0
Research Papers

Biomechanical Measurements of Stiffness and Strength for Five Types of Whole Human and Artificial Humeri

[+] Author and Article Information
Mina S. R. Aziz

Institute of Medical Science,
University of Toronto,
Toronto, ON M5S-1A8, Canada;
Martin Orthopaedic Biomechanics Lab,
St. Michael's Hospital,
Toronto, ON M5B-1W8, Canada

Bruce Nicayenzi, Meghan C. Crookshank

Martin Orthopaedic Biomechanics Lab,
St. Michael's Hospital,
Toronto, ON M5B-1W8, Canada

Habiba Bougherara

Department of Mechanical
and Industrial Engineering,
Ryerson University,
Toronto, ON M5B-2K3, Canada

Emil H. Schemitsch

Martin Orthopaedic Biomechanics Lab,
St. Michael's Hospital,
Toronto, ON M5B-1W8, Canada;
Faculty of Medicine,
University of Toronto,
Toronto, ON M5S-1A8, Canada

Radovan Zdero

Martin Orthopaedic Biomechanics Lab,
St. Michael's Hospital,
Li Ka Shing Building
(West Basement, Room B116),
209 Victoria Street,
Toronto, ON M5B-1W8, Canada;
Department of Mechanical
and Industrial Engineering,
Ryerson University,
Toronto, ON M5B-2K3, Canada
e-mail: zderor@smh.ca

1Corresponding author.

Manuscript received September 15, 2013; final manuscript received February 25, 2014; accepted manuscript posted April 10, 2014; published online April 10, 2014. Assoc. Editor: Tammy L. Haut Donahue.

J Biomech Eng 136(5), 051006 (Apr 10, 2014) (10 pages) Paper No: BIO-13-1429; doi: 10.1115/1.4027057 History: Received September 15, 2013; Revised February 25, 2014; Accepted April 10, 2014

The human humerus is the third largest longbone and experiences 2–3% of all fractures. Yet, almost no data exist on its intact biomechanical properties, thus preventing researchers from obtaining a full understanding of humerus behavior during injury and after being repaired with fracture plates and nails. The aim of this experimental study was to compare the biomechanical stiffness and strength of “gold standard” fresh-frozen humeri to a variety of humerus models. A series of five types of intact whole humeri were obtained: human fresh-frozen (n = 19); human embalmed (n = 18); human dried (n = 15); artificial “normal” (n = 12); and artificial “osteoporotic” (n = 12). Humeri were tested under “real world” clinical loading modes for shear stiffness, torsional stiffness, cantilever bending stiffness, and cantilever bending strength. After removing geometric effects, fresh-frozen results were 585.8 ± 181.5 N/mm2 (normalized shear stiffness); 3.1 ± 1.1 N/(mm2 deg) (normalized torsional stiffness); 850.8 ± 347.9 N/mm2 (normalized cantilever stiffness); and 8.3 ± 2.7 N/mm2 (normalized cantilever strength). Compared to fresh-frozen values, statistical equivalence (p ≥ 0.05) was obtained for all four test modes (embalmed humeri), 1 of 4 test modes (dried humeri), 1 of 4 test modes (artificial “normal” humeri), and 1 of 4 test modes (artificial “osteoporotic” humeri). Age and bone mineral density versus experimental results had Pearson linear correlations ranging from R = −0.57 to 0.80. About 77% of human humeri failed via a transverse or oblique distal shaft fracture, whilst 88% of artificial humeri failed with a mixed transverse + oblique fracture. To date, this is the most comprehensive study on the biomechanics of intact human and artificial humeri and can assist researchers to choose an alternate humerus model that can substitute for fresh-frozen humeri.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Pyati, P. S., 2006, “Fractures of the Humeral Shaft,” Handbook of Fractures, J. A.Elstrom, W. W.Virkus, and A. M.Pankovich, eds., McGraw-Hill, New York, pp. 100–112.
Baumgaertner, M., and TornettaP.III, eds., 2005, Orthopaedic Knowledge Update: Trauma, American Academy of Orthopaedic Surgeons, Rosemont, Ill.
Marsh, J. L., Slongo, T. F., Agel, J., Broderick, J. S., Creevey, W., DeCoster, T. A., Prokuski, L., Sirkin, M. S., Ziran, B., Henley, B., and Audigé, L., 2007, “Fracture and Dislocation Classification Compendium—2007: Orthopaedic Trauma Association Classification, Database and Outcomes Committee,” J. Orthop. Trauma, 21(10 Suppl), pp. S1–S133. [CrossRef] [PubMed]
Infante, A. F., and Lindvall, E. M., 2008, “Fractures of the Humeral Shaft,” Trauma: Core Knowledge in Orthopaedics, R.Sanders, ed., Mosby-Elsevier, Philadelphia, PA, pp. 79–88.
Sarmiento, A., Horowitch, A., Aboulabia, A., and Vangsness, C. T., Jr., 1990, “Functional Bracing for Comminuted Extra-Articular Fractures of the Distal-Third of the Humerus,” J. Bone Jt. Surg. Br., 72(2), pp. 283–287.
Sarmiento, A., Zagorski, J. B., Zych, G. A., Latta, L. L., and Capps, C. A., 2000, “Functional Bracing for the Treatment of Fractures of the Humeral Diaphysis,” J. Bone Jt. Surg. Am., 82(4), pp. 478–486. [CrossRef]
Dalton, J. E., Salkeld, S. L., Satterwhite, Y. E., and Cook, S. D., 1993, “A Biomechanical Comparison of Intramedullary Nailing Systems for the Humerus,” J. Orthop. Trauma, 7(4), pp. 367–374. [CrossRef] [PubMed]
Damron, T. A., Rock, M. G., Choudhury, S. N., Grabowski, J. J., and An, K. N., 1999, “Biomechanical Analysis of Prophylactic Fixation for Middle Third Humeral Impending Pathologic Fractures,” Clin. Orthop. Relat. Res., 363, pp. 240–248. [CrossRef] [PubMed]
Lin, J., Inoue, N., Valdevit, A., Hang, Y. S., Hou, S. M., and Chao, E. Y. S., 1998, “Biomechanical Comparison of Antegrade and Retrograde Nailing of Humeral Shaft Fracture,” Clin. Orthop. Relat. Res., 351, pp. 203–213. [CrossRef] [PubMed]
Schopfer, A., Hearn, T. C., Malisano, L., Powell, J. N., and Kellam, J. F., 1994, “Comparison of Torsional Strength of Humeral Intramedullary Nailing: A Cadaveric Study,” J. Orthop. Trauma, 8(5), pp. 414–421. [CrossRef] [PubMed]
Henley, M. B., Monroe, M., and Tencer, A. F., 1991, “Biomechanical Comparison of Methods of Fixation of a Midshaft Osteotomy of the Humerus,” J. Orthop. Trauma, 5(1), pp. 14–20. [CrossRef] [PubMed]
Füchtmeier, B., May, R., Hente, R., Maghsudi, M., Völk, M., Hammer, J., Nerlich, M., and Prantl, L., 2007, “Proximal Humerus Fractures: A Comparative Biomechanical Analysis of Intra and Extramedullary Implants,” Arch. Orthop. Trauma Surg., 127(6), pp. 441–447. [CrossRef] [PubMed]
Chudik, S. C., Weinhold, P., and Dahners, L. E., 2003, “Fixed-Angle Plate Fixation in Simulated Fractures of the Proximal Humerus: A Biomechanical Study of a New Device,” J. Shoulder Elbow Surg., 12(6), pp. 578–588. [CrossRef] [PubMed]
Chin, H. C., Frassica, F. J., Hein, T. J., Shives, T. C., Pritchard, D. J., Sim, F. H., and Chao, E. Y., 1989, “Metastatic Diaphyseal Fractures of the Shaft of the Humerus. The Structural Strength Evaluation of a New Method of Treatment With a Segmental Defect Prosthesis,” Clin. Orthop. Relat. Res., 248, pp. 231–239. [PubMed]
Sawbones, last accessed Jan. 1, 2014 Available at: http://www.sawbones.com/catalog/pdf/us_catalog.pdf
Al-Jahwari, A., Schemitsch, E. H., Wunder, J. S., Ferguson, P. C., and Zdero, R., 2012, “The Biomechanical Effect of Torsion on Humeral Shaft Repair Techniques for Completed Pathological Fractures,” ASME J. Biomech. Eng., 134(2), pp. 0245011–0245017. [CrossRef]
Lescheid, J., Zdero, R., Shah, S., Kuzyk, P. R. T., and Schemitsch, E. H., 2010, “The Biomechanics of Locked Plating for Repairing Proximal Humerus Fractures With or Without Medial Cortical Support,” J. Trauma, 69(5), pp. 1235–1242 [Epub 2010 Jan 28]. [CrossRef] [PubMed]
Ahmad, M., Nanda, R., Bajwa, A. S., Candal-Couto, J., Green, S., and Hui, A. C., 2007, “Biomechanical Testing of the Locking Compression Plate: When Does the Distance Between Bone and Implant Significantly Reduce Construct Stability?” Injury, 38(3), pp. 358–364. [CrossRef] [PubMed]
Virkus, W. V., Goldberg, S. H., and Lorenz, E. P., 2008, “A Comparison of Compressive Force Generation by Plating and Intramedullary Nailing Techniques in a Transverse Diaphyseal Humerus Fracture Model,” J. Trauma, 65(1), pp. 103–108. [CrossRef] [PubMed]
Papini, M., Zdero, R., Schemitsch, E. H., and Zalzal, P., 2007, “The Biomechanics of Human Femurs in Axial and Torsional Loading: Comparison of Finite Element Analysis, Human Cadaveric Femurs, and Synthetic Femurs,” ASME J. Biomech. Eng., 129(1), pp. 12–19. [CrossRef]
Zdero, R., Elfallah, K., Olsen, M., and Schemitsch, E. H., 2009, “Cortical Screw Purchase in Synthetic and Human Femurs,” ASME J. Biomech. Eng., 131(9), p. 094503. [CrossRef]
Zdero, R., Olsen, M., Bougherara, H., and Schemitsch, E. H., 2008, “Cancellous Bone Screw Purchase: A Comparison of Synthetic Femurs, Human Femurs, and Finite Element Analysis,” Proc. Inst. Mech. Eng., Part H, 222(8), pp. 1175–1183. [CrossRef]
Dunlap, J. T., Chong, A. C., Lucas, G. L., and Cooke, F. W., 2008, “Structural Properties of a Novel Design of Composite Analogue Humeri Models,” Ann. Biomed. Eng., 36(11), pp. 1922–1926 [Epub 2008 Sep 17]. [CrossRef] [PubMed]
Lewiecki, E. M., and Borges, J. L. C., 2006, “Bone Density Testing in Clinical Practice,” Arq. Bras. Endocrinol. Metabol., 50(4), pp. 586–595. [PubMed]
Pettersson, U., Nordström, P., and Lorentzon, R., 1999, “A Comparison of Bone Mineral Density and Muscle Strength in Young Male Adults With Different Exercise Level,” Calcif. Tissue Int., 64(6), pp. 490–498. [CrossRef] [PubMed]
Lochmuller, E. M., Krefting, N., Burklein, D., and Eckstein, F., 2001, “Effect of Fixation, Soft–Tissues, and Scan Projection on Bone Mineral Measurements With Dual X-Ray Absorptiometry (DXA),” Calcif. Tissue Int., 68(3), pp. 140–145. [CrossRef] [PubMed]
Koval, K. J., Blair, B., Takei, R., Kummer, F. J., and Zuckerman, J. D., 1996, “Surgical Neck Fractures of the Proximal Humerus: A Laboratory Evaluation of Ten Fixation Techniques,” J. Trauma, 40(5), pp. 778–783. [CrossRef] [PubMed]
Jiang, C., Zhu, Y., Wang, M., and Rong, G., 2007, “Biomechanical Comparison of Different Pin Configurations During Percutaneous Pinning for the Treatment of Proximal Humeral Fractures,” J. Shoulder Elbow Surg., 16(2), pp. 235–239 [Epub 2007 Jan 31]. [CrossRef] [PubMed]
Sabick, M. B., Torry, M. R., Kim, Y.-K., and Hawkins, R. J., 2004, “Humeral Torque in Professional Baseball Pitchers,” Am. J. Sports Med., 32(4), pp. 892–898. [CrossRef] [PubMed]
Feltner, M. E., and Dapena, J., 1986, “Dynamics of the Shoulder and Elbow Joints of the Throwing Arm During a Baseball Pitch,” Int. J. Sport Biomech., 2(4), pp. 235–259.
Fleisig, G. S., Andrews, J. R., Dillman, C. J., and Escamilla, R. F., 1995, “Kinetics of Baseball Pitching With Implications About Injury Mechanisms,” Am. J. Sports Med., 23(2), pp. 233–239. [CrossRef] [PubMed]
Edwards, S. L., Wilson, N. A., Zhang, L. Q., Flores, S., and Merk, B. R., 2006, “Two-Part Surgical Neck Fractures of the Proximal Part of the Humerus. A Biomechanical Evaluation of Two Fixation Techniques,” J. Bone Jt. Surg. Am., 88(10), pp. 2258–2264. [CrossRef]
Kitson, J., Booth, G., and Day, R., 2007, “A Biomechanical Comparison of Locking Plate and Locking Nail Implants Used for Fractures of the Proximal Humerus,” J. Shoulder Elbow Surg., 16(3), pp. 362–366 [Epub 2007 Mar 21]. [CrossRef] [PubMed]
Lever, J. P., Zdero, R., Nousiainen, M. T., Waddell, J. P., and Schemitsch, E. H., 2010, “The Biomechanical Analysis of Three Plating Fixation Systems for Periprosthetic Femoral Fracture Near the Tip of a Total Hip Arthroplasty,” J. Orthop. Surg. Res., 5;45. [CrossRef]
Norton, R. L., 1996, Machine Design: An Integrated Approach, Prentice-Hall, Upper Saddle River, NJ.
Edmonston, S. J., Singer, K. P., Day, R. E., Breidahl, P. D., and Price, R. I., 1994, “In vitro Relationships Between Vertebral Body Density, Size, and Compressive Strength in the Elderly Thoracolumbar Spine,” Clin. Biomech., 9(3), pp. 180–186. [CrossRef]
Sedlin, E. D., and Hirsch, C., 1966, “Factors Affecting the Determination of the Physical Properties of Femoral Cortical Bone,” Acta Orthop. Scand., 37(1), pp. 29–48. [CrossRef] [PubMed]
McElhaney, J., Fogle, J., Byars, E., and Weaver, G., 1964, “Effect of Embalming on the Mechanical Properties of Beef Bone,” J. Appl. Physiol., 19, pp. 1234–1236. [PubMed]
Evans, F. G., 1957, Stress and Strain in Bones, C. C.Thomas, ed., Springfield, Ill.
Calabrisi, P., and Smith, F. C., 1951, “The Effect of Embalming on the Compressive Strength of a Few Specimens of Compact Bone,” U.S. Naval Medical Research Institute, Project No. NM 001056.02.
Ekholm, R., Adami, J., Tidermark, J., Hansson, K., Törnkvist, H., and Ponzer, S., 2006, “Fractures of the Shaft of the Humerus. An Epidemiological Study of 401 Fractures,” J. Bone Jt. Surg. Br., 88(11), pp. 1469–1473. [CrossRef]
MacAvelia, T., Salahi, M., Olsen, M., Crookshank, M., Schemitsch, E. H., Ghasempoor, A., Janabi-Sharifi, F., and Zdero, R., 2012, “Biomechanical Measurements of Surgical Drilling Force and Torque in Human Versus Artificial Femurs,” ASME J. Biomech. Eng., 134(12), p. 124503. [CrossRef]
Olsen, M., Sellan, M., Zdero, R., Waddell, J. P., and Schemitsch, E. H., 2011, “A Biomechanical Comparison of Epiphyseal Versus Metaphyseal Fixed Bone–Conserving Hip Arthroplasty,” J. Bone Jt. Surg. Am., 93(Suppl 2), pp. 122–127. [CrossRef]
Crookshank, M., Coquim, J., Olsen, M., Schemitsch, E. H., Bougherara, H., and Zdero, R., 2012, “Biomechanical Measurements of Axial Crush Injury to the Distal Condyles of Human and Synthetic Femurs,” Proc. Inst. Mech. Eng., Part H, 226(4), pp. 320–329. [CrossRef]
Mantila Roosa, S. M., Hurd, A. L., Xu, H., Fuchs, R. K., and Warden, S. J., 2012, “Age-Related Changes in Proximal Humerus Bone Health in Healthy, White Males,” Osteoporosis Int., 23(12), pp. 2775–2783. [CrossRef]
Shah, S., Kim, S. Y. R., Dubov, A., Schemitsch, E. H., Bougherara, H., and Zdero, R., 2011, “The Biomechanics of Plate Fixation of Periprosthetic Femoral Fractures Near the Tip of a Total Hip Implant: Cables, Screws, or Both?,” Proc. Inst. Mech. Eng., Part H, 225(9), pp. 845–856 [Epub 2011 June 30]. [CrossRef]
Dubov, A., Kim, S. Y. R., Shah, S., Schemitsch, E. H., Zdero, R., and Bougherara, H., 2011, “The Biomechanics of Plate Repair of Periprosthetic Femur Fractures Near the Tip of a Total Hip Implant: The Effect of Cable-Screw Position,” Proc. Inst. Mech. Eng., Part H, 225(9), pp. 857–865 [Epub 2011 June 16]. [CrossRef]
Sammarco, G. J., Burstein, A. H., Davis, W. L., and Frankel, V. H., 1971, “The Biomechanics of Torsional Fractures: The Effect of Loading on Ultimate Properties,” J. Biomech., 4(2), pp. 113–117. [CrossRef] [PubMed]
Zdero, R., McConnell, A. J., Peskun, C., Syed, K. A., and Schemitsch, E. H., 2011, “Biomechanical Measurements of Torsion-Tension Coupling in Human Cadaveric Femurs,” J. Biomech. Eng., 133(1), p. 014501. [PubMed]
Hessmann, M. H., Hansen, W. S., Krummenauer, F., Pol, T. F., and Rommens, P., 2005, “Locked Plate Fixation and Intramedullary Nailing for Proximal Humerus Fractures: A Biomechanical Evaluation,” J. Trauma, 58(6), pp. 1194–1201. [CrossRef] [PubMed]
Kralinger, F., Gschwentner, M., Wambacher, M., Smekal, V., and Haid, C., 2008, “Proximal Humeral Fractures: What is Semi-Rigid? Biomechanical Properties of Semi-Rigid Implants, A Biomechanical Cadaver Based Evaluation,” Arch. Orthop. Trauma Surg., 128(2), pp. 205–210 [Epub 2007 Nov 27]. [CrossRef] [PubMed]
Lever, J. P., Aksenov, S. A., Zdero, R., Ahn, H., McKee, M. D., and Schemitsch, E. H., 2008, “Biomechanical Analysis of Plate Osteosynthesis Systems for Proximal Humerus Fractures,” J. Orthop. Trauma, 22(1), pp. 23–29. [CrossRef] [PubMed]
Maldonado, Z. M., Seebeck, J., Heller, M. O., Brandt, D., Hepp, P., Lill, H., and Duda, G. N., 2003, “Straining of the Intact and Fractured Proximal Humerus under Physiological-Like Loading,” J. Biomech., 36(12), pp. 1865–1873. [CrossRef] [PubMed]
Mather, B. S., 1968, “Observations on the Effects of Static and Impact Loading on the Human Femur,” J. Biomech., 1(4), pp. 331–335. [CrossRef] [PubMed]
Zdero, R., Gallimore, C. H., McConnell, A. J., Patel, H., Nisenbaum, R., Morshed, G., Koo, H., McKee, M. D., Schemitsch, E. H., and Bougherara, H., 2012, “A Preliminary Biomechanical Study of Cyclic Preconditioning Effects on Canine Cadaveric Whole Femurs,” ASME J. Biomech. Eng., 134(9), p. 094502. [CrossRef]
Cristofolini, L., Viceconti, M., Cappello, A., and Toni, A., 1996, “Mechanical Validation of Whole Bone Composite Femur Models,” J. Biomech., 29(4), pp. 525–535. [CrossRef] [PubMed]
Martens, M., van Audekercke, R., de Meester, P., and Mulier, J. C., 1986, “Mechanical Behaviour of Femoral Bones in Bending Loading,” J. Biomech., 19(6), pp. 443–454. [CrossRef] [PubMed]
Allen, M. D., McMillan, S. J., Klein, C. S., Rice, C. L., and Marsh, G. D., 2012, “Differential Age–Related Changes in Bone Geometry Between the Humerus and the Femur in Healthy Men,” Aging and Disease, 3(2), pp. 156–163. [PubMed]
Forwood, M. R., 2001, “Mechanical Effects on the Skeleton: Are There Clinical Implications?” Osteoporosis Int., 12(1), pp. 77–83. [CrossRef]
Myers, E. R., Hecker, A. T., Rooks, D. S., Hipp, J. A., and Hayes, W. C., 1993, “Geometric Variables From DXA of the Radius Predict Forearm Fracture Load in vitro,” Calcif. Tissue Int., 52(3), pp. 199–204. [CrossRef] [PubMed]
Foldes, J., Parfitt, A. M., Shih, M. S., Rao, D. S., and Kleerekoper, M., 1991, “Structural and Geometric Changes in Iliac Bone: Relationship to Normal Aging and Osteoporosis,” J. Bone Miner. Res., 6(7), pp. 759–766. [CrossRef] [PubMed]
Zdero, R., Bougherara, H., Dubov, A., Shah, S., Zalzal, P., Mahfud, A., and Schemitsch, E. H., 2010, “The Effect of Cortex Thickness on Intact Femur Biomechanics: A Comparison of Finite Element Analysis With Synthetic Femurs,” Proc. Inst. Mech. Eng., Part H, 224(7), pp. 831–840. [CrossRef]
Ammann, P., and Rizzoli, R., 2003, “Bone Strength and Its Determinants,” Osteoporosis Int., 14(S3), pp. 13–18. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Mechanical test setup for (a) shear stiffness, (b) torsional stiffness, and (c) cantilever bending stiffness and strength. Embalmed humeri are depicted, although the same setup was used for all groups. Arrows show load direction.

Grahic Jump Location
Fig. 2

Absolute results. (a) shear stiffness, (b) torsional stiffness, (c) cantilever stiffness, and (d) cantilever strength. Symbols (*, #) indicate all statistical differences for pairwise comparisons (p < 0.05). Error bars are 1 standard deviation. FF = fresh-frozen humeri, EM = embalmed humeri, DR = dried humeri, AN = artificial “normal” humeri, AO = artificial “osteoporotic” humeri, and n = number of humeri used for analysis.

Grahic Jump Location
Fig. 3

Normalized results. (a) shear stiffness, (b) torsional stiffness, (c) cantilever stiffness, and (d) cantilever strength. Symbols (*, #, §) indicate all statistical nondifferences for pairwise comparisons (p ≥ 0.05). Error bars are 1 standard deviation. FF = fresh-frozen humeri, EM = embalmed humeri, DR = dried humeri, AN = artificial “normal” humeri, AO = artificial “osteoporotic” humeri, and n = number of humeri used for analysis.

Grahic Jump Location
Fig. 4

Failures of the humeral shaft: (a) embalmed humerus shaft with a typical oblique fracture starting on the tensile stress side and (b) artificial humerus shaft with a typical mixed transverse + oblique fracture.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In