Technical Brief

Development of a New Calibration Procedure and Its Experimental Validation Applied to a Human Motion Capture System

[+] Author and Article Information
Ana Cristina Royo Sánchez

Design and Manufacturing Engineering Department,
University of Zaragoza,
C/ María de Luna, 3 - Building: Torres Quevedo,
Zaragoza 50018, Spain
e-mail: crisroyo@unizar.es

Juan José Aguilar Martín, Jorge Santolaria Mazo

Design and Manufacturing Engineering Department,
University of Zaragoza,
C/ María de Luna, 3 - Building: Torres Quevedo,
Zaragoza 50018, Spain

Experimental validation is done with four or three cameras, as in the two cases studied in the spatial characterization [13,14]. In this paper, the results shown correspond to the four-camera experiments (the results with three cameras are similar).

Manuscript received March 25, 2014; final manuscript received September 2, 2014; accepted manuscript posted September 11, 2014; published online October 15, 2014. Assoc. Editor: Paul Rullkoetter.

J Biomech Eng 136(12), 124502 (Oct 15, 2014) (7 pages) Paper No: BIO-14-1135; doi: 10.1115/1.4028523 History: Received March 25, 2014; Revised September 02, 2014; Accepted September 11, 2014

Motion capture systems are often used for checking and analyzing human motion in biomechanical applications. It is important, in this context, that the systems provide the best possible accuracy. Among existing capture systems, optical systems are those with the highest accuracy. In this paper, the development of a new calibration procedure for optical human motion capture systems is presented. The performance and effectiveness of that new calibration procedure are also checked by experimental validation. The new calibration procedure consists of two stages. In the first stage, initial estimators of intrinsic and extrinsic parameters are sought. The camera calibration method used in this stage is the one proposed by Tsai. These parameters are determined from the camera characteristics, the spatial position of the camera, and the center of the capture volume. In the second stage, a simultaneous nonlinear optimization of all parameters is performed to identify the optimal values, which minimize the objective function. The objective function, in this case, minimizes two errors. The first error is the distance error between two markers placed in a wand. The second error is the error of position and orientation of the retroreflective markers of a static calibration object. The real co-ordinates of the two objects are calibrated in a co-ordinate measuring machine (CMM). The OrthoBio system is used to validate the new calibration procedure. Results are 90% lower than those from the previous calibration software and broadly comparable with results from a similarly configured Vicon system.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Nataraj, R., and Li, Z.-M., 2013, “Robust Identification of Three-Dimensional Thumb and Index Finger Kinematics With a Minimal Set of Markers,” ASME J. Biomech. Eng., 135(9), p. 091002. [CrossRef]
Gabra, J. N., Domalain, M., and Li, Z.-M., 2012, “Movement of the Distal Carpal Row During Narrowing and Widening of the Carpal Arch Width,” ASME J. Biomech. Eng., 134(10), p. 101004. [CrossRef]
Isableu, B., Hansen, C., Rezzoug, N., Gorce, P., and Pagano, C. C., 2013, “Velocity-Dependent Changes of Rotational Axes During the Control of Unconstrained 3D Arm Motions Depend on Initial Instruction on Limb Position,” Hum. Mov. Sci., 32(2), pp. 290–300. [CrossRef] [PubMed]
Neves, T. J., Johnson, W. A., Myrer, J. W., and Seeley, M. K., 2011, “Comparison of the Traditional, Swing, and Chicken Wing Volleyball Blocking Techniques in NCAA Division I Female Athletes,” J. Sports Sci. Med., 10(3), pp. 452–457. [PubMed]
Murphy, M. A., Sunnerhagen, K. S., Johnels, B., and Willen, C., 2006, “Three-Dimensional Kinematic Motion Analysis of a Daily Activity Drinking From a Glass: A Pilot Study,” J. Neuroeng. Rehab., 3(1), p. 18. [CrossRef]
Leitkam, S. T., Bush, T. R., and Li, M., 2011, “A Methodology for Quantifying Seated Lumbar Curvatures,” ASME J. Biomech. Eng., 133(11), p. 114502. [CrossRef]
Choi, A. R., Kim, Y. J., Rim, Y. H., Kang, T. G., Min, K.-K., Bae, J.-H., Lee, S.-S., Lee, K. S., and Mun, J. H., 2007, “Development of a Spine Kinematic Model for the Clinical Estimation of Abnormal Curvature,” IFMBE Proceedings, World Congress on Medical Physics and Biomedical Engineering 2006, Seoul, Korea, Aug. 27–Sept. 1, Vol 14, pp. 2892–2895.
Lee, R. Y. W., and Wong, T. K. T., 2002, “Relationship Between the Movements of the Lumbar Spine and Hip,” Hum. Mov. Sci., 21(4), pp. 481–494. [CrossRef] [PubMed]
Rouhani, H., Favre, J., Crevoisier, X., and Aminian, K., 2012, “Measurement of Multi-Segment Foot Joint Angles During Gait Using a Wearable System,” ASME J. Biomech. Eng., 134(6), p. 061006. [CrossRef]
Dowling, A. V., Fisher, D. S., and Andriacchi, T. P., 2010, “Gait Modification via Verbal Instruction and an Active Feedback System to Reduce Peak Knee Adduction Moment,” ASME J. Biomech. Eng., 132(7), p. 071007. [CrossRef]
Glaister, B. C., Schoen, J. A., Orendurff, M. S., and Klute, G. K., 2009, “A Mechanical Model of the Human Ankle in the Transverse Plane During Straight Walking: Implications for Prosthetic Design,” ASME J. Biomech. Eng., 131(3), p. 034501. [CrossRef]
Villarroya, A., Aguilar, J. J., Torres, F., and Asirón, P. J., 1997, “OrthoBio: un Nuevo Sistema de Análisis del Movimiento en Tres Dimensiones,” Rehabilitación, 31(4), pp. 265–272.
Royo, A. C., Aguilar, J. J., Martínez, M. A., Pastor, J. J., and Guillomía, D., 2006, “Análisis y Caracterización Experimental del Sistema Vicon de Análisis del Movimiento Humano,” Proc. XVIII Congreso Internacional de Ingeniería Gráfica, Barcelona, Spain, Departamento de Expresión Gráfica en la Ingeniería de la Universidad Politécnica de Cataluña.
Royo, A. C., Aguilar, J. J., Santolaria, J., and Martínez, M. A., 2008, “Análisis, Caracterización Experimental y Optimización de Sistemas de Análisis del Movimiento Humano,” Proc. XX Congreso Internacional de Ingeniería Gráfica, Valencia, Spain, Editorial de la Universidad Politécnica de Valencia, Ref. 2008.2160.
Royo, A. C., Aguilar, J. J., Martínez, M. A., Fernández, A., and Cajal, C., 2006, “Desarrollo de un Procedimiento de Caracterización de Sistemas de Análisis del Movimiento Humano,” Proc. XVIII Congreso Internacional de Ingeniería Gráfica, Barcelona, Spain, Departamento de Expresión Gráfica en la Ingeniería de la Universidad Politécnica de Cataluña.
Ehara, Y., Fujimoto, H., Miyazaki, S., Mochimaru, M., Tanaka, S., and Yamamoto, S., 1997, “Comparison of the Performance of 3D Camera Systems II,” Gait Posture, 5(3), pp. 251–255. [CrossRef]
Santolaria, J., Aguilar, J. J., Yagüe, J. A., and Pastor, J. J., 2008, “Kinematic Parameter Estimation Technique for Calibration and Repeatability Improvement of Articulated Arm Coordinate Measuring Machines,” Precis. Eng., 32(4), pp. 251–268. [CrossRef]
Hughes, E. B., Forbes, A. B., Lewis, A., Sun, W., Veal, D., and Nasr, K., 2011, “Laser Tracker Error Determination Using a Network Measurement,” Meas. Sci. Technol., 22(4), p. 045103. [CrossRef]
Hollerbach, J. M., and Wampler, C. W., 1996, “The Calibration Index and Taxonomy for Robot Kinematic Calibration Methods,” Int. J. Rob. Res., 15(6), pp. 573–591. [CrossRef]
Slamani, M., Mayer, R., Balazinski, M., Zargarbashi, S. H. H., Engin, S., and Lartigue, C., 2010, “Dynamic and Geometric Error Assessment of an XYC Axis Subset on Five-Axis High-Speed Machine Tools Using Programmed end Point Constraint Measurements,” Int. J. Adv. Manuf. Technol., 50(9–12), pp. 1063–1073. [CrossRef]
Aguado, S., Samper, D., Santolaria, J., and Aguilar, J. J., 2012, “Identification Strategy of Error Parameter in Volumetric Error Compensation of Machine Tool Based on Laser Tracker Measurements,” Int. J. Mach. Tool. Manuf., 53(1), pp. 160–169. [CrossRef]
Tsai, R., 1987, “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras Lenses,” Int. J. Rob. Autom., 3(4), pp. 323–342. [CrossRef]
Horn, B. K. P., 2000, “Tsai's Camera Calibration Method Revisited,” http://people.csail.mit.edu/bkph/articles/Tsai_Revisited.pdf
Marzan, G. T., and Karara, H. M., 1975, “A Computer Program for Direct Linear Transformation Solution of the Collinearity Condition, and Some Applications of It,” Proceedings of the Symposium on Close-Range Photogrammetric Systems, American Society of Photogrammetry, Falls Church, VA, pp. 420–476.
Neter, J., Wasserman, W., and Kutner, M. H., 1985, Applied Linear Statistical Models, Irwin, Homewood, IL.
Samper, D., Santolaria, J., Aguilar, J. J., et al. , 2010, “MetroVisionLab Toolbox for Camera Calibration and Simulation,” http://metrovisionlab.unizar.es
Levenberg, K., 1944, “A Method for the Solution of Certain Problems in Least Squares,” Q. Appl. Math., 2, pp. 164–168.
Marquardt, D., 1963, “An Algorithm for Least Squares Estimation of Nonlinear Parameters,” SIAM J. Appl. Math., 11(2), pp. 431–441. [CrossRef]
Dennis, J. E., 1977, “Nonlinear Least Squares,” State of the Art in Numerical Analysis, D.Jacobs, ed., Academic, London, UK, pp. 269–312.
Moré, J. J., 1977, “The Levenberg–Marquardt Algorithm: Implementation and Theory,” Argonne National Laboratory, Argonne, IL, Report No. CONF-770636-1.
William, H., 2002, Numerical Recipes in C++: The Art of Scientific Computing, Cambridge University, Cambridge, UK.
Sutton, M. A., Orteu, J. J., and Schreier, H. W., 2009, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer, New York.


Grahic Jump Location
Fig. 1

The camera model in the Tsai's calibration method

Grahic Jump Location
Fig. 2

Systems of world and camera reference

Grahic Jump Location
Fig. 3

Distances from the points found to the straight lines which point to the scene from the camera

Grahic Jump Location
Fig. 4

Optimization algorithm schedule

Grahic Jump Location
Fig. 5

Floor plan of the static calibration object, the capture volume, and the OrthoBio cameras

Grahic Jump Location
Fig. 6

Bar used in spatial characterization




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In