0
Research Papers

Predicting Bone Remodeling in Response to Total Hip Arthroplasty: Computational Study Using Mechanobiochemical Model

[+] Author and Article Information
Pouria Tavakkoli Avval

Department of Mechanical and
Industrial Engineering,
Ryerson University,
350 Victoria Street,
Toronto, ON M5B 2K3, Canada
e-mail: ptavakko@ryerson.ca

Václav Klika

Department of Mathematics,
FNSPE, Czech Technical University in Prague,
Trojanova 13, Prague 120 00, Czech Republic
e-mail: klika@it.cas.cz

Habiba Bougherara

Department of Mechanical and
Industrial Engineering,
Ryerson University,
350 Victoria Street,
Toronto, ON M5B 2K3, Canada
e-mail: habiba.bougherara@ryerson.ca

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received July 27, 2013; final manuscript received January 15, 2014; accepted manuscript posted February 6, 2014; published online April 10, 2014. Assoc. Editor: Carlijn Bouten.

J Biomech Eng 136(5), 051002 (Apr 10, 2014) (12 pages) Paper No: BIO-13-1335; doi: 10.1115/1.4026642 History: Received July 27, 2013; Revised January 15, 2014; Accepted February 06, 2014

Periprosthetic bone loss following total hip arthroplasty (THA) is a serious concern leading to the premature failure of prosthetic implant. Therefore, investigating bone remodeling in response to hip arthroplasty is of paramount for the purpose of designing long lasting prostheses. In this study, a thermodynamic-based theory, which considers the coupling between the mechanical loading and biochemical affinity as stimulus for bone formation and resorption, was used to simulate the femoral density change in response to THA. The results of the numerical simulations using 3D finite element analysis revealed that in Gruen zone 7, after remarkable postoperative bone loss, the bone density started recovering and got stabilized after 9% increase. The most significant periprosthetic bone loss was found in Gruen zone 7 (−17.93%) followed by zone 1 (−13.77%). Conversely, in zone 4, bone densification was observed (+4.63%). The results have also shown that the bone density loss in the posterior region of the proximal metaphysis was greater than that in the anterior side. This study provided a quantitative figure for monitoring the distribution variation of density throughout the femoral bone. The predicted bone density distribution before and after THA agree well with the bone morphology and previous results from the literature.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Cristofolini, L., 1997, “A Critical Analysis of Stress Shielding Evaluation of Hip Prostheses,” Crit. Rev. Biomed. Eng., 25(4–5), pp. 409–483. [CrossRef] [PubMed]
Kroger, H., Venesmaa, P., Jurvelin, J., Miettinen, H., Suomalainen, O., and Alhava, E., 1998, “Bone Density at the Proximal Femur After Total Hip Arthroplasty,” Clin. Orthop. Relat. Res., 352, pp. 66–74. [PubMed]
Bougherara, H., Bureau, M. N., and Yahia, L., 2010, “Bone Remodeling in a New Biomimetic Polymer-Composite Hip Stem,” J. Biomed. Mater. Res. A, 92(1), pp. 164–174. [CrossRef] [PubMed]
Huiskes, R., Weinans, H., Grootenboer, H. J., Dalstra, M., Fudala, B., and Slooff, T. J., 1987, “Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis,” J. Biomech., 20(11–12), pp. 1135–1150. [CrossRef] [PubMed]
Huiskes, R., Weinans, H., and van Rietbergen, B., 1992, “The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stem and the Effects of Flexible Materials,” Clin. Orthop. Relat. Res., 274 pp. 124–134. [PubMed]
Lengsfeld, M., Burchard, R., Gunther, D., Pressel, T., Schmitt, J., Leppek, R., and Griss, P., 2005, “Femoral Strain Changes After Total Hip Arthroplasty—Patient-Specific Finite Element Analyses 12 Years After Operation,” Med. Eng. Phys., 27, pp. 649–654. [CrossRef] [PubMed]
Turner, A. W., Gillies, R. M., Sekel, R., Morris, P., Bruce, W., and Walsh, W. R., 2005, “Computational Bone Remodelling Simulations and Comparisons With DEXA Results,” J. Orthop. Res., 23(4), pp. 705–712. [CrossRef] [PubMed]
Carter, D. R., and Beaupre, G. S., 2001, Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging and Regeneration, Cambridge University Press, Cambridge, United Kingdom.
Cowin, S., and Hegedus, D. H., 1976, “Bone Remodeling I: Theory of Adaptive Elasticity,” J. Elasticity, 6, pp. 313–326. [CrossRef]
Roesler, H., 1987, “The History of Some Fundamental Concepts in Bone Biomechanics,” J. Biomech., 20(11–12), pp. 1025–1034. [CrossRef] [PubMed]
Wolff, J., 1892, das Gesetz der Transformation der Knochen, Kirschwald, Springer, Berlin.
Callaghan, J. J., Dysart, S. H., Savory, C. F., and Hopkinson, W. J., 1990, “Assessing the Results of Hip Replacement. A Comparison of Five Different Rating Systems,” J. Bone Jt. Surg. Br. B, 72(6), pp. 1008–1009.
Hirotsugu, O., Yoshinorik, K., Yukihidem, M., Hidetomi, T., and Yoshiki, Y., 2000, “Outcome of Second Revision THR,” Jpn. J. Rheum. Jt. Surg., 18, pp. 199–204.
Bobyn, J. D., Glassman, A. H., Goto, H., Krygier, J. J., Miller, J. E., and Brooks, C. E., 1990, “The Effect of Stem Stiffness on Femoral Bone Resorption After Canine Porous-Coated Total Hip Arthroplasty,” Clin. Orthop. Relat. Res., 261, pp. 196–213. [PubMed]
Sumner, D. R., and Galante, J. O., 1992, “Determinants of Stress Shielding: Design Versus Materials Versus Interface,” Clin. Orthop. Relat. Res., 274, pp. 202–212. [PubMed]
Engh, C. A., McGovern, T. F., Bobyn, J. D., and Harris, W. H., 1992, “A Quantitative Evaluation of Periprosthetic Bone-Remodeling After Cementless Total Hip Arthroplasty,” J. Bone Jt. Surg. Am., 74(7), pp. 1009–1020.
Engh, C. A., Hooten, J. P., Zettl-Schaffer, K. F., Ghaffarpour, M., McGovern, T. F., Macalino, G. E., and Zicat, B. A., 1994, “Porous-Coated Total Hip Replacement,” Clin. Orthop. Relat. Res., 298, pp. 89–96. [PubMed]
Li, M. G., Rohrl, S. M., Wood, D. J., and Nivbrant, B., 2007, “Periprosthetic Changes in Bone Mineral Density in 5 Stem Designs 5 Years After Cemented Total Hip Arthroplasty, No Relation to Stem Migration,” J. Arthroplasty, 22(5), pp. 689–691. [CrossRef] [PubMed]
Sano, K., Ito, K., and Yamamoto, K., 2008, “Changes of Bone Mineral Density After Cementless Total Hip Arthroplasty With Two Different Stems,” Int. Orthop., 32(2), pp. 167–172. [CrossRef] [PubMed]
Sluimer, J. C., Hoefnagels, N. H., Emans, P. J., Kuijer, R., and Geesink, R. G., 2006, “Comparison of Two Hydroxyapatite-Coated Femoral Stems: Clinical, Functional, and Bone Densitometry Evaluation of Patients Randomized to a Regular or Modified Hydroxyapatite-Coated Stem Aimed at Proximal Fixation,” J. Arthroplasty, 21(3), pp. 344–352. [CrossRef] [PubMed]
Stukenborg-Colsman, C. M., von der Haar-Tran, A., Windhagen, H., Bouguecha, A., Wefstaedt, P., and Lerch, M., 2012, “Bone Remodelling Around a Cementless Straight THA Stem: A Prospective Dual-Energy X-Ray Absorptiometry Study,” Hip Int., 22(2), pp. 166–171. [CrossRef] [PubMed]
Beaupre, G. S., Orr, T. E., and Carter, D. R., 1990, “An Approach for Time-Dependent Bone Modeling and Remodeling-Application: A Preliminary Remodeling Simulation,” J. Orthop. Res., 8(5), pp. 662–670. [CrossRef] [PubMed]
Frost, H. M., 1998, “Changing Concepts in Skeletal Physiology: Wolff's Law, the Mechanostat and the Utah Paradigm,” Am. J. Hum. Biol., 10, pp. 599–605. [CrossRef]
Garcia-Aznar, J. M., Rueberg, T., and Doblare, M., 2005, “A Bone Remodelling Model Coupling Microdamage Growth and Repair by 3D BMU-Activity,” Biomech. Model Mechanobiol., 4(2–3), pp. 147–167. [CrossRef] [PubMed]
Huiskes, R., Ruimerman, R., van Lenthe, G. H., and Janssen, J. D., 2000, “Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone,” Nature, 405(6787), pp. 704–706. [CrossRef] [PubMed]
Kuhl, E., and Balle, F., 2005, “Computational Modeling of Hip Replacement Surgery: Total Hip Replacement vs Hip Resurfacing,” Technische mechanik, 25(2), pp. 107–114.
Levenston, M. E., and Carter, D. R., 1998, “An Energy Dissipation-Based Model for Damage Stimulated Bone Adaptation,” J. Biomech., 31(7), pp. 579–586. [CrossRef] [PubMed]
Martin, R. B., 2007, “Targeted Bone Remodeling Involves BMU Steering as Well as Activation,” Bone, 40, pp. 1574–1580. [CrossRef] [PubMed]
Prendergast, P. J., and Taylor, D., 1994, “Prediction of Bone Adaptation Using Damage Accumulation,” J. Biomech., 27(8), pp. 1067–1076. [CrossRef] [PubMed]
Scheiner, S., Pivonka, P., and Hellmich, C., 2013, “Coupling Systems Biology With Multiscale Mechanics, for Computer Simulations of Bone Remodeling,” Comput. Method Appl. Mech. Eng., 254, pp. 181–196. [CrossRef]
Bougherara, H., Klika, V., Marsik, F., Marik, I. A., and Yahia, L., 2010, “New Predictive Model for Monitoring Bone Remodeling,” J. Biomed. Mater. Res. A, 95(1), pp. 9–24. [CrossRef] [PubMed]
Hernandez, C. J., Beaupre, G. S., and Carter, D. R., 2000, “A Model of Mechano-Biologic and Metabolic Influences Bone Adaptation,” J. Rehabil. Res. Dev., 37, pp. 235–244. [PubMed]
Hernandez, C. J., Beaupre, G. S., Keller, T. S., and Carter, D. R., 2001, “The Influence of Bone Volume Fraction and Ash Fraction on Bone Strength and Modulus,” Bone, 29(1), pp. 74–78. [CrossRef] [PubMed]
Ruimerman, R., Huiskes, R., van Lenthe, G. H., and Janssen, J. D., 2001, “A Computer-Simulation Model Relating Bone-Cell Metabolism to Mechanical Adaptation of Trabecular Architecture,” Comput. Methods Biomech. Biomed. Eng., 4(5), pp. 433–448. [CrossRef]
Kroll, M. H., 2000, “Parathyroid Hormone Temporal Effects on Bone Formation and Resorption,” Bull. Math. Biol., 62, pp. 163–188. [CrossRef] [PubMed]
Rattanakul, C., Lenbury, Y., Krishnamara, N., and Wollkind, D. J., 2003, “Modeling of Bone Formation and Resorption Mediated by Parathyroid Hormone: Response to Estrogen/PTH therapy,” Biosystems, 70, pp. 55–72. [CrossRef] [PubMed]
Komarova, S. V., Smith, R. J., Dixon, S. J., Sims, S. M., and Wahl, L. M., 2003, “Mathematical Model Predicts a Critical Role for Osteoclast Autocrine Regulation in the Control of Bone Remodeling,” Bone, 33, pp. 206–215. [CrossRef] [PubMed]
Lemaire, V., Tobin, F. L., Greller, L. D., Cho, C. R., and Suva, L. J., 2004, “Modeling the Interactions Between Osteoblast and Osteoclast Activities in Bone Remodeling,” J. Theor. Biol., 229, pp. 293–309. [CrossRef] [PubMed]
Klika, V., and Marsik, F., 2010, “A Thermodynamic Model of Bone Remodelling: The Influence of Dynamic Loading Together With Biochemical Control,” J. Musculoskeletal Neuronal Interact., 10(3), pp. 220–230.
Rouhi, G., Epstein, M., Sudak, L., and Herzog, W., 2007, “Modeling Bone Resorption Using Mixture Theory With Chemical Reactions,” J. Mech. Mater. Struct., 2, pp. 1141–1155. [CrossRef]
Jaworski, Z. F., and Uhthoff, H. K., 1986, “Reversibility of Nontraumatic Disuse Osteoporosis During Its Active Phase,” Bone, 7(6), pp. 431–439. [CrossRef] [PubMed]
Schriefer, J. L., Warden, S. J., Saxon, L. K., Robling, A. G., and Turner, C. H., 2005, “Cellular Accommodation and the Response of Bone to Mechanical Loading,” J. Biomech., 38(9), pp. 1838–1845. [CrossRef] [PubMed]
Michaelis, L., and Menten, M. L., 1913, “Kinetik der invertinwirkung,” Biochem. Z, 49, pp. 333–369.
Chen, I. C., Kuksenok, O., Yashin, V. V., Balazs, A. C., and van Vliet, K. J., 2012, “Mechanical Resuscitation of Chemical Oscillations in Belousov–Zhabotinsky Gels,” Adv. Funct. Mater., 22(12), pp. 2535–2541. [CrossRef]
Klika, V., 2010, “Comparison of the Effects of Possible Mechanical Stimuli on the Rate of Biochemical Reactions,” J. Phys. Chem. B, 114(32), pp. 10567–10572. [CrossRef] [PubMed]
Klika, V., and Marsik, F., 2009, “Coupling Effect Between Mechanical Loading and chemical Reactions,” J. Phys. Chem. B, 113(44), pp. 14689–14697. [CrossRef] [PubMed]
Klika, V., and Grmela, M., 2013, “Coupling Between Chemical Kinetics and Mechanics That is Both Nonlinear and Compatible With Thermodynamics,” Phys. Rev. E., 87(1), p. 012141. [CrossRef]
Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson, S., and Viceconti, M., 2008, “Mathematical Relationships Between Bone Density and Mechanical Properties: A Literature Review,” Clin. Biomech., 23(2), pp. 135–146. [CrossRef]
Carter, D. R., and Hayes, W. C., 1977, “The Compressive Behavior of Bone as a Two-Phase Porous Structure,” J. Bone Jt. Surg. Am., 59(7), pp. 954–962.
Weinans, H., Sumner, D. R., Igloria, R., and Natarajan, R. N., 2000, “Sensitivity of Periprosthetic Stress-Shielding to Load and the Bone Density-Modulus Relationship in Subject-Specific Finite Element Models,” J. Biomech., 33(7), pp. 809–817. [CrossRef] [PubMed]
Goldstein, S. A., Matthews, L. S., Kuhn, J. L., and Hollister, S. J., 1991, “Trabecular Bone Remodeling: An Experimental Model,” J. Biomech., 24(Suppl 1), pp. 135–150. [CrossRef] [PubMed]
Sawbones Worlwide, 2013, “Composite Bone.” Available from http://www.sawbones.com/products/bio/composite.aspx
Balle, F., 2004, “Biomechanische untersuchungen zur Knochen—implantat—interaktion mit Hilfe der methode der finite elemente,” Diploma thesis, LTM, University of Kaiserslautern, Kaiserslautern, Germany, U04-01.
Behrens, B. A., Nolte, I., Wefstaedt, P., Stukenborg-Colsman, C., and Bouguecha, A., 2009, “Numerical Investigations on the Strain-Adaptive Bone Remodelling in the Periprosthetic Femur: Influence of the Boundary Conditions,” Biomed. Eng. Online, 8, pp. 7–9. [CrossRef]
Lerch, M., Kurtz, A., Stukenborg-Colsman, C., Nolte, I., Weigel, N., Bouguecha, A., and Behrens, B. A., 2012, “Bone Remodeling After Total Hip Arthroplasty With a Short Stemmed Metaphyseal Loading Implant: Finite Element Analysis Validated by a Prospective DEXA Investigation,” J. Orthop. Res., 30(11), pp. 1822–1829. [CrossRef] [PubMed]
Brand, R. A., Pedersen, D. R., Davy, D. T., Kotzar, G. M., Heiple, K. G., and Goldberg, V. M., 1994, “Comparison of Hip Force Calculations and Measurements in the Same Patient,” J. Arthroplasty, 9(1), pp. 45–51. [CrossRef] [PubMed]
Duda, G. N., Heller, M., Albinger, J., Schulz, O., Schneider, E., and Claes, L., 1998, “Influence of Muscle Forces on Femoral Strain Distribution,” J. Biomech., 31(9), pp. 841–846. [CrossRef] [PubMed]
Kim, S. Y. R., 2010, “Biomechanical Evaluation of Periprosthetic Femoral Fracture Fixation,” Master thesis, Ryerson University, Toronto, Canada.
Truong, L. H., Kuliwaba, J. S., Tsangari, H., and Fazzalari, N. L., 2006, “Differential Gene Expression of Bone Anabolic Factors and Trabecular Bone Architectural Changes in the Proximal Femoral Shaft of Primary Hip Osteoarthritis Patients,” Arthritis Res. Ther., 8(6), p. R188. [CrossRef] [PubMed]
Gruen, T. A., McNeice, G. M., and Amstutz, H. C., 1979, “Modes of Failures of Cemented Stem-Type Femoral Components,” Clin. Orthop. Relat. Res., 141, pp. 17–27. [PubMed]
Hodgskinson, R., and Currey, J. D., 1990, “The Effect of Variation in Structure on the Young's Modulus of Cancellous Bone: A Comparison of Human and Non-Human Material,” Proc. Inst. Mech. Eng., Part H, 204(2), pp. 115–121. [CrossRef]
Hoiberg, M., Nielsen, T. L., Wraae, K., Abrahamsen, B., Hagen, C., Andersen, M., and Brixen, K., 2007, “Population-Based Reference Values for Bone Mineral Density in Young Men,” Osteoporos. Int., 18(11), pp. 1507–1514. [CrossRef] [PubMed]
Trevisan, C., Bigoni, M., Randelli, G., Marinoni, E. C., Peretti, G., and Ortolani, S., 1997, “Periprosthetic Bone Density Around Fully Hydroxyapatite Coated Femoral Stem,” Clin. Orthop. Relat. Res., 340, pp. 109–117. [CrossRef] [PubMed]
Wixson, R. L., Stulberg, S. D., Van Flandern, G. J., and Puri, L., 1997, “Maintenance of Proximal Bone Mass With an Uncemented Femoral Stem Analysis With Dual-Energy X-Ray Absorptiometry,” J. Arthroplasty, 12(4), pp. 365–372. [CrossRef] [PubMed]
Niinimaki, T., and Jalovaara, P., 1995, “Bone Loss From the Proximal Femur After Arthroplasty With an Isoelastic Femoral Stem. BMD Measurements in 25 Patients After 9 Years,” Acta Orthop. Scand., 66(4), pp. 347–351. [CrossRef] [PubMed]
Shim, V. B., Pitto, R. P., and Anderson, I. A., 2012, “Quantitative CT With Finite Element Analysis: Towards a Predictive Tool for Bone Remodelling Around an Uncemented Tapered Stem,” Int. Orthop., 36(7), pp. 1363–1369. [CrossRef] [PubMed]
Glassman, A. H., Crowninshield, R. D., Schenck, R., and Herberts, P., 2001, “A Low Stiffness Composite Biologically Fixed Prosthesis,” Clin. Orthop. Relat. Res., 393, pp. 128–136. [CrossRef] [PubMed]
Ni, G. X., Lu, W. W., Chiu, K. Y., and Fong, D. Y., 2005, “Cemented or Uncemented Femoral Component in Primary Total Hip Replacement? A Review From a Clinical and Radiological Perspective,” J. Orthop. Surg., 13(1), pp. 96–105.
Dan, D., Germann, D., Burki, H., Hausner, P., Kappeler, U., Meyer, R. P., Klaghofer, R., and Stoll, T., 2006, “Bone Loss After Total Hip Arthroplasty,” Rheumatol. Int., 26(9), pp. 792–798. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic representation of bone as an open thermodynamic system

Grahic Jump Location
Fig. 2

CAD model.: (a) Femoral shaft, (b) femoral head and neck, and (c) hip implant.

Grahic Jump Location
Fig. 3

Iterative process of the thermodynamic-based model for bone remodeling simulation

Grahic Jump Location
Fig. 4

Graph showing the location of constraints and loadings on the models. (a) Intact femur, and (b) post-operative femur.

Grahic Jump Location
Fig. 5

Convergence of the bone remodeling simulations for pre- and post operative femur

Grahic Jump Location
Fig. 6

Bone density distribution of the intact femur obtained from the thermodynamic-based model (gr/cm3). (a) Anterior view, and (b) posterior view.

Grahic Jump Location
Fig. 7

Bone density distribution in the coronal section of intact femur. Obtained from (a) thermodynamic-based model, and (b) X-ray (Reproduced with permission from Ref. [59]).

Grahic Jump Location
Fig. 8

Bone density distribution of post-operative femur obtained from the thermodynamic-based model (gr/cm3). (a) Anterior view, (b) posterior view, and (c) coronal section of posterior view.

Grahic Jump Location
Fig. 9

Graph showing the post-operative bone density versus. iteration for zone 7

Grahic Jump Location
Fig. 10

Percent bone loss/formation in response to THA. (a) Posterior view, (b) three transverse segments, and (c) medial view.

Grahic Jump Location
Fig. 11

Graph showing changes in the average bone density in Gruen zones after convergence (%)

Grahic Jump Location
Fig. 12

Graph comparing the periprosthetic bone loss/formation observed by Li et al. [18] (Simple font) with those obtained by thermodynamic-based model (Italic font). Re-drawn from Ref. [18] with permission.

Grahic Jump Location
Fig. 13

Distribution of bone density (gr/cm3) in post-operative femur. (a) In the presence of mechanical loading (b) in the absence of mechanical loading.

Grahic Jump Location
Fig. 14

Graph showing the bone density distribution (gr/cm3) in 1 cm3 cortical bone resulting from (a) high level stress, and (b) low level stress.

Grahic Jump Location
Fig. 15

Average density of intact femur (gr/cm3) for different values of βi

Grahic Jump Location
Fig. 16

Average density of intact femur (gr/cm3) for different values of Ji and δα

Grahic Jump Location
Fig. 17

Average density of intact femur (gr/cm3) for different values of Dα (ref)

Grahic Jump Location
Fig. 18

Percent bone loss/formation for (a) β7 = 6, and (b) β7 = 5.1

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In