein, M. L., 2008, “Technology Insight: Noninvasive Assessment of Bone Strength in Osteoporosis,” Nat. Clin. Pract. Rheumatol., 4(6), pp. 310–318. [CrossRef] [PubMed]
Van Lenthe, G. H., and Müller, R., 2006, “Prediction of Failure Load Using Micro-Finite Element Analysis Models: Toward in vivo Strength Assessment,” Drug Discovery Today: Technol., 3(2), pp. 221–229. [CrossRef]
Levchuk, A., Zwahlen, A., Weigt, C., Lambers, F. M., Badilatti, S. D., Schulte, F. A., Kuhn, G., and Müller, R., 2014, “The Clinical Biomechanics Award 2012—Presented by the European Society of Biomechanics: Large Scale Simulations of Trabecular Bone Adaptation to Loading and Treatment,” Clin. Biomech., 29(4), pp. 355–362. [CrossRef]
Chevalier, Y., Pahr, D., Allmer, H., Charlebois, M., and Zysset, P., 2007, “Validation of a Voxel-Based FE Method for Prediction of the Uniaxial Apparent Modulus of Human Trabecular Bone Using Macroscopic Mechanical Tests and Nanoindentation,” J. Biomech., 40(15), pp. 3333–3340. [CrossRef] [PubMed]
Basler, S. E., Müller, T. L., Christen, D., Wirth, A. J., Müller, R., and Van Lenthe, G. H., 2011, “Towards Validation of Computational Analyses of Peri-Implant Displacements by Means of Experimentally Obtained Displacement Maps,” Comput. Methods Biomech. Biomed. Eng., 14(2), pp. 165–174. [CrossRef]
Zauel, R., Yeni, Y. N., Bay, B. K., Dong, X. N., and Fyhrie, D. P., 2006, “Comparison of the Linear Finite Element Prediction of Deformation and Strain of Human Cancellous Bone to 3D Digital Volume Correlation Measurements,” ASME J. Biomech. Eng., 128(1), pp. 1–6. [CrossRef]
Mulder, L., Koolstra, J. H., Den Toonder, J. M. J., and Van Eijden, T. M. G. J., 2007, “Intratrabecular Distribution of Tissue Stiffness and Mineralization in Developing Trabecular Bone,” Bone, 41(2), pp. 256–265. [CrossRef] [PubMed]
Hengsberger, S., Kulik, A., and Zysset, P., 2001, “A Combined Atomic Force Microscopy and Nanoindentation Technique to Investigate the Elastic Properties of Bone Structural Units,” Eur. Cell. Mater., 1, pp. 12–17. [PubMed]
Jaasma, M. J., Bayraktar, H. H., Niebur, G. L., and Keaveny, T. M., 2002, “Biomechanical Effects of Intraspecimen Variations in Tissue Modulus for Trabecular Bone,” J. Biomech., 35(2), pp. 237–246. [CrossRef] [PubMed]
Van Der Linden, J. C., Birkenhäger-Frenkel, D. H., Verhaar, J. A. N., and Weinans, H., 2001, “Trabecular Bone's Mechanical Properties Are Affected by Its Non-Uniform Mineral Distribution,” J. Biomech., 34(12), pp. 1573–1580. [CrossRef] [PubMed]
Van Ruijven, L. J., Mulder, L., and Van Eijden, T. M. G. J., 2007, “Variations in Mineralization Affect the Stress and Strain Distributions in Cortical and Trabecular Bone,” J. Biomech., 40(6), pp. 1211–1218. [CrossRef] [PubMed]
Harrison, N. M., McDonnell, P. F., O'mahoney, D. C., Kennedy, O. D., O'Brien, F. J., and McHugh, P. E., 2008, “Heterogeneous Linear Elastic Trabecular Bone Modelling Using Micro-CT Attenuation Data and Experimentally Measured Heterogeneous Tissue Properties,” J. Biomech., 41(11), pp. 2589–2596. [CrossRef] [PubMed]
Bourne, B. C., and Van Der Meulen, M. C. H., 2004, “Finite Element Models Predict Cancellous Apparent Modulus When Tissue Modulus Is Scaled from Specimen CT-Attenuation,” J. Biomech., 37(5), pp. 613–621. [CrossRef] [PubMed]
Currey, J. D., 1988, “The Effect of Porosity and Mineral-Content on the Young's Modulus of Elasticity of Compact-Bone,” J. Biomech., 21(2), pp. 131–139. [CrossRef] [PubMed]
Gross, T., Pahr, D. H., Peyrin, F., and Zysset, P. K., 2012, “Mineral Heterogeneity has a Minor Influence on the Apparent Elastic Properties of Human Cancellous Bone: A SrμCT-Based Finite Element Study,” Comput. Methods Biomech. Biomed. Eng., 15(11), pp. 1137–1144. [CrossRef]
Weis, J. A., Miga, M. I., Granero-Moltó, F., and Spagnoli, A., 2010, “A Finite Element Inverse Analysis to Assess Functional Improvement During the Fracture Healing Process,” J. Biomech., 43(3), pp. 557–562. [CrossRef] [PubMed]
Gupta, H. S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H. D., and Fratzl, P., 2006, “Mechanical Modulation at the Lamellar Level in Osteonal Bone,” J. Mater. Res., 21(8), pp. 1913–1921. [CrossRef]
Smith, L. J., Schirer, J. P., and Fazzalari, N. L., 2010, “The Role of Mineral Content in Determining the Micromechanical Properties of Discrete Trabecular Bone Remodeling Packets,” J. Biomech., 43(16), pp. 3144–3149. [CrossRef] [PubMed]
Beck, J. V., and Woodbury, K. A., 1998, “Inverse Problems and Parameter Estimation: Integration of Measurements and Analysis,” Meas. Sci. Technol., 9(6), pp. 839–847. [CrossRef]
Maniatty, A., Zabaras, N., and Stelson, K., 1989, “Finite-Element Analysis of some Inverse Elasticity Problems,” ASCE J. Eng. Mech., 115(6), pp. 1303–1317. [CrossRef]
Schnur, D. S., and Zabaras, N., 1992, “An Inverse Method for Determining Elastic-Material Properties and a Material Interface,” Int. J. Numer. Methods Eng., 33(10), pp. 2039–2057. [CrossRef]
Schnur, D. S., and Zabaras, N., 1990, “Finite-Element Solution of 2-Dimensional Inverse Elastic Problems Using Spatial Smoothing,” Int. J. Numer. Methods Eng., 30(1), pp. 57–75. [CrossRef]
Van Rietbergen, B., Weinans, H., Huiskes, R., and Odgaard, A., 1995, “A New Method to Determine Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite-Element Models,” J. Biomech., 28(1), pp. 69–81. [CrossRef] [PubMed]
Bosisio, M. R., Talmant, M., Skalli, W., Laugier, P., and Mitton, D., 2007, “Apparent Young's Modulus of Human Radius Using Inverse Finite-Element Method,” J. Biomech., 40(9), pp. 2022–2028. [CrossRef] [PubMed]
Odin, G., Savoldelli, C., Bouchard, P. O., and Tillier, Y., 2010, “Determination of Young's Modulus of Mandibular Bone Using Inverse Analysis,” Med. Eng. Phys., 32(6), pp. 630–637. [CrossRef] [PubMed]
Verhulp, E., Van Rietbergen, B., Müller, R., and Huiskes, R., 2008, “Indirect Determination of Trabecular Bone Effective Tissue Failure Properties Using Micro-Finite Element Simulations,” J. Biomech., 41(7), pp. 1479–1485. [CrossRef] [PubMed]
Garo, A., Arnoux, P. J., and Aubin, C. E., 2009, “Estimation of Bone Material Properties Using an Inverse Finite Element Method,” Comput. Methods Biomech. Biomed. Eng., 12(suppl. 1), pp. 121–122. [CrossRef]
Hardisty, M. R., Zauel, R., Stover, S. M., and Fyhrie, D. P., 2013, “The Importance of Intrinsic Damage Properties to Bone Fragility: A Finite Element Study,” ASME J. Biomech. Eng., 135(1), p. 011004. [CrossRef]
Greenleaf, J. F., Fatemi, M., and Insana, M., 2003, “Selected Methods for Imaging Elastic Properties of Biological Tissues,” Annu. Rev. Biomed. Eng., 5, pp. 57–78. [CrossRef] [PubMed]
Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y., and Li, X., 1991, “Elastography—A Quantitative Method for Imaging the Elasticity of Biological Tissues,” Ultras. Imaging, 13(2), pp. 111–134. [CrossRef]
Samani, A., and Plewes, D., 2007, “An Inverse Problem Solution for Measuring the Elastic Modulus of Intact Ex Vivo Breast Tissue Tumours,” Phys. Med. Biol., 52(5), pp. 1247–1260. [CrossRef] [PubMed]
Nazarian, A., and Müller, R., 2004, “Time-Lapsed Microstructural Imaging of Bone Failure Behavior,” J. Biomech., 37(1), pp. 55–65. [CrossRef] [PubMed]
Schneider, P., Levchuk, A., and Müller, R., 2010, “Automated Micro-Compression Device for Dynamic Image-Guided Failure Assessment of Bone Ultrastructure and Bone Microdamage,” Biomed. Tech./Biomed. Eng., 55(s1), pp. 8–10.
Thirion, J. P., 1998, “Image Matching as a Diffusion Process: An Analogy with Maxwell's Demons,” Med. Image Anal., 2(3), pp. 243–260. [CrossRef] [PubMed]
Pauchard, Y., Mattmann, C., Kuhn, A., Gasser, J. A., and Boyd, S. K., 2008, “European Society of Biomechanics Sm Perren Award 2008: Using Temporal Trends of 3D Bone Micro-Architecture to Predict Bone Quality,” J. Biomech., 41(14), pp. 2946–2953. [CrossRef] [PubMed]
McGinty, B., 2014, von Mises Stress, www.continuummechanics.org
Ruimerman, R., Hilbers, P., Van Rietbergen, B., and Huiskes, R., 2005, “A Theoretical Framework for Strain-Related Trabecular Bone Maintenance and Adaptation,” J. Biomech., 38(4), pp. 931–941. [CrossRef] [PubMed]
Flaig, C., and Arbenz, P., 2011, “A Scalable Memory Efficient Multigrid Solver for Micro-Finite Element Analyses Based on CT Images,” Parallel Comput., 37(12), pp. 846–854. [CrossRef]
Christen, P., Ito, K., Knippels, I., Müller, R., Van Lenthe, G. H., and Van Rietbergen, B., 2013, “Subject-Specific Bone Loading Estimation in the Human Distal Radius,” J. Biomech., 46(4), pp. 759–766. [CrossRef] [PubMed]
Granke, M., Gourrier, A., Rupin, F., Raum, K., Peyrin, F., Burghammer, M., Saied, A., and Laugier, P., 2013, “Microfibril Orientation Dominates the Microelastic Properties of Human Bone Tissue at the Lamellar Length Scale,” PLoS One, 8(3), p. e58043. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Visual verification of deformable image registration. Red arrows show displacement from undeformed (white) to deformed (green) image of a single trabecular; (b) Experimentally measured von Mises effective strain; (c) μFE von Mises effective strain with experimental boundary conditions; (d) μFE von Mises effective strain with standard boundary conditions.

Grahic Jump Location
Fig. 2

(a) Schematic of inverse μFE algorithm; (right) verification study 1 (2D), using random modulus (b) and μFE to generate a “virtual” experimental strain map (c). Iterated strain and modulus after 0, 1 and 10 iterations ((e)–(g)).

Grahic Jump Location
Fig. 3

Verification study 2, random 3D: single trabecula with a random modulus (a) for creating “virtual” experimental strain map (b), iterated modulus (c), and strain (d) for 0, 1, and 99 iterations. Correlation between “virtual” experimental strain and iterated strain pattern (e). Correlation between randomly generated modulus and iterated modulus (f). Iterated modulus from attenuation based initial condition (g).

Grahic Jump Location
Fig. 4

Verification study 3: Single trabecular with attenuation based modulus (a) for creating “virtual” experimental strain map (b), iterated modulus (c), and strain (d) for 0, 1, and 99 iterations. Correlation between “virtual” experimental strain and iterated strain pattern (e). Correlation between attenuation based modulus and iterated modulus (f). Iterated modulus from 10% and 30% noise added to the initial condition (g).

Grahic Jump Location
Fig. 5

Verification study 4, experimental strain 3D: Single trabecula with real experimental strainmap (b), iterated strain pattern and modulus for 0–18 iterations (d), correlation between experimental strain and iterated strain (e). Correlation between modulus at iteration (i) and (i+1) (f).

Grahic Jump Location
Fig. 6

Verification study 4, strain pattern (a), iterated modulus with homogeneous initial condition (b), and attenuation based initial condition (c). (b) and (c) show similar pattern which however does not correlate with experimentally measured density (d).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In