Strebhardt, K., and Ullrich, A., 2008, “Paul Ehrlich's Magic Bullet Concept: 100 Years of Progress,” Nat. Rev. Cancer, 8(6), pp. 473–480.
[CrossRef] [PubMed]Bae, Y. H., and Park, K., 2011, “Targeted Drug Delivery to Tumors: Myths, Reality and Possibility,” J. Controlled Release, 153(3), pp. 198–205.
[CrossRef]Jain, R. K., 1987, “Transport of Molecules Across Tumor Vasculature,” Cancer Metastasis Rev., 6(4), pp. 559–593.
[CrossRef] [PubMed]Palmer, T. N., Caldecourt, M. A., and Kingaby, R. O., 1984, “Liposomal Drug Delivery in Chronic Ischaemia,” Biochem. Soc. Trans., 12(2), pp. 344–345.
[PubMed]Torchilin, V. P., 2000, “Drug Targeting,” Eur. J. Pharm. Sci., 11(Supplement 2), pp. S81–S91.
[CrossRef] [PubMed]Wamsley, A., 2005, “Ligand-Based Targeting Approaches to Drug Delivery,” Design of Controlled Release Drug Delivery Systems, McGraw Hill Professional, New York, pp. 375–403.
Ding, L., Samuel, J., MacLean, G. D., Noujaim, A. A., Diener, E., and Longenecker, B. M., 1990, “Effective Drug-Antibody Targeting Using a Novel Monoclonal Antibody Against the Proliferative Compartment of Mammalian Squamous Carcinomas,” Cancer Immunol. Immunother., 32(2), pp. 105–109.
[CrossRef] [PubMed]Imura, Y., Stassen, J. M., Kurokawa, T., Iwasa, S., Lijnen, H. R., and Collen, D., 1992, “Thrombolytic and Pharmacokinetic Properties of an Immunoconjugate of Single-Chain Urokinase-Type Plasminogen Activator (u-PA) and a Bispecific Monoclonal Antibody Against Fibrin and Against u-PA in Baboons,” Blood, 79(9), pp. 2322–2329.
[PubMed]Ringsdorf, H., 1975, “Structure and Properties of Pharmacologically Active Polymers,” J. Polym. Sci., Polym. Symp., 51(1), pp. 135–153.
[CrossRef]Vitetta, E. S., Krolik, K. A., Miyama-Inaba, M., Cushley, W., and Uhr, J. W., 1983, “Immunotoxins: A New Approach to Cancer Therapy,” Science, 219(4585), pp. 644–650.
[CrossRef] [PubMed]Torchilin, V. P., and Klibanov, A. L., 1993, “pH-Sensitive Liposomes,” J. Liposome Res., 3(2), pp. 201–255.
[CrossRef]Weinstein, J. N., Magin, R. L., Yatvin, M. B., and Zaharko, D., 1979, “Liposomes and Local Hyperthermia: Selective Delivery of Methotrexate to Heated Tumors,” Science, 204(4389), pp. 188–191.
[CrossRef] [PubMed]Berry, C. C., 2009, “Progress in Functionalization of Magnetic Nanoparticles for Applications in Biomedicine,” J. Phys. D: Appl. Phys., 42(22), p. 224003.
[CrossRef]Gajjar, S. K., Sailor, G. U., Seth, A. K., and Patel, P. B., 2011, “A Review on Targeted Drug Delivery: Magnetic Drug Delivery System,” J. Pharm. Sci. Bioscientific Res., 1(2), pp. 125–133.
McBain, S. C., Yiu, H. H., and Dobson, J., 2008, “Magnetic Nanoparticles for Gene and Drug Delivery,” Int. J. Nanomed., 3(2), pp. 169–180.
O'Grady, K., 2009, “Progress in Applications of Magnetic Nanoparticles in Biomedicine,” J. Phys. D: Appl. Phys., 42(22), p. 220301.
[CrossRef]Pankhurst, Q. A., Connolly, J., Jones, S. K., and Dobson, J., 2003, “Applications of Magnetic Nanoparticles in Biomedicine,” J. Phys. D: Appl. Phys., 36(13), pp. R167–R181.
[CrossRef]Pankhurst, Q. A., Thanh, N. K. T., Jones, S. K., and Dobson, J., 2009, “Progress in Applications of Magnetic Nanoparticles in Biomedicine,” J. Phys. D: Appl. Phys., 42(22), p. 224001.
[CrossRef]Roca, A. G., Costo, R., Rebolledo, A. F., Veintemillas-Verdaguer, S., Tartaj, P., Gonzalez-Carreno, T., Morales, M. P., and Serna, C. J., 2009, “Progress in the Preparation of Magnetic Nanoparticles for Applications in Biomedicine,” J. Phys. D: Appl. Phys., 42(22), p. 224002.
[CrossRef]Kleinstreuer, C., and Zhang, Z., 2003, “Targeted Drug Aerosol Deposition Analysis for a Four-Generation Lung Airway Model With Hemispherical Tumors,” ASME J. Biomech. Eng., 125(2), pp. 197–206.
[CrossRef]Kleinstreuer, C., 2006, Biofluid Dynamics: Principles and Selected Applications, CRC Press, Boca Raton, FL.
Kleinstreuer, C., Zhang, Z., and Donohue, J. F., 2008, “Targeted Drug-Aerosol Delivery in the Human Respiratory System,” Annu. Rev. Biomed. Eng., 10, pp. 195–220.
[CrossRef] [PubMed]Basciano, C. A., Kleinstreuer, C., Kennedy, A. S., Dezarn, W. A., and Childress, E., 2010, “Computer Modeling of Controlled Microsphere Release and Targeting in a Representative Hepatic Artery System,” Ann. Biomed. Eng., 38(5), pp. 1862–1879.
[CrossRef] [PubMed]Kennedy, A. S., Kleinstreuer, C., Basciano, C. A., and Dezarn, W. A., 2010, “Computer Modeling of Yttrium-90-Microsphere Transport in the Hepatic Arterial Tree to Improve Clinical Outcomes,” Int. J. Radiat. Oncol., Biol., Phys., 76(2), pp. 631–637.
[CrossRef]Kleinstreuer, C., Basciano, C. A., Childress, E. M., and Kennedy, A. S., 2012, “A New Catheter for Tumor Targeting With Radioactive Microspheres in Representative Hepatic Artery Systems–Part I: Impact of Catheter Presence on Local Blood Flow and Microsphere Delivery,” ASME J. Biomech. Eng., 134(5), p. 051004.
[CrossRef]Childress, E. M., Kleinstreuer, C., and Kennedy, A. S., 2012, “A New Catheter for Tumor-Targeting With Radioactive Microspheres in Representative Hepatic Artery Systems–Part II: Solid Tumor-Targeting in a Patient-Inspired Hepatic Artery System,” J. Biochem. Toxicol., 134(5), p. 051005.
Childress, E. M., 2013, “Computational Particle Hemodynamics With Applications to Optimal Liver-Tumor Targeting,” Ph.D. thesis, North Carolina State University, NC.
Richards, A. L., Kleinstreuer, C., Kennedy, S., Childress, E., and Buckner, G. D., 2012, “Experimental Microsphere Targeting in a Representative Hepatic Artery System,” IEEE Trans. Biomed. Eng., 59(1), pp. 198–204.
[CrossRef] [PubMed]Banerjee, M. K., Datta, A., and Ganguly, R., 2010, “Magnetic Drug Targeting in Partly Occluded Blood Vessels Using Magnetic Microspheres,” ASME J. Nanotechnol. Eng. Med., 1(4), p. 041005.
[CrossRef]Kenjeres, S., 2008, “Numerical Analysis of Blood Flow in Realistic Arteries Subjected to Strong Non-Uniform Magnetic Fields,” Int. J. Heat Fluid Flow, 29(3), pp. 752–764.
[CrossRef]Liu, H. D., Wang, S. G., and Xu, W., 2009, “Process Modeling of Ferrofluids Flow for Magnetic Targeting Drug Delivery,” Chin. J. Mech. Eng., 22(3), pp. 440–445.
[CrossRef]Nacev, A., Beni, C., Bruno, O., and Shapiro, B., 2011, “The Behaviors of Ferromagnetic Nano-Particles in and Around Blood Vessels Under Applied Magnetic Fields,” J. Magn. Magn. Mater., 323(6), pp. 651–668.
[CrossRef] [PubMed]Cherry, E. M., Maxim, P. G., and Eaton, J. K., 2010, “Particle Size, Magnetic Field, and Blood Velocity Effects on Particle Retention in Magnetic Drug Targeting,” Med. Phys., 37(1), pp. 175–182.
[CrossRef] [PubMed]Mathieu, J. B., and Martel, S., 2010, “Steering of Aggregating Magnetic Microparticles Using Propulsion Gradients Coils in an MRI Scanner,” Magn. Reson. Med., 63(5), pp. 1336–1345.
[CrossRef] [PubMed]Moore, S., David, T., Chase, J. G., Arnold, J., and Fink, J., 2006, “3D Models of Blood Flow in the Cerebral Vasculature,” J. Biomech., 39(8), pp. 1454–1463.
[CrossRef] [PubMed]Zamir, M., 1999, “On Fractal Properties of Arterial Trees,” J. Theor. Biol., 197(4), pp. 517–526.
[CrossRef] [PubMed]Bui, A., Sutalo, I. D., Manasseh, R., and Liffman, K., 2009, “Dynamics of Pulsatile Flow in Fractal Models of Vascular Branching Networks,” Med. Biol. Eng. Comput., 47(7), pp. 763–772.
[CrossRef] [PubMed]Olufsen, M. S., 1999, “Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries,” Am. J. Physiol.-Heart Circ. Physiol., 276(1), pp. H257–H268.
Steele, B. N., Olufsen, M. S., and Taylor, C. A., 2007, “Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions,” Comput. Methods Biomech. Biomed. Eng., 10(1), pp. 39–51.
[CrossRef]Uylings, H. B. M., 1977, “Optimization of Diameters and Bifurcation Angles in Lung and Vascular Tree Structures,” Bull. Math. Biol., 39(5), pp. 509–520.
[CrossRef] [PubMed]Kamiya, A., and Togawa, T., 1972, “Optimal Branching Structure of the Vascular Tree,” Bull. Math. Biol., 34(4), pp. 431–438.
Schreiner, W., Neumann, M., Neumann, F., Roedler, S. M., End, A., Buxbaum, P., Muller, M. R., and Spieckermann, P., 1994, “The Branching Angles in Computer-Generated Optimized Models of Arterial Trees,” J. Gen. Physiol., 103(6), pp. 975–989.
[CrossRef] [PubMed]Moore, S., 2008, Computational 3D Modeling of Hemodynamics in the Circle of Willis, University of Canterbury, Christchurch, New Zealand.
Gijsen, F. J., Allanic, E., van de Vosse, F. N., and Janssen, J. D., 1999, “The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 Degrees Curved Tube,” J. Biomech., 32(7), pp. 705–713.
[CrossRef] [PubMed]Gijsen, F. J., van de Vosse, F. N., and Janssen, J. D., 1999, “The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model,” J. Biomech., 32(6), pp. 601–608.
[CrossRef] [PubMed]Enzmann, D. R., Ross, M. R., Marks, M. P., and Pelc, H. J., 1994, “Blood Flow in Major Cerebral Arteries Measured by Phase-Contrast Cine MR,” Am. J. Neuroradiology, 15(1), pp. 123–129.
Moghimi, S. M., Hunter, A. C., and Murray, J. C., 2001, “Long-Circulating and Target-Specific Nanoparticles: Theory to Practice,” Pharm. Rev., 53(2), pp. 283–318.
Fang, C., Shi, B., Pei, Y. Y., Hong, M. H., Wu, J., and Chen, H. Z., 2006, “in vivo Tumor Targeting of Tumor Necrosis Factor-Alpha-Loaded Stealth Nanoparticles: Effect of Mepeg Molecular Weight and Particle Size,” Eur. J. Pharm. Sci., 27(1), pp. 27–36.
[CrossRef] [PubMed]Shridhar, G., and Katz, J., 1995, “Drag and Lift Forces on Microscopic Bubbles Entrained by a Vortex,” Phys. Fluids, 7(2), pp. 389–399.
[CrossRef]Ettenson, D. S., and Edelman, E. R., 2000, “Local Drug Delivery: An Emerging Approach in the Treatment of Restenosis,” Vasc. Med., 5(2), pp. 97–102.
[CrossRef] [PubMed]Tabassum, N., Sofi, A., and Khuroo, T., 2011, “Microneedle Technology: A New Drug Delivery System,” Int. J. Res. Pharm. Biomed. Sci., 2(1), pp. 59–62.