Research Papers

Internal Three-Dimensional Strains in Human Intervertebral Discs Under Axial Compression Quantified Noninvasively by Magnetic Resonance Imaging and Image Registration

[+] Author and Article Information
Jonathon H. Yoder

Department of Mechanical Engineering and
Applied Mechanics,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: hyoder@seas.upenn.edu

John M. Peloquin

Department of Bioengineering,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: peloquin@seas.upenn.edu

Gang Song

Department of Radiology,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: songgang@seas.upenn.edu

Nick J. Tustison

Department of Radiology and Medical Imaging,
University of Virginia,
Charlottesville, VA 22904
e-mail: ntustison@virginia.edu

Sung M. Moon

Department of Radiology,
University of Pennsylvania,
Philadelphia, PA 19104
MR Systems,
GE Healthcare,
Florence, SC 29501
e-mail: Sung.Moon@ge.com

Alexander C. Wright

Department of Radiology,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: alexander.wright@uphs.upenn.edu

Edward J. Vresilovic

Penn State Hershey Bone and Joint Institute,
Pennsylvania State University,
Hershey, PA 17033
e-mail: evresilovic@gmail.com

James C. Gee

Department of Radiology,
University of Pennsylvania,
Philadelphia, PA 19104
e-mail: gee@mail.med.upenn.edu

Dawn M. Elliott

Department of Biomedical Engineering,
University of Delaware,
Newark, DE 19716
e-mail: delliott@udel.edu

1Corresponding author.

Manuscript received February 28, 2014; final manuscript received August 2, 2014; accepted manuscript posted August 12, 2014; published online September 17, 2014. Assoc. Editor: James C. Iatridis.

J Biomech Eng 136(11), 111008 (Sep 17, 2014) (9 pages) Paper No: BIO-14-1099; doi: 10.1115/1.4028250 History: Received February 28, 2014; Revised August 02, 2014; Accepted August 12, 2014

Study objectives were to develop, validate, and apply a method to measure three-dimensional (3D) internal strains in intact human discs under axial compression. A custom-built loading device applied compression and permitted load-relaxation outside of the magnet while also maintaining compression and hydration during imaging. Strain was measured through registration of 300 μm isotropic resolution images. Excellent registration accuracy was achieved, with 94% and 65% overlap of disc volume and lamellae compared to manual segmentation, and an average Hausdorff, a measure of distance error, of 0.03 and 0.12 mm for disc volume and lamellae boundaries, respectively. Strain maps enabled qualitative visualization and quantitative regional annulus fibrosus (AF) strain analysis. Axial and circumferential strains were highest in the lateral AF and lowest in the anterior and posterior AF. Radial strains were lowest in the lateral AF, but highly variable. Overall, this study provided new methods that will be valuable in the design and evaluation surgical procedures and therapeutic interventions.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Buckwalter, J. A., and Mow, V. C., 2000, “Intervertebral Disc Structure, Composition, Mechanical Function,” Orthopaedic Basic Science, T. A.Einhorn, J. A.Buckwalter, and S. R.Simon, eds., American Academy of Orthopaedic Surgeons, Rosemont, IL, pp. 547–556.
Holmes, A. D., Hukins, D. W., and Freemont, A. J., 1993, “End-Plate Displacement During Compression of Lumbar Vertebra-Disc-Vertebra Segments and the Mechanism of Failure,” Spine (Phila Pa 1976), 18(1), pp. 128–135. [CrossRef] [PubMed]
Reuber, M., Schultz, A., Denis, F., and Spencer, D., 1982, “Bulging of Lumbar Intervertebral Disks,” ASME J. Biomech. Eng., 104(3), pp. 187–192. [CrossRef]
Shah, J. S., Hampson, W. G., and Jayson, M. I., 1978, “The Distribution of Surface Strain in the Cadaveric Lumbar Spine,” J. Bone Joint Surg. Br., 60-B(2), pp. 246–251. [PubMed]
Stokes, I. A., 1987, “Surface Strain on Human Intervertebral Discs,” J. Orthop. Res., 5(3), pp. 348–355. [CrossRef] [PubMed]
Adams, M. A., McNally, D. S., and Dolan, P., 1996, “'Stress' Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration,” J. Bone Joint Surg. Br., 78(6), pp. 965–972. [CrossRef] [PubMed]
Brinckmann, P., and Grootenboer, H., 1991, “Change of Disc Height, Radial Disc Bulge, and Intradiscal Pressure From Discectomy. An In Vitro Investigation on Human Lumbar Discs,” Spine (Phila Pa 1976), 16(6), pp. 641–646. [CrossRef] [PubMed]
Edwards, W. T., Ordway, N. R., Zheng, Y., McCullen, G., Han, Z., and Yuan, H. A., 2001, “Peak Stresses Observed in the Posterior Lateral Anulus,” Spine (Phila Pa 1976), 26(16), pp. 1753–1759. [CrossRef] [PubMed]
McNally, D. S., and Adams, M. A., 1992, “Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry,” Spine (Phila Pa 1976), 17(1), pp. 66–73. [CrossRef] [PubMed]
Costi, J. J., Stokes, I. A., Gardner-Morse, M., Laible, J. P., Scoffone, H. M., and Iatridis, J. C., 2007, “Direct Measurement of Intervertebral Disc Maximum Shear Strain in Six Degrees of Freedom: Motions That Place Disc Tissue at Risk of Injury,” J. Biomech., 40(11), pp. 2457–2466. [CrossRef] [PubMed]
Kusaka, Y., Nakajima, S., Uemura, O., Aoshiba, H., Seo, Y., and Hirasawa, Y., 2001, “Intradiscal Solid Phase Displacement as a Determinant of the Centripetal Fluid Shift in the Loaded Intervertebral Disc,” Spine (Phila Pa 1976), 26(9), pp. E174–E181. [CrossRef] [PubMed]
Meakin, J. R., Redpath, T. W., and Hukins, D. W., 2001, “The Effect of Partial Removal of the Nucleus Pulposus From the Intervertebral Disc on the Response of the Human Annulus Fibrosus to Compression,” Clin. Biomech. (Bristol, Avon), 16(2), pp. 121–128. [CrossRef] [PubMed]
Seroussi, R. E., Krag, M. H., Muller, D. L., and Pope, M. H., 1989, “Internal Deformations of Intact and Denucleated Human Lumbar Discs Subjected to Compression, Flexion, and Extension Loads,” J. Orthop. Res., 7(1), pp. 122–131. [CrossRef] [PubMed]
Tsantrizos, A., Ito, K., Aebi, M., and Steffen, T., 2005, “Internal Strains in Healthy and Degenerated Lumbar Intervertebral Discs,” Spine (Phila Pa 1976), 30(19), pp. 2129–2137. [CrossRef] [PubMed]
Chan, D. D., and Neu, C. P., 2013, “Intervertebral Disc Internal Deformation Measured by Displacements Under Applied Loading With MRI at 3T,” Magn. Reson. Med., 71, pp. 1231–1237. [CrossRef]
O'Connell, G. D., Johannessen, W., Vresilovic, E. J., and Elliott, D. M., 2007, “Human Internal Disc Strains in Axial Compression Measured Noninvasively Using Magnetic Resonance Imaging,” Spine (Phila Pa 1976), 32(25), pp. 2860–2868. [CrossRef] [PubMed]
O'Connell, G. D., Malhotra, N. R., Vresilovic, E. J., and Elliott, D. M., “The Effect of Discectomy and the Dependence on Degeneration of Human Intervertebral Disc Strain in Axial Compression,” Spine (Phila Pa 1976), 36(21), pp. 1765–1771. [CrossRef] [PubMed]
O'Connell, G. D., Vresilovic, E. J., and Elliott, D. M., “Human Intervertebral Disc Internal Strain in Compression: The Effect of Disc Region, Loading Position, and Degeneration,” J. Orthop. Res., 29(4), pp. 547–555. [CrossRef] [PubMed]
Reiter, D. A., Fathallah, F. A., Farouki, R. T., and Walton, J. H., 2012, “Noninvasive High Resolution Mechanical Strain Maps of the spine Intervertebral Disc Using Nonrigid Registration of Magnetic Resonance Images,” J. Biomech., 45(8), pp. 1534–1539. [CrossRef] [PubMed]
Pfirrmann, C. W., Metzdorf, A., Zanetti, M., Hodler, J., and Boos, N., 2001, “Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration,” Spine (Phila Pa 1976), 26(17), pp. 1873–1878. [CrossRef] [PubMed]
Marinelli, N. L., Haughton, V. M., and Anderson, P. A., “T2 Relaxation Times Correlated With Stage of Lumbar Intervertebral Disk Degeneration and Patient Age,” Am. J. Neuroradiol., 31(7), pp. 1278–1282. [CrossRef]
Watanabe, A., Benneker, L. M., Boesch, C., Watanabe, T., Obata, T., and Anderson, S. E., 2007, “Classification of Intervertebral Disk Degeneration With Axial T2 Mapping,” Am. J. Roentgenol., 189(4), pp. 936–942. [CrossRef]
Welsch, G. H., Trattnig, S., Paternostro-Sluga, T., Bohndorf, K., Goed, S., Stelzeneder, D., and Mamisch, T. C., “Parametric T2 and T2* Mapping Techniques to Visualize Intervertebral Disc Degeneration in Patients With Low Back Pain: Initial Results on the Clinical Use of 3.0 Tesla MRI,” Skeletal Radiol., 40(5), pp. 543–551. [CrossRef] [PubMed]
Wright, A. C., Lemdiasov, R., Connick, T. J., Bhagat, Y. A., Magland, J. F., Song, H. K., Toddes, S. P., Ludwig, R., and Wehrli, F. W., 2011, “Helmholtz-Pair Transmit Coil With Integrated Receive Array for High-Resolution MRI of Trabecular Bone in the Distal Tibia at 7T,” J. Magn. Reson., 210(1), pp. 113–122. [CrossRef] [PubMed]
Schenck, J. F., 1996, “The Role of Magnetic Susceptibility in Magnetic Resonance Imaging: MRI Magnetic Compatibility of the First and Second Kinds,” Med. Phys., 23(6), pp. 815–850. [CrossRef] [PubMed]
O'Connell, G. D., Vresilovic, E. J., and Elliott, D. M., 2007, “Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry,” Spine (Phila Pa 1976), 32(3), pp. 328–333. [CrossRef] [PubMed]
Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., and Gerig, G., 2006, “User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability,” Neuroimage, 31(3), pp. 1116–1128. [CrossRef] [PubMed]
Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C., 2008, “Symmetric Diffeomorphic Image Registration With Cross-Correlation: Evaluating Automated Labeling of Elderly and Neurodegenerative Brain,” Med. Image Anal., 12(1), pp. 26–41. [CrossRef] [PubMed]
Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., and Gee, J. C., 2011, “A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registration,” Neuroimage, 54(3), pp. 2033–2044. [CrossRef] [PubMed]
Tustison, N. J., and Avants, B., 2013, “Explicit B-Spline Regularization in Diffeomorphic Image Registration,” Front. Neuroinform., 7, p. 39. [CrossRef]
Tustison, N. J., Avants, B. B., and Gee, J. C., 2009, “Directly Manipulated Free-Form Deformation Image Registration,” IEEE Trans. Image Process., 18(3), pp. 624–635. [CrossRef] [PubMed]
Tustison, N. J., and Amini, A. A., 2006, “Biventricular Myocardial Strains Via Nonrigid Registration of Anatomical NURBS Model [corrected],” IEEE Trans. Med. Imaging, 25(1), pp. 94–112. [CrossRef] [PubMed]
Tustison, N. J., Awate, S. P., Cai, J., Altes, T. A., Miller, G. W., de Lange, E. E., Mugler, III, J. P., and Gee, J. C., “Pulmonary Kinematics From Tagged Hyperpolarized Helium-3 MRI,” J. Magn. Reson. Imaging, 31(5), pp. 1236–1241. [CrossRef] [PubMed]
Tustison, N. J., Davila-Roman, V. G., and Amini, A. A., 2003, “Myocardial Kinematics From Tagged MRI Based on a 4-D B-Spline Model,” IEEE Trans. Biomed. Eng., 50(8), pp. 1038–1040. [CrossRef] [PubMed]
Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R. P., Mann, J. J., and Parsey, R. V., 2009, “Evaluation of 14 Nonlinear Deformation Algorithms Applied to Human Brain MRI Registration,” Neuroimage, 46(3), pp. 786–802. [CrossRef] [PubMed]
Murphy, K., van Ginneken, B., Reinhardt, J. M., Kabus, S., Ding, K., Deng, X., Cao, K., Du, K., Christensen, G. E., Garcia, V., Vercauteren, T., Ayache, N., Commowick, O., Malandain, G., Glocker, B., Paragios, N., Navab, N., Gorbunova, V., Sporring, J., de Bruijne, M., Han, X., Heinrich, M. P., Schnabel, J. A., Jenkinson, M., Lorenz, C., Modat, M., McClelland, J. R., Ourselin, S., Muenzing, S. E., Viergever, M. A., De Nigris, D., Collins, D. L., Arbel, T., Peroni, M., Li, R., Sharp, G. C., Schmidt-Richberg, A., Ehrhardt, J., Werner, R., Smeets, D., Loeckx, D., Song, G., Tustison, N., Avants, B., Gee, J. C., Staring, M., Klein, S., Stoel, B. C., Urschler, M., Werlberger, M., Vandemeulebroucke, J., Rit, S., Sarrut, D., and Pluim, J. P., 2011, “Evaluation of Registration Methods on Thoracic CT: The EMPIRE10 Challenge,” IEEE Trans. Med. Imaging, 30(11), pp. 1901–1920. [CrossRef] [PubMed]
Pech, P., and Haughton, V. M., 1985, “Lumbar Intervertebral Disk: Correlative MR and Anatomic Study,” Radiology, 156(3), pp. 699–701. [CrossRef] [PubMed]
Shirazi-Adl, S. A., Shrivastava, S. C., and Ahmed, A. M., 1984, “Stress Analysis of the Lumbar Disc-Body Unit in Compression. A Three-Dimensional Nonlinear Finite Element Study,” Spine (Phila Pa 1976), 9(2), pp. 120–134. [CrossRef] [PubMed]
Goel, V. K., Monroe, B. T., Gilbertson, L. G., and Brinckmann, P., 1995, “Interlaminar Shear Stresses and Laminae Separation in a Disc. Finite Element Analysis of the L3-L4 Motion Segment Subjected to Axial Compressive Loads,” Spine (Phila Pa 1976), 20(6), pp. 689–698. [CrossRef] [PubMed]
Fagan, M. J., Julian, S., Siddall, D. J., and Mohsen, A. M., 2002, “Patient-Specific Spine Models. Part 1: Finite Element Analysis of the Lumbar Intervertebral Disc—A Material Sensitivity Study,” Proc. Inst. Mech. Eng. H, 216(5), pp. 299–314. [CrossRef] [PubMed]
Argoubi, M., and Shirazi-Adl, A., 1996, “Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression,” J. Biomech., 29(10), pp. 1331–1339. [CrossRef] [PubMed]
Marchand, F., and Ahmed, A. M., 1990, “Investigation of the Laminate Structure of Lumbar Disc Anulus Fibrosus,” Spine (Phila Pa 1976), 15(5), pp. 402–410. [CrossRef] [PubMed]
Wilke, H. J., Neef, P., Caimi, M., Hoogland, T., and Claes, L. E., 1999, “New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life,” Spine (Phila Pa 1976), 24(8), pp. 755–762. [CrossRef] [PubMed]
Beckstein, J. C., Sen, S., Schaer, T. P., Vresilovic, E. J., and Elliott, D. M., 2008, “Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Axial Compression Mechanics and Glycosaminoglycan Content,” Spine (Phila Pa 1976), 33(6), pp. E166–E173. [CrossRef] [PubMed]
Johannessen, W., Vresilovic, E. J., Wright, A. C., and Elliott, D. M., 2004, “Intervertebral Disc Mechanics are Restored Following Cyclic Loading and Unloaded Recovery,” Ann. Biomed. Eng., 32(1), pp. 70–76. [CrossRef] [PubMed]
O'Connell, G. D., Jacobs, N. T., Sen, S., Vresilovic, E. J., and Elliott, D. M., 2011, “Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration,” J. Mech. Behav. Biomed. Mater., 4(7), pp. 933–942. [CrossRef] [PubMed]
Holmes, A. D., and Hukins, D. W., 1996, “Analysis of Load-Relaxation in Compressed Segments of Lumbar Spine,” Med. Eng. Phys., 18(2), pp. 99–104. [CrossRef] [PubMed]
Keller, T. S., Spengler, D. M., and Hansson, T. H., 1987, “Mechanical Behavior of the Human Lumbar Spine. I. Creep Analysis During Static Compressive Loading,” J. Orthop. Res., 5(4), pp. 467–478. [CrossRef] [PubMed]
Perie, D., Korda, D., and Iatridis, J. C., 2005, “Confined Compression Experiments on Bovine Nucleus Pulposus and Annulus Fibrosus: Sensitivity of the Experiment in the Determination of Compressive Modulus and Hydraulic Permeability,” J. Biomech., 38(11), pp. 2164–2171. [CrossRef] [PubMed]
McBroom, R. J., Hayes, W. C., Edwards, W. T., Goldberg, R. P., and White, III, A. A., 1985, “Prediction of Vertebral Body Compressive Fracture Using Quantitative Computed Tomography,” J. Bone Joint Surg. Am., 67(8), pp. 1206–1214. [PubMed]
Hansson, T., Roos, B., and Nachemson, A., 1980, “The Bone Mineral Content and Ultimate Compressive Strength of Lumbar Vertebrae,” Spine (Phila Pa 1976), 5(1), pp. 46–55. [CrossRef] [PubMed]
Ebbesen, E. N., Thomsen, J. S., Beck-Nielsen, H., Nepper-Rasmussen, H. J., and Mosekilde, L., 1999, “Lumbar Vertebral Body Compressive Strength Evaluated by Dual-Energy X-Ray Absorptiometry, Quantitative Computed Tomography, and Ashing,” Bone, 25(6), pp. 713–724. [CrossRef] [PubMed]
Cheng, X. G., Nicholson, P. H., Boonen, S., Lowet, G., Brys, P., Aerssens, J., Van der Perre, G., and Dequeker, J., 1997, “Prediction of Vertebral Strength In Vitro by Spinal Bone Densitometry and Calcaneal Ultrasound,” J. Bone Miner. Res., 12(10), pp. 1721–1728. [CrossRef] [PubMed]
Danielson, B., and Willen, J., 2001, “Axially Loaded Magnetic Resonance Image of the Lumbar Spine in Asymptomatic Individuals,” Spine (Phila Pa 1976), 26(23), pp. 2601–2606. [CrossRef] [PubMed]
Malko, J. A., Hutton, W. C., and Fajman, W. A., 1999, “An In Vivo Magnetic Resonance Imaging Study of Changes in the Volume (and Fluid Content) of the Lumbar Intervertebral Discs During a Simulated Diurnal Load Cycle,” Spine (Phila Pa 1976), 24(10), pp. 1015–1022. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

(a) Loading frame interfaced with Instron (red arrow), showing locking mechanism, segment grips, disc, and sliding tank (white arrows). (b) Loading frame integrated with RF coil (green arrows) in MRI. B0 = direction of magnetic field.

Grahic Jump Location
Fig. 2

Images ((a)–(c)) are oriented to show coronal (left), axial (top-right), and sagittal (bottom) planes. (a) Representative MRI data set. (b) The volume used for strain analysis (pink). (c) AF regions of interest defined in the midaxial plane: A = anterior (red), A–L = anterior–lateral (green), L = lateral (blue), P–L = posterior–lateral (yellow), P = posterior (aqua).

Grahic Jump Location
Fig. 3

Pictorial representation of the image registration process, resultant warp field, and displacement map. The reference image is registered to the deformed image defining a warp field that prescribes how structures within the reference image are mapped to the deformed image. The deformation gradient tensor is applied to calculate the Lagrangian strain tensor.

Grahic Jump Location
Fig. 4

(a) Generation of lamellar structure labels using Sobel edge detection (red), shown in three planes. A representative label is shown in green. (b) and (c) Five identified lamellar labels, shown in midaxial view and as 3D projections, respectively. Labels identified by white arrows.

Grahic Jump Location
Fig. 5

Transformation of Cartesian coordinates to local disc coordinates using the disc's outer contour, scaled to intersect each voxel: (a) circumferential basis vectors defined by the contour's tangent and (b) radial basis vectors defined by the contour's normal. Note the complex vector directions imposed by the lamellar curvature.

Grahic Jump Location
Fig. 6

Registration of a representative lamellar label (green), shown in coronal (left), axial (top-right), and sagittal (bottom) views. Difference between original and registered label is small (red), demonstrating good registration. Scale bar = 1 cm.

Grahic Jump Location
Fig. 7

Axial strains for all discs obtained by manual measurement and by image registration, showing good agreement (R2= 0.79, p < 0.05).

Grahic Jump Location
Fig. 8

Strain maps for 10% axial compression in a representative disc: (a) axial strain in coronal and sagittal views (left and right, respectively); (b) circumferential strain in axial view; and (c) radial strain in axial view. Scale bar = 5 cm.

Grahic Jump Location
Fig. 9

Mean and standard deviation of AF regional strain at midaxial height when loaded to 15% compression for (a) axial, (b) circumferential, and (c) radial strain. A = anterior, A–L = anterior–lateral, L = lateral, P–L = posterior–lateral, P = posterior. Region locations are shown in Fig. 2(c). A solid line represents significance at p < 0.05 and a dashed line trend at 0.05 < p < 0.10.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In