Research Papers

The Mechanics of Traumatic Brain Injury: A Review of What We Know and What We Need to Know for Reducing Its Societal Burden

[+] Author and Article Information
David F. Meaney

Departments of Bioengineering
and Neurosurgery,
University of Pennsylvania,
Philadelphia, PA 19104-6392
e-mail: dmeaney@seas.upenn.edu

Barclay Morrison

Department of Biomedical Engineering,
Columbia University,
New York, NY 10027

Cameron Dale Bass

Department of Biomedical Engineering,
Duke University,
Durham, NC 27708-0281

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received September 20, 2013; final manuscript received December 20, 2013; accepted manuscript posted December 27, 2013; published online February 5, 2014. Editor: Victor H. Barocas.

J Biomech Eng 136(2), 021008 (Feb 05, 2014) (14 pages) Paper No: BIO-13-1439; doi: 10.1115/1.4026364 History: Received September 20, 2013; Revised December 20, 2013; Accepted December 27, 2013

Traumatic brain injury (TBI) is a significant public health problem, on pace to become the third leading cause of death worldwide by 2020. Moreover, emerging evidence linking repeated mild traumatic brain injury to long-term neurodegenerative disorders points out that TBI can be both an acute disorder and a chronic disease. We are at an important transition point in our understanding of TBI, as past work has generated significant advances in better protecting us against some forms of moderate and severe TBI. However, we still lack a clear understanding of how to study milder forms of injury, such as concussion, or new forms of TBI that can occur from primary blast loading. In this review, we highlight the major advances made in understanding the biomechanical basis of TBI. We point out opportunities to generate significant new advances in our understanding of TBI biomechanics, especially as it appears across the molecular, cellular, and whole organ scale.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.


Faul, M., Xu, L., and Coronado, V. G., 2010, Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations, and Deaths, CDC, Atlanta, GA.
Laker, S. R., 2011, “Epidemiology of Concussion and Mild Traumatic Brain Injury,” PM R, 3(10 Suppl. 2), pp. S354–S358. [CrossRef] [PubMed]
Taniellan, T., and Jaycox, L. H., 2008, “Invisible Wounds of War: Psychological and Cognitive Injuries, Their Consequences, and Services to Assist Recovery,” Paper No. MG-720-CCF, Santa Monica, CA.
Coronado, V. G., Xu, L., Basavaraju, S.V., McGuire, L. C., Wald, M. M., Faul, M. D., Guzman, B. R., and Hemphill, J. D., 2011, “Surveillance for Traumatic Brain Injury-related Deaths—United States, 1997–2007,” MMWR Surveill. Summ., 60(5), pp. 1–32. [PubMed]
Wright, D. W., Kellerman, A., McGuire, L. C., Chen, B., and Popovic, T., 2013, “CDC Grand Rounds: Reducing Severe Traumatic Brain Injury in the United States,” MMWR Morb. Mortal. Wkly. Rep., 62(27), pp. 549–552. [PubMed]
Omalu, B. I., DeKosky, S. T., Minster, R. L., Kamboh, M. I., Hamilton, R. L., and Wecht, C. H., 2005, “Chronic Traumatic Encephalopathy in a National Football League Player,” Neurosurgery, 57(1), pp. 128–134. [CrossRef] [PubMed]
McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., Santini, V. E., Lee, H. S., Kubilus, C. A., and Stern, R. A., 2009, “Chronic Traumatic Encephalopathy in Athletes: Progressive Tauopathy After Repetitive Head Injury,” J. Neuropathol. Exp. Neurol., 68(7), pp. 709–735. [CrossRef] [PubMed]
Goldstein, L. E., Fisher, A. M., Tagge, C. A., Zhang, X. L., Velisek, L., Sullivan, J. A., Upreti, C., Kracht, J. M., Ericsson, M., Wojnarowicz, M. W., Goletiani, C. J., Maglakelidze, G. M., Casey, N., Moncaster, J. A., Minaeva, O., Moir, R. D., Nowinski, C. J., Stern, R. A., Cantu, R. C., Geiling, J., Blusztajn, J. K., Wolozin, B. L., Ikezu, T., Stein, T. D., Budson, A. E., Kowall, N. W., Chargin, D., Sharon, A., Saman, S., Hall, G. F., Moss, W. C., Cleveland, R. O., Tanzi, R. E., Stanton, P. K., and McKee, A. C., 2012, “Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model,” Sci. Transl. Med., 4(134), p. 134–160. [CrossRef]
Goldsmith, W., 2001, “The State of Head Injury Biomechanics: Past, Present, and Future: Part 1,” Crit. Rev. Biomed. Eng., 29(5–6), pp. 441–600. [CrossRef] [PubMed]
Meaney, D. F., and Smith, D. H., 2011, “Biomechanics of Concussion,” Clin. Sports Med., 30(1), pp. 19–31. [CrossRef] [PubMed]
Bayly, P. V., Clayton, E. H., and Genin, G. M., 2012, “Quantitative Imaging Methods for the Development and Validation of Brain Biomechanics Models,” Annu. Rev. Biomed. Eng., 14, pp. 369–396. [CrossRef] [PubMed]
LaPlaca, M. C., Simon, C. M., Prado, G. R., and Cullen, D. K., 2007, “CNS Injury Biomechanics and Experimental Models,” Prog. Brain Res., 161, pp. 13–26. [CrossRef] [PubMed]
King, A. I., 2000, “Fundamentals of Impact Biomechanics: Part I–Biomechanics of the Head, Neck, and Thorax,” Annu. Rev. Biomed. Eng., 2, pp. 55–81. [CrossRef] [PubMed]
Leung, L. Y., VandeVord, P. J., Dal Cengio, A. L.,Bir, C.,Yang, K. H., andKing, A. I., 2008, “Blast Related Neurotrauma: A Review of Cellular Injury,” Mol. Cell Biomech., 5(3), pp. 155–168. [PubMed]
Gennarelli, T. A., Spielman, G. M., Langfitt, T. W., Gildenberg, P. L., Harrington, T., Jane, J. A., Marshall, L. F., Miller, J. D., and Pitts, L. H., 1982, “Influence of the Type of Intracranial Lesion on Outcome From Severe Head Injury,” J. Neurosurg., 56(1), pp. 26–32. [CrossRef] [PubMed]
Orman, J. A., Geyer, D., Jones, J., Schneider, E. B., Grafman, J., Pugh, M. J., and Dubose, J., 2012, “Epidemiology of Moderate-to-Severe Penetrating Versus Closed Traumatic Brain Injury in the Iraq and Afghanistan Wars,” J. Trauma Acute Care Surg., 73(6 Suppl. 5), pp. S496–502. [CrossRef] [PubMed]
Andriessen, T. M., Horn, J., Franschman, G., van der Naalt, J., Haitsma, I., Jacobs, B., Steyerberg, E. W., and Vos, P. E., 2011, “Epidemiology, Severity Classification, and Outcome of Moderate and Severe Traumatic Brain Injury: A Prospective Multicenter Study,” J. Neurotrauma, 28(10), pp. 2019–2031. [CrossRef] [PubMed]
Morrison, B.3rd, Meaney, D. F., Margulies, S. S., and McIntosh, T. K., 2000, “Dynamic Mechanical Stretch of Organotypic Brain Slice Cultures Induces Differential Genomic Expression: Relationship to Mechanical Parameters,” ASME J. Biomech. Eng., 122(3), pp. 224–230. [CrossRef]
O’Dell, D. M., Raghupathi, R., Crino, P. B., Eberwine, J. H., and McIntosh, T. K., 2000, “Traumatic Brain Injury Alters the Molecular Fingerprint of TUNEL-Positive Cortical Neurons in vivo: A Single-Cell Analysis,” J. Neurosci., 20(13), pp. 4821–4828. [PubMed]
Davis, J. E., Eberwine, J. H., Hinkle, D. A., Marciano, P. G., Meaney, D. F., and McIntosh, T. K., 2004, “Methodological Considerations Regarding Single-Cell Gene Expression Profiling for Brain Injury,” Neurochem. Res., 29(6), pp. 1113–1121. [CrossRef] [PubMed]
Rafaels, K., Bass, C. R., Salzar, R. S., Panzer, M. B., Woods, W., Feldman, S., Cummings, T., and Capehart, B., 2011, “Survival Risk Assessment for Primary Blast Exposures to the Head,” J. Neurotrauma, 28(11), pp. 2319–2328. [CrossRef] [PubMed]
Bass, C. R., Panzer, M. B., Rafaels, K. A., Wood, G., Shridharani, J., and Capehart, B., 2012, “Brain Injuries From Blast,” Ann. Biomed. Eng., 40(1), pp. 185–202. [CrossRef] [PubMed]
Effgen, G. B., Hue, C. D., Vogel, E.3rd, Panzer, M. B., Meaney, D. F., Bass, C. R., and Morrison, B., 3rd, 2012, “A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury to in vitro Models,” Front Neurol., 3, pp. 1–10. [CrossRef]
Sosin, D. M., Sniezek, J. E., and Waxweiler, R. J., 1995, “Trends in Death Associated With Traumatic Brain Injury, 1979 Through 1992. Success and Failure,” JAMA, 273(22), pp. 1778–1780. [CrossRef] [PubMed]
Adekoya, N., Thurman, D. J., White, D. D., and Webb, K. W., 2002, “Surveillance for Traumatic Brain Injury Deaths—United States, 1989–1998,” MMWR Surveill. Summ., 51(10), pp. 1–14. [PubMed]
National Highway Traffic Safety Administration, 1999, “Federal Motor Vehicle Safety Standards and Regulations,” U.S. Government Printing Office, Washington, DC.
Fabbri, A., Servadei, F., Marchesini, G., Negro, A., and Vandelli, A., 2010, “The Changing Face of Mild Head Injury: Temporal Trends and Patterns in Adolescents and Adults From 1997 to 2008,” Injury, 41(9), pp. 913–917. [CrossRef] [PubMed]
Helmick, K. M., Warden, D. L., and Ryan, L. M., 2005, “War Neurotrauma: the Defense and Veterans Brain Injury Center (DVBIC) Experience at Walter Reed Army Medical Center (WRAMC),” J. Neurotrauma, 22(10), p. 1178.
Okie, S., 2005, “Traumatic Brain Injury in the War Zone,” N. Engl. J. Med., 352(20), pp. 2043–2047. [CrossRef] [PubMed]
Wilk, J. E., Thomas, J. L., McGurk, D. M., Riviere, L. A., Castro, C. A., and Hoge, C. W., 2010, “Mild Traumatic Brain Injury (Concussion) During Combat: Lack of Association of Blast Mechanism With Persistent Postconcussive Symptoms,” J. Head Trauma Rehabil., 25(1), pp. 9–14. [CrossRef] [PubMed]
Wojcik, B. E., Stein, C. R., Bagg, K., Humphrey, R. J., and Orosco, J., 2010, “Traumatic Brain Injury Hospitalizations of U.S. Army Soldiers Deployed to Afghanistan and Iraq,” Am. J. Prev. Med., 38(1 Suppl.), pp. S108–S116. [CrossRef] [PubMed]
Owens, B. D., Kragh, J. F.Jr., Wenke, J. C., Macaitis, J., Wade, C. E., and Holcomb, J. B., 2008, “Combat Wounds in Operation Iraqi Freedom and Operation Enduring Freedom,” J. Trauma, 64(2), pp. 295–299. [CrossRef] [PubMed]
Rafaels, K. A., Bass, C. R., Panzer, M. B., Salzar, R. S., Woods, W. A., Feldman, S. H., Walilko, T., Kent, R. W., Capehart, B. P., Foster, J. B., Derkunt, B., and Toman, A., 2012, “Brain Injury Risk From Primary Blast,” J. Trauma Acute Care Surg., 73(4), pp. 895–901. [CrossRef] [PubMed]
White, C. S., Richmond, D. R., Fletcher, E. R., Jones, R. K., and Damon, E. G., 1971, The Biodynamics of Airblast, N. D.Agency, ed., Washington, DC.
Gennarelli, T. A., 1993, “Mechanisms of Brain Injury,” J. Emerg. Med., 11(Suppl. 1), pp. 5–11. [PubMed]
Armonda, R. A., Bell, R. S., Vo, A. H., Ling, G., DeGraba, T. J., Crandall, B., Ecklund, J., and Campbell, W. W., 2006, “Wartime Traumatic Cerebral Vasospasm: Recent Review of Combat Casualties,” Neurosurgery, 59(6), pp. 1215–1225, discussion p. 1225. [CrossRef] [PubMed]
Ling, G., Bandak, F., Armonda, R., Grant, G., and Ecklund, J., 2009, “Explosive Blast Neurotrauma,” J. Neurotrauma, 26(6), pp. 815–825. [CrossRef] [PubMed]
Gennarelli, T. A., Thibault, L. E., Adams, J. H., Graham, D. I., Thompson, C. J., and Marcincin, R. P., 1982, “Diffuse Axonal Injury and Traumatic Coma in the Primate,” Ann. Neurol., 12(6), pp. 564–574. [CrossRef] [PubMed]
Farkas, O., and Povlishock, J. T., 2007, “Cellular and Subcellular Change Evoked by Diffuse Traumatic Brain Injury: a Complex Web of Change Extending Far Beyond Focal Damage,” Prog. Brain Res., 161, pp. 43–59. [CrossRef] [PubMed]
Park, E., Eisen, R., Kinio, A., and Baker, A. J., 2013, “Electrophysiological White Matter Dysfunction and Association With Neurobehavioral Deficits Following Low-Level Primary Blast Trauma,” Neurobiol. Dis., 52, pp. 150–159. [CrossRef] [PubMed]
Garman, R. H., Jenkins, L. W., Switzer, R. C.3rd, Bauman, R. A., Tong, L. C., Swauger, P. V., Parks, S. A., Ritzel, D. V., Dixon, C. E., Clark, R. S., Bayir, H., Kagan, V., Jackson, E. K., and Kochanek, P. M., 2011, “Blast Exposure in Rats With Body Shielding Is Characterized Primarily by Diffuse Axonal Injury,” J. Neurotrauma, 28(6), pp. 947–959. [CrossRef] [PubMed]
Mac Donald, C. L., Johnson, A. M., Cooper, D., Nelson, E. C., Werner, N. J., Shimony, J. S., Snyder, A. Z., Raichle, M. E., Witherow, J. R., Fang, R., Flaherty, S. F., and Brody, D. L., 2011, “Detection of Blast-Related Traumatic Brain Injury in U.S. Military Personnel,” N. Engl. J. Med., 364(22), pp. 2091–2100. [CrossRef] [PubMed]
McGowan, J. C., McCormack, T. M., Grossman, R. I., Mendonça, R., Chen, X. H., Berlin, J. A., Meaney, D. F., Xu, B. N., Cecil, K. M., McIntosh, T. K., and Smith, D. H., 1999, “Diffuse Axonal Pathology Detected With Magnetization Transfer Imaging Following Brain Injury in the Pig,” Magn. Reson. Med., 41(4), pp. 727–733. [CrossRef] [PubMed]
Kimura, H., Meaney, D. F., McGowan, J. C., Grossman, R. I., Lenkinski, R. E., Ross, D. T., McIntosh, T. K., Gennarelli, T. A., and Smith, D. H., 1996, “Magnetization Transfer Imaging of Diffuse Axonal Injury Following Experimental Brain Injury in the Pig: Characterization by Magnetization Transfer Ratio With Histopathologic Correlation,” J. Comput. Assist. Tomogr., 20(4), pp. 540–546. [CrossRef] [PubMed]
Adams, J. H., Graham, D. I., Murray, L. S., and Scott, G., 1982, “Diffuse Axonal Injury due to Nonmissile Head Injury in Humans: An Analysis of 45 Cases,” Ann. Neurol., 12(6), pp. 557–563. [CrossRef] [PubMed]
Yoganandan, N., Gennarelli, T. A., Zhang, J., Pintar, F. A., Takhounts, E., and Ridella, S. A., 2009, “Association of Contact Loading in Diffuse Axonal Injuries From Motor Vehicle Crashes,” J. Trauma, 66(2), pp. 309–315. [CrossRef] [PubMed]
Skandsen, T., Kvistad, K. A., Solheim, O., Strand, I. H., Folvik, M., and Vik, A., 2010, “Prevalence and Impact of Diffuse Axonal Injury in Patients With Moderate and Severe Head Injury: A Cohort Study of Early Magnetic Resonance Imaging Findings and 1-Year Outcome,” J. Neurosurg., 113(3), pp. 556–563. [CrossRef] [PubMed]
Capehart, B., and Bass, D., 2012, “Review: Managing Posttraumatic Stress Disorder in Combat Veterans With Comorbid Traumatic Brain Injury,” J. Rehabil. Res. Dev., 49(5), pp. 789–812. [CrossRef] [PubMed]
Sigurdsson, S., Aspelund, T., Forsberg, L., Fredriksson, J., Kjartansson, O., Oskarsdottir, B., Jonsson, P. V.,Eiriksdottir, G.,Harris, T. B., Zijdenbos, A.,van Buchem, M. A., Launer, L. J., and Gudnason, V., 2012, “Brain Tissue Volumes in the General Population of the Elderly: The AGES-Reykjavik Study,” Neuroimage, 59(4), pp. 3862–3870. [CrossRef] [PubMed]
Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., DeBoissezon, X., Powell, J. H., Counsell, S. J., Patel, M. C., and Leech, R., 2011, “Default Mode Network Functional and Structural Connectivity After Traumatic Brain Injury,” Brain, 134(Pt 8), pp. 2233–2247. [CrossRef] [PubMed]
Margulies, S. S., and Meaney, D. F., 1994, “Physical Properties of Brain Tissue,” Handbook of Biomaterial Properties, J.Black, and G.Hastings, eds., Chapman and Hall, pp. 70–80, London, UK.
McElhaney, J. H., Hilyard, J. F., and Roberts, V. L., 1976, Handbook of Human Tolerance, JARI, Tokyo, Japan.
Maikos, J. T., Elias, R. A., and Shreiber, D. I., 2008, “Mechanical Properties of Dura Mater From the Rat Brain and Spinal Cord,” J. Neurotrauma, 25(1), pp. 38–51. [CrossRef] [PubMed]
Zarzur, E., 1996, “Mechanical Properties of the Human Lumbar Dura Mater,” Arq. Neuropsiquiatr, 54(3), pp. 455–460. [CrossRef] [PubMed]
Dunn, M. G., and Silver, F. H., 1983, “Viscoelastic Behavior of Human Connective Tissues: Relative Contribution of Viscous and Elastic Components,” Connect Tissue Res., 12(1), pp. 59–70. [CrossRef] [PubMed]
van Noort, R., Martin, T. R., Black, M. M., Barker, A. T., and Montero, C. G., 1981, “The Mechanical Properties of Human Dura Mater and the Effects of Storage Media,” Clin. Phys. Physiol. Meas., 2(3), pp. 197–203. [CrossRef] [PubMed]
van Noort, R., Black, M. M., Martin, T. R., and Meanley, S., 1981, “A Study of the Uniaxial Mechanical Properties of Human Dura Mater Preserved in Glycerol,” Biomaterials, 2(1), pp. 41–45. [CrossRef] [PubMed]
Zhang, L., Bae, J., Hardy, W. N., Monson, K. L., Manley, G. T., Goldsmith, W., Yang, K. H., and King, A. I., 2002, “Computational Study of the Contribution of the Vasculature on the Dynamic Response of the Brain,” Stapp Car Crash J., 46, pp. 145–164. [PubMed]
Delye, H., Goffin, J., Verschueren, P., Vander Sloten, J., Van der Perre, G., Alaerts, H., Verpoest, I., and Berckmans, D., 2006, “Biomechanical Properties of the Superior Sagittal Sinus-Bridging Vein Complex,” Stapp Car Crash J., 50, pp. 625–636. [PubMed]
Lee, M. C., and Haut, R. C., 1989, “Insensitivity of Tensile Failure Properties of Human Bridging Veins to Strain Rate: Implications in Biomechanics of Subdural Hematoma,” J. Biomech., 22(6–7), pp. 537–542. [CrossRef] [PubMed]
Lowenhielm, P., 1974, “Dynamic Properties of the Parasagittal Bridging Veins,” Z. Rechtsmed., 74(1), pp. 55–62. [CrossRef] [PubMed]
Monson, K. L., Goldsmith, W., Barbaro, N. M., and Manley, G. T., 2003, “Axial Mechanical Properties of Fresh Human Cerebral Blood Vessels,” ASME J. Biomech. Eng., 125(2), pp. 288–294. [CrossRef]
Monson, K. L., Goldsmith, W., Barbaro, N. M., and Manley, G. T., 2005, “Significance of Source and Size in the Mechanical Response of Human Cerebral Blood Vessels,” J. Biomech., 38(4), pp. 737–744. [CrossRef] [PubMed]
Metz, H., McElhaney, J., and Ommaya, A. K., 1970, “A Comparison of the Elasticity of Live, Dead, and Fixed Brain Tissue,” J. Biomech., 3(4), pp. 453–458. [CrossRef] [PubMed]
Galford, J. E., and McElhaney, J. H., 1970, “A Viscoelastic Study of Scalp, Brain, and Dura,” J. Biomech., 3(2), pp. 211–221. [CrossRef] [PubMed]
Chatelin, S., Constantinesco, A., and Willinger, R., 2010, “Fifty Years of Brain Tissue Mechanical Testing: From in vitro to in vivo Investigations,” Biorheology, 47(5–6), pp. 255–276. [PubMed]
Cheng, S., Clarke, E. C., and Bilston, L. E., 2008, “Rheological Properties of the Tissues of the Central Nervous System: A Review,” Med. Eng. Phys., 30(10), pp. 1318–1337. [CrossRef] [PubMed]
Pervin, F., and Chen, W. W., 2009, “Dynamic Mechanical Response of Bovine Gray Matter and White Matter Brain Tissues Under Compression,” J. Biomech., 42(6), pp. 731–735. [CrossRef] [PubMed]
Urbanczyk, C., Palmeri, M., Rouze, N., Kloppenborg, N., and Bass, C. R., 2012, “Acoustic Radiation Force Impulse Imaging Improves Ultrasound Resolution in Neural Tissue: Effects of Temperature and Confinement on Brain Material Property Characterization,” J. Neurotrauma, 22(10), pp. A200–A201.
Lippert, S. A., Rang, E. M., and Grimm, M. J., 2004, “The High Frequency Properties of Brain Tissue,” Biorheology, 41(6), pp. 681–691. [PubMed]
Weaver, J. B., Pattison, A. J., McGarry, M. D., Perreard, I. M., Swienckowski, J. G., Eskey, C. J., Lollis, S. S., and Paulsen, K. D., 2012, “Brain Mechanical Property Measurement Using MRE With Intrinsic Activation,” Phys. Med. Biol., 57(22), pp. 7275–7287. [CrossRef] [PubMed]
Clayton, E. H., Genin, G. M., and Bayly, P. V., 2012, “Transmission, Attenuation and Reflection of Shear Waves in the Human Brain,” J. R. Soc. Interface, 9(76), pp. 2899–2910. [CrossRef] [PubMed]
Boulet, T., Kelso, M. L., and Othman, S. F., 2011, “Microscopic Magnetic Resonance Elastography of Traumatic Brain Injury Model,” J. Neurosci. Meth., 201(2), pp. 296–306. [CrossRef]
Zhang, J., Green, M. A., Sinkus, R., and Bilston, L. E., 2011, “Viscoelastic Properties of Human Cerebellum Using Magnetic Resonance Elastography,” J. Biomech., 44(10), pp. 1909–1913. [CrossRef] [PubMed]
Hamhaber, U., Klatt, D., Papazoglou, S., Hollmann, M., Stadler, J., Sack, I., Bernarding, J., and Braun, J., 2010, “In vivo Magnetic Resonance Elastography of Human Brain at 7 T and 1.5 T,” J. Magn. Reson. Imaging, 32(3), pp. 577–583. [CrossRef] [PubMed]
Elkin, B. S., Ilankovan, A. I., and Morrison, B., 3rd, 2011, “A Detailed Viscoelastic Characterization of the P17 and Adult Rat Brain,” J. Neurotrauma, 28(11), pp. 2235–2244. [CrossRef] [PubMed]
Elkin, B. S., Ilankova, A., and Morrison, B., 2011, “Dynamic, Regional Mechanical Properties of the Porcine Brain: Indentation in the Coronal Plane,” ASME J. Biomech. Eng., 133(7), p. 071009. [CrossRef]
Finan, J. D., Elkin, B. S., Pearson, E. M., Kalbian, I. L., and Morrison, B., 3rd, 2012, “Viscoelastic Properties of the Rat Brain in the Sagittal Plane: Effects of Anatomical Structure and Age,” Ann. Biomed. Eng., 40(1), pp. 70–78. [CrossRef] [PubMed]
Feng, Y., Okamoto, R. J., Namani, R., Genin, G. M., and Bayly, P. V., 2013, “Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter,” J. Mech. Behav. Biomed. Mater., 23, pp. 117–132. [CrossRef] [PubMed]
Velardi, F., Fraternali, F., and Angelillo, M., 2006, “Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue,” Biomech. Model. Mechanobiol., 5(1), pp. 53–61. [CrossRef] [PubMed]
Arbogast, K. B., and Margulies, S. S., 1998, “Material Characterization of the Brainstem From Oscillatory Shear Tests,” J. Biomech., 31(9), pp. 801–807. [CrossRef] [PubMed]
Elkin, B. S., Ilankovan, A., and Morrison, B., 3rd, 2010, “Age-Dependent Regional Mechanical Properties of the Rat Hippocampus and Cortex,” ASME J. Biomech. Eng., 132(1), p. 011010. [CrossRef]
Sarntinoranont, M., Lee, S. J., Hong, Y., King, M. A., Subhash, G., Kwon, J., and Moore, D. F., 2012, “High-Strain-Rate Brain Injury Model Using Submerged Acute Rat Brain Tissue Slices,” J. Neurotrauma, 29(2), pp. 418–429. [CrossRef] [PubMed]
Zhang, J., Yoganandan, N., Pintar, F. A., Guan, Y., Shender, B., Paskoff, G., and Laud, P., 2011, “Effects of Tissue Preservation Temperature on High Strain-Rate Material Properties of Brain,” J. Biomech., 44(3), pp. 391–396. [CrossRef] [PubMed]
Zhang, J., Song, B., Pintar, F. A., Yoganandan, N., Chen, W., and Gennarelli, T. A., 2008, “How to Test Brain and Brain Simulant at Ballistic and Blast Strain Rates,” Biomed. Sci. Instrum., 44, pp. 129–134. [PubMed]
Bain, A. C., Shreiber, D. I., and Meaney, D. F., 2003, “Modeling of Microstructural Kinematics During Simple Elongation of Central Nervous System Tissue,” ASME J. Biomech. Eng., 125(6), pp. 798–804. [CrossRef]
Meaney, D. F., 2003, “Relationship Between Structural Modeling and Hyperelastic Material Behavior: Application to CNS White Matter,” Biomech. Model. Mechanobiol., 1(4), pp. 279–293. [CrossRef] [PubMed]
Karami, G., Grundman, N., Abolfathi, N., Naik, A., and Ziejewski, M., 2009, “A Micromechanical Hyperelastic Modeling of Brain White Matter Under Large Deformation,” J. Mech. Behav. Biomed. Mater., 2(3), pp. 243–254. [CrossRef] [PubMed]
Abolfathi, N., Naik, A., Sotudeh Chafi, M., Karami, G., and Ziejewski, M., 2009, “A Micromechanical Procedure for Modelling the Anisotropic Mechanical Properties of Brain White Matter,” Comput. Meth. Biomech. Biomed. Eng., 12(3), pp. 249–262. [CrossRef]
Pan, Y., Shreiber, D. I., and Pelegri, A. A., 2011, “A Transition Model for Finite Element Simulation of Kinematics of Central Nervous System White Matter,” IEEE Trans. Biomed. Eng., 58(12), pp. 3443–3446. [CrossRef] [PubMed]
Bernick, K. B., Prevost, T. P., Suresh, S., and Socrate, S., 2011, “Biomechanics of Single Cortical Neurons,” Acta Biomater., 7(3), pp. 1210–1219. [CrossRef] [PubMed]
Mustata, M., Ritchie, K., and McNally, H. A., 2010, “Neuronal Elasticity as Measured by Atomic Force Microscopy,” J. Neurosci. Meth., 186(1), pp. 35–41. [CrossRef]
Ma, J., Liu, B. F., Xu, Q. Y., and Cui, F. Z., 2005, “AFM Study of Hippocampal Cells Cultured on Silicon Wafers With Nano-Scale Surface Topograph,” Colloids Surf. B Biointerfaces, 44(2–3), pp. 152–157. [CrossRef] [PubMed]
Parpura, V., Haydon, P. G., and Henderson, E., 1993, “Three-Dimensional Imaging of Living Neurons and Glia With the Atomic Force Microscope,” J. Cell Sci., 104(Pt. 2), pp. 427–432. [PubMed]
Miller, W. J., Leventhal, I., Scarsella, D., Haydon, P. G., Janmey, P., and Meaney, D. F., 2009, “Mechanically Induced Reactive Gliosis Causes ATP-Mediated Alterations in Astrocyte Stiffness,” J. Neurotrauma, 26(5), pp. 789–797. [CrossRef] [PubMed]
Haydon, P. G., Lartius, R., Parpura, V., and Marchese-Ragona, S. P., 1996, “Membrane Deformation of Living Glial Cells Using Atomic Force Microscopy,” J. Microsc., 182(Pt. 2), pp. 114–120. [CrossRef] [PubMed]
Holbourn, A. H. S., 1943, “Mechanics of Head Injuries,” Lancet, 242(6267), pp. 438–441. [CrossRef]
Gurdjian, E. S., and Lissner, H. R., 1961, “Photoelastic Confirmation of the Presence of Shear Strains at the Craniospinal Junction in Closed Head Injury,” J. Neurosurg., 18, pp. 58–60. [CrossRef] [PubMed]
Margulies, S. S., Thibault, L. E., and Gennarelli, T. A., 1990, “Physical Model Simulations of Brain Injury in the Primate,” J. Biomech., 23(8), pp. 823–836. [CrossRef] [PubMed]
Bayly, P. V., Ji, S., Song, S. K., Okamoto, R. J., Massouros, P., and Genin, G. M., 2004, “Measurement of Strain in Physical Models of Brain Injury: A Method Based on HARP Analysis of Tagged Magnetic Resonance Images (MRI),” ASME J. Biomech. Eng., 126(4), pp. 523–528. [CrossRef]
Ivarsson, J., Viano, D. C., and Lovsund, P., 2002, “Influence of the Lateral Ventricles and Irregular Skull Base on Brain Kinematics due to Sagittal Plane Head Rotation,” ASME J. Biomech. Eng., 124(4), pp. 422–431. [CrossRef]
Ivarsson, J., Viano, D. C., Lovsund, P., and Aldman, B., 2000, “Strain Relief From the Cerebral Ventricles During Head Impact: Experimental Studies on Natural Protection of the Brain,” J. Biomech., 33(2), pp. 181–189. [CrossRef] [PubMed]
Meaney, D. F., Ross, D. T., Winkelstein, B. A., Brasko, J., Goldstein, D., Bilston, L. B., Thibault, L. E., and Gennarelli, T. A., 1994, “Modification of the Cortical Impact Model to Produce Axonal Injury in the Rat Cerebral Cortex,” J. Neurotrauma, 11(5), pp. 599–612. [CrossRef] [PubMed]
Thibault, L. E., Meaney, D. F., Anderson, B. J., and Marmarou, A., 1992, “Biomechanical Aspects of a Fluid Percussion Model of Brain Injury,” J. Neurotrauma, 9(4), pp. 311–322. [CrossRef] [PubMed]
Meaney, D. F., Smith, D. H., Shreiber, D.I., Bain, A. C., Miller, R. T., Ross, D. T., and Gennarelli, T. A., 1995, “Biomechanical Analysis of Experimental Diffuse Axonal Injury,” J. Neurotrauma, 12(4), pp. 689–694. [CrossRef] [PubMed]
Mediavilla Varas, J., Philippens, M., Meijer, S. R., van den Berg, A. C., Sibma, P. C., van Bree, J. L., and de Vries, D. V., 2011, “Physics of IED Blast Shock Tube Simulations for mTBI Research,” Front. Neurol., 2, pp. 1–14. [CrossRef]
Zhu, F., Wagner, C., Dal Cengio Leonardi, A., Jin, X., Vandevord, P., Chou, C., Yang, K. H., and King, A. I., 2012, “Using a Gel/Plastic Surrogate to Study the Biomechanical Response of the Head Under Air Shock Loading: A Combined Experimental and Numerical Investigation,” Biomech. Model. Mechanobiol., 11(3–4), pp. 341–353. [CrossRef] [PubMed]
Alley, M. D., Schimizze, B. R., and Son, S. F., 2011, “Experimental Modeling of Explosive Blast-Related Traumatic Brain Injuries,” Neuroimage, 54(Suppl. 1), pp. S45–S54. [CrossRef] [PubMed]
Zhang, J., Yoganandan, N., Pintar, F. A., Gennarelli, T. A., and Shender, B. S., 2009, “A Finite Element Study of Blast Traumatic Brain Injury—Biomed 2009,” Biomed. Sci. Instrum., 45, pp. 119–124. [PubMed]
Hardy, W. N., Foster, C. D., Mason, M. J., Yang, K. H., King, A. I., and Tashman, S., 2001, “Investigation of Head Injury Mechanisms Using Neutral Density Technology and High-Speed Biplanar X-ray,” Stapp Car Crash J., 45, pp. 337–368. [PubMed]
Wing, I. D., Merkle, A. C., Armiger, R. S., Carkhuff, B. G., and Roberts, J. C., 2013, “Development of a Miniaturized Position Sensing System for Measuring Brain Motion During Impact—Biomed 2013,” Biomed. Sci. Instrum., 49, pp. 281–288. [PubMed]
Hardy, W. N., Mason, M. J., Foster, C. D., Shah, C. S., Kopacz, J. M., Yang, K. H., King, A. I., Bishop, J., Bey, M., Anderst, W., and Tashman, S., 2007, “A Study of the Response of the Human Cadaver Head to Impact,” Stapp Car Crash J., 51, pp. 17–80. [PubMed]
Zhang, L., Yang, K. H., Dwarampudi, R., Omori, K., Li, T., Chang, K., Hardy, W. N., Khalil, T. B., and King, A. I., 2001, “Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation,” Stapp Car Crash J., 45, pp. 369–394. [PubMed]
Parnaik, Y., Beillas, P., Demetropoulos, C. K., Hardy, W. N., Yang, K. H., and King, A. I., 2004, “The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain,” Stapp Car Crash J., 48, pp. 259–277. [PubMed]
Kleiven, S., and Hardy, W. N., 2002, “Correlation of an FE Model of the Human Head With Local Brain Motion—Consequences for Injury Prediction,” Stapp Car Crash J., 46, pp. 123–144. [PubMed]
Zou, H., Schmiedeler, J. P., and Hardy, W. N., 2007, “Separating Brain Motion Into Rigid Body Displacement and Deformation Under Low-Severity Impacts,” J. Biomech., 40(6), pp. 1183–1191. [CrossRef] [PubMed]
Bayly, P. V., Cohen, T. S., Leister, E. P., Ajo, D.,Leuthardt, E. C., andGenin, G. M., 2005, “Deformation of the Human Brain Induced by Mild Acceleration,” J. Neurotrauma, 22(8), pp. 845–856. [CrossRef] [PubMed]
Sabet, A. A., Christoforou, E., Zatlin, B., Genin, G. M., and Bayly, P. V., 2008, “Deformation of the Human Brain Induced by Mild Angular Head Acceleration,” J. Biomech., 41(2), pp. 307–315. [CrossRef] [PubMed]
Voo, K., Kumaresan, S., Pintar, F. A., Yoganandan, N., and Sances, A., Jr., 1996, “Finite-Element Models of the Human Head,” Med. Biol. Eng. Comput., 34(5), pp. 375–381. [CrossRef] [PubMed]
King, A. I., Ruan, J. S., Zhou, C., Hardy, W. N., and Khalil, T. B., 1995, “Recent Advances in Biomechanics of Brain Injury Research: a Review,” J. Neurotrauma, 12(4), pp. 651–658. [CrossRef] [PubMed]
Mao, H., Zhang, L., Jiang, B., Genthikatti, V., Jin, X., Zhu, F., Makwana, R., Gill, A., Jandir, G., Singh, A., and Yang, K., 2013, “Development of a Finite Element Human Head Model Validated With Forty Nine Loading Cases From Experimental and Real World Impacts,” ASME J. Biomech. Eng, 135(11), p. 111002. [CrossRef]
Holst, H. V., and Li, X., 2013, “The Dynamic Triple Peak Impact Factor in Traumatic Brain Injury Influences Native Protein Structures in Gray and White Matter as Measured With Computational Simulation,” Neurol. Res., 35(8), pp. 782–789. [CrossRef]
Pintar, F. A., Philippens, M. M., Zhang, J., and Yoganandan, N., 2013, “Methodology to Determine Skull Bone and Brain Responses From Ballistic Helmet-to-Head Contact Loading Using Experiments and Finite Element Analysis,” Med. Eng. Phys., 135(11), pp. 1682–1687. [CrossRef]
Lillie, E. M., Urban, J. E., Lynch, S. K., Whitlow, C. T., and Stitzel, J. D., 2013, “Evaluation of the Extent and Distribution of Diffuse— Axonal Injury From Real World Motor Vehicle CrashesBiomed 2013,” Biomed. Sci. Instrum., 49, pp. 297–304. [PubMed]
Watanabe, R., Katsuhara, T., Miyazaki, H., Kitagawa, Y., and Yasuki, T., 2012, “Research of the Relationship of Pedestrian Injury to Collision Speed, Car-Type, Impact Location and Pedestrian Sizes Using Human FE Model (THUMS Version 4),” Stapp Car Crash J., 56, pp. 269–321. [PubMed]
Patton, D. A., McIntosh, A. S., and Kleiven, S., 2013, “The Biomechanical Determinants of Concussion: Finite Element Simulations to Investigate Brain Tissue Deformations During Sporting Impacts to the Unprotected Head,” J. Appl. Biomech (accepted).
Jazi, M. S., Rezaei, A., Karami, G., Azarmi, F., and Ziejewski, M., 2013, “A Computational Study of Influence of Helmet Padding Materials on the Human Brain Under Ballistic Impacts,” Comput. Meth. Biomech. Biomed. Eng, Jan. 3 (ePub ahead of print).
Roberts, J. C., Harrigan, T. P., Ward, E. E., Taylor, T. M., Annett, M. S., and Merkle, A. C., 2012, “Human Head-Neck Computational Model for Assessing Blast Injury,” J. Biomech., 45(16), pp. 2899–2906. [CrossRef] [PubMed]
Wright, R. M., Post, A., Hoshizaki, B., and Ramesh, K. T., 2013, “A Multiscale Computational Approach to Estimating Axonal Damage Under Inertial Loading of the Head,” J. Neurotrauma, 30(2), pp. 102–118. [CrossRef] [PubMed]
Lamy, M., Baumgartner, D., Willinger, R., Yoganandan, N., and Stemper, B. D., 2011, “Study of Mild Traumatic Brain Injuries Using Experiments and Finite Element Modeling,” Ann. Adv. Automot. Med., 55, pp. 125–135. [PubMed]
Cloots, R. J., van Dommelen, J. A., and Geers, M. G., 2012, “A Tissue-Level Anisotropic Criterion for Brain Injury Based on Microstructural Axonal Deformation,” J. Mech. Behav. Biomed. Mater., 5(1), pp. 41–52. [CrossRef] [PubMed]
Chatelin, S., Deck, C., Renard, F., Kremer, S., Heinrich, C., Armspach, J. P., and Willinger, R., 2011, “Computation of Axonal Elongation in Head Trauma Finite Element Simulation,” J. Mech. Behav. Biomed. Mater., 4(8), pp. 1905–1919. [CrossRef] [PubMed]
Kimpara, H., and Iwamoto, M., 2012, “Mild Traumatic Brain Injury Predictors Based on Angular Accelerations During Impacts,” Ann. Biomed. Eng., 40(1), pp. 114–126. [CrossRef] [PubMed]
McAllister, T. W., Ford, J. C., Ji, S., Beckwith, J. G., Flashman, L. A., Paulsen, K., and Greenwald, R. M., 2012, “Maximum Principal Strain and Strain Rate Associated With Concussion Diagnosis Correlates With Changes in Corpus Callosum White Matter Indices,” Ann. Biomed. Eng., 40(1), pp. 127–140. [CrossRef] [PubMed]
Ganpule, S., Gu, L., Alai, A., and Chandra, N., 2012, “Role of Helmet in the Mechanics of Shock Wave Propagation Under Blast Loading Conditions,” Comput. Meth. Biomech. Biomed. Eng., 15(11), pp. 1233–1244. [CrossRef]
Wright, R. M., and Ramesh, K. T., 2012, “An Axonal Strain Injury Criterion for Traumatic Brain Injury,” Biomech. Model. Mechanobiol., 11(1–2), pp. 245–260. [CrossRef] [PubMed]
Yan, W., and Pangestu, O. D., 2011, “A Modified Human Head Model for the Study of Impact Head Injury,” Comput. Meth. Biomech. Biomed. Eng., 14(12), pp. 1049–1057. [CrossRef]
Nyein, M. K., Jason, A. M., Yu, L., Pita, C. M., Joannopoulos, J. D., Moore, D. F., and Radovitzky, R. A., 2010, “In Silico Investigation of Intracranial Blast Mitigation With Relevance to Military Traumatic Brain Injury,” Proc. Natl. Acad. Sci. USA, 107(48), pp. 20703–20708. [CrossRef]
Colgan, N. C., Gilchrist, M. D., and Curran, K. M., 2010, “Applying DTI White Matter Orientations to Finite Element Head Models to Examine Diffuse TBI Under High Rotational Accelerations,” Prog. Biophys. Mol. Biol., 103(2–3), pp. 304–309. [CrossRef] [PubMed]
Lockhart, P., Cronin, D., Williams, K., and Ouellet, S., 2011, “Investigation of Head Response to Blast Loading,” J. Trauma, 70(2), pp. E29–36. [CrossRef] [PubMed]
Cheng, S., and Bilston, L. E., 2010, “Computational Model of the Cerebral Ventricles in Hydrocephalus,” ASME J. Biomech. Eng., 132(5), p. 054501. [CrossRef]
Fijalkowski, R. J., Yoganandan, N., Zhang, J., and Pintar, F. A., 2009, “A Finite Element Model of Region-Specific Response for Mild Diffuse Brain Injury,” Stapp Car Crash J., 53, pp. 193–213. [PubMed]
Chafi, M. S., Karami, G., and Ziejewski, M., 2010, “Biomechanical Assessment of Brain Dynamic Responses due to Blast Pressure Waves,” Ann. Biomed. Eng., 38(2), pp. 490–504. [CrossRef] [PubMed]
Moore, D. F., Jerusalem, A., Nyein, M., Noels, L., Jaffee, M. S., and Radovitzky, R. A., 2009, “Computational Biology—Modeling of Primary Blast Effects on the Central Nervous System,” Neuroimage, 47(Suppl. 2), pp. T10–T20. [CrossRef] [PubMed]
Cloots, R. J., Gervaise, H. M., van Dommelen, J. A., and Geers, M. G., 2008, “Biomechanics of Traumatic Brain Injury: Influences of the Morphologic Heterogeneities of the Cerebral Cortex,” Ann. Biomed. Eng., 36(7), pp. 1203–1215. [CrossRef] [PubMed]
Fredriksson, R., Zhang, L., Bostrom, O., and Yang, K., 2007, “Influence of Impact Speed on Head and Brain Injury Outcome in Vulnerable Road User Impacts to the Car Hood,” Stapp Car Crash J., 51, pp. 155–167. [PubMed]
Kleiven, S., 2007, “Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions,” Stapp Car Crash J., 51, pp. 81–114. [PubMed]
Ishikawa, R., Kato, K., Kubo, M., Uzuka, T., and Takahashi, H., 2006, “Finite Element Analysis and Experimental Study on Mechanism of Brain Injury Using Brain Model,” Conf, Proc, IEEE Eng. Med. Biol. Soc., 1, pp. 1327–1330.
Viano, D. C., Casson, I. R., and Pellman, E. J., 2007, “Concussion in Professional Football: Biomechanics of the Struck Player—part 14,” Neurosurgery, 61(2), pp. 313–327, discussion pp. 327–318. [CrossRef] [PubMed]
Takahashi, T., Kato, K., Ishikawa, R., Watanabe, T., Kubo, M., Uzuka, T., Fujii, Y., and Takahashi, H., 2007, “3-D Finite Element Analysis and Experimental Study on Brain Injury Mechanism,” Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 3613–3616.
Zhang, L., Yang, K. H., and King, A. I., 2004, “A Proposed Injury Threshold for Mild Traumatic Brain Injury,” ASME J. Biomech. Eng., 126(2), pp. 226–236. [CrossRef]
Viano, D. C., Casson, I. R., Pellman, E. J., Zhang, L., King, A. I., and Yang, K. H., 2005, “Concussion in Professional Football: Brain Responses by Finite Element Analysis: Part 9,” Neurosurgery, 57(5), pp. 891–916, discussion pp. 891–916. [CrossRef] [PubMed]
Sanchez-Molina, D., Velazquez-Ameijide, J., Arregui-Dalmases, C., Crandall, J. R., and Untaroiu, C. D., 2012, “Minimization of Analytical Injury Metrics for Head Impact Injuries,” Traffic Inj. Prev., 13(3), pp. 278–285. [CrossRef] [PubMed]
Duma, S. M., and Rowson, S., 2009, “Every Newton Hertz: A Macro to Micro Approach to Investigating Brain Injury,” Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1123–1126.
Rigby, P., and Chan, P., 2009, “Evaluation of the Biofidelity of FMVSS No. 218 Injury Criteria,” Traffic Inj. Prev., 10(2), pp. 170–177. [CrossRef] [PubMed]
Danelson, K. A., Geer, C. P., Stitzel, J. D., Slice, D. E., and Takhounts, E. G., 2008, “Age and Gender Based Biomechanical Shape and Size Analysis of the Pediatric Brain,” Stapp Car Crash J., 52, pp. 59–81. [PubMed]
Takhounts, E. G., Ridella, S. A., Hasija, V., Tannous, R. E., Campbell, J. Q., Malone, D., Danelson, K., Stitzel, J., Rowson, S., and Duma, S., 2008, “Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model,” Stapp Car Crash J., 52, pp. 1–31. [PubMed]
Franklyn, M., Fildes, B., Zhang, L., Yang, K., and Sparke, L., 2005, “Analysis of Finite Element Models for Head Injury Investigation: Reconstruction of Four Real-World Impacts,” Stapp Car Crash J., 49, pp. 1–32. [PubMed]
Takhounts, E. G., Eppinger, R. H., Campbell, J. Q., Tannous, R. E., Power, E. D., and Shook, L. S., 2003, “On the Development of the SIMon Finite Element Head Model,” Stapp Car Crash J., 47, pp. 107–133. [PubMed]
Zhang, J., Yoganandan, N., Pintar, F. A., and Gennarelli, T. A., 2006, “Role of Translational and Rotational Accelerations on Brain Strain in Lateral Head Impact,” Biomed. Sci. Instrum., 42, pp. 501–506. [PubMed]
Rezaei, A., Salimi Jazi, M., and Karami, G., 2013, “Computational Modeling of Human Head Under Blast in Confined and Open Spaces: Primary Blast Injury,” Int. J. Num. Method Biomed Eng, Aug. 28 (ePub ahead of print).
Zhang, L., Makwana, R., and Sharma, S., 2013, “Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet,” Front Neurol., 4(8), pp. 1–12. [CrossRef]
Sundaramurthy, A., Alai, A., Ganpule, S., Holmberg, A., Plougonven, E., and Chandra, N., 2012, “Blast-Induced Biomechanical Loading of the Rat: an Experimental and Anatomically Accurate Computational Blast Injury Model,” J. Neurotrauma, 29(13), pp. 2352–2364. [CrossRef] [PubMed]
Panzer, M. B., Myers, B. S., Capehart, B. P., and Bass, C. R., 2012, “Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation,” Ann. Biomed. Eng., 40(7), pp. 1530–1544. [CrossRef] [PubMed]
Mao, H., Zhang, L., Yang, K. H., and King, A. I., 2006, “Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat,” Stapp Car Crash J., 50, pp. 583–600. [PubMed]
Levchakov, A., Linder-Ganz, E., Raghupathi, R., Margulies, S. S., and Gefen, A., 2006, “Computational Studies of Strain Exposures in Neonate and Mature Rat Brains During Closed Head Impact,” J. Neurotrauma, 23(10), pp. 1570–1580. [CrossRef] [PubMed]
Pena, A., Pickard, J. D., Stiller, D., Harris, N. G., and Schuhmann, M. U., 2005, “Brain Tissue Biomechanics in Cortical Contusion Injury: a Finite Element Analysis,” Acta Neurochir. Suppl., 95, pp. 333–336. [CrossRef] [PubMed]
Gefen, A., Gefen, N., Zhu, Q., Raghupathi, R., and Margulies, S. S., 2003, “Age-Dependent Changes in Material Properties of the Brain and Braincase of the Rat,” J. Neurotrauma, 20(11), pp. 1163–1177. [CrossRef] [PubMed]
Zhu, F., Skelton, P., Chou, C. C., Mao, H., Yang, K. H., and King, A. I., 2013, “Biomechanical Responses of a Pig Head Under Blast Loading: a Computational Simulation,” Int. J. Num. Meth. Biomed. Eng., 29(3), pp. 392–407. [CrossRef]
Coats, B., Eucker, S. A., Sullivan, S., and Margulies, S. S., 2012, “Finite Element Model Predictions of Intracranial Hemorrhage From Non-Impact, Rapid Head Rotations in the Piglet,” Int. J. Dev. Neurosci., 30(3), pp. 191–200. [CrossRef] [PubMed]
Zhu, Q., Prange, M., and Margulies, S., 2006, “Predicting Unconsciousness From a Pediatric Brain Injury Threshold,” Dev. Neurosci., 28(4–5), pp. 388–395. [CrossRef] [PubMed]
Coats, B., and Margulies, S. S., 2006, “Material Properties of Porcine Parietal Cortex,” J. Biomech., 39(13), pp. 2521–2525. [CrossRef] [PubMed]
Margulies, S. S., and Thibault, K. L., 2000, “Infant Skull and Suture Properties: Measurements and Implications for Mechanisms of Pediatric Brain Injury,” ASME J. Biomech. Eng., 122(4), pp. 364–371. [CrossRef]
Mazumder, M. M., Miller, K., Bunt, S., Mostayed, A., Joldes, G., Day, R., Hart, R., and Wittek, A., 2013, “Mechanical Properties of the Brain-Skull Interface,” Acta Bioeng. Biomech., 15(2), pp. 3–11. [PubMed]
Maity, P., and Tekalur, S. A., 2011, “Finite Element Analysis of Ramming in Ovis canadensis,” ASME J. Biomech. Eng., 133(2), p. 021009. [CrossRef]
Anderson, R. W., Brown, C. J., Blumbergs, P. C., McLean, A. J., and Jones, N. R., 2003, “Impact Mechanics and Axonal Injury in a Sheep Model,” J. Neurotrauma, 20(10), pp. 961–974. [CrossRef] [PubMed]
Mao, H., Yang, K. H., King, A. I., and Yang, K., 2010, “Computational Neurotrauma—Design, Simulation, and Analysis of Controlled Cortical Impact Model,” Biomech. Model. Mechanobiol., 9(6), pp. 763–772. [CrossRef] [PubMed]
Li, Y., Zhang, L., Kallakuri, S., Zhou, R., and Cavanaugh, J. M., 2011, “Quantitative Relationship Between Axonal Injury and Mechanical Response in a Rodent Head Impact Acceleration Model,” J. Neurotrauma, 28(9), pp. 1767–1782. [CrossRef] [PubMed]
Singh, A., Kallakuri, S., Chen, C., and Cavanaugh, J. M., 2009, “Structural and Functional Changes in Nerve Roots due to Tension at Various Strains and Strain Rates: an in-vivo Study,” J. Neurotrauma, 26(4), pp. 627–640. [CrossRef] [PubMed]
Singh, A., Lu, Y., Chen, C., Kallakuri, S., and Cavanaugh, J. M., 2006, “A New Model of Traumatic Axonal Injury to Determine the Effects of Strain and Displacement Rates,” Stapp Car Crash J., 50, pp. 601–623. [PubMed]
Bain, A. C., Raghupathi, R., and Meaney, D. F., 2001, “Dynamic Stretch Correlates to Both Morphological Abnormalities and Electrophysiological Impairment in a Model of Traumatic Axonal Injury,” J. Neurotrauma, 18(5), pp. 499–511. [CrossRef] [PubMed]
Bain, A. C., and Meaney, D. F., 2000, “Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury,” ASME J. Biomech. Eng., 122(6), pp. 615–622. [CrossRef]
LaPlaca, M. C., Prado, G. R., Cullen, D. K., and Irons, H. R., 2006, “High Rate Shear Insult Delivered to Cortical Neurons Produces Heterogeneous Membrane Permeability Alterations,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 1, pp. 2384–2387. [PubMed]
Hallow, D. M., Seeger, R. A., Kamaev, P. P., Prado, G. R., LaPlaca, M. C., and Prausnitz, M. R., 2008, “Shear-Induced Intracellular Loading of Cells With Molecules by Controlled Microfluidics,” Biotechnol. Bioeng., 99(4), pp. 846–854. [CrossRef] [PubMed]
LaPlaca, M. C., Cullen, D. K., McLoughlin, J. J., and Cargill, R. S., 2nd, 2005, “High Rate Shear Strain of Three-Dimensional Neural Cell Cultures: A New in vitro Traumatic Brain Injury Model,” J. Biomech., 38(5), pp. 1093–1105. [CrossRef] [PubMed]
Geddes, D. M., LaPlaca, M. C., and Cargill, R. S., 2nd, 2003, “Susceptibility of Hippocampal Neurons to Mechanically Induced Injury,” Exp. Neurol., 184(1), pp. 420–427. [CrossRef] [PubMed]
McKinney, J. S., Willoughby, K. A., Liang, S., and Ellis, E. F., 1996, “Stretch-Induced Injury of Cultured Neuronal, Glial, and Endothelial Cells. Effect of Polyethylene Glycol-Conjugated Superoxide Dismutase,” Stroke, 27(5), pp. 934–940. [CrossRef] [PubMed]
Lusardi, T. A., Wolf, J. A., Putt, M. E., Smith, D. H., and Meaney, D. F., 2004, “Effect of Acute Calcium Influx After Mechanical Stretch Injury in vitro on the Viability of Hippocampal Neurons,” J. Neurotrauma, 21(1), pp. 61–72. [CrossRef] [PubMed]
Spaethling, J. M., Geddes-Klein, D. M., Miller, W. J., von Reyn, C. R., Singh, P., Mesfin, M., Bernstein, S. J., and Meaney, D. F., 2007, “Linking Impact to Cellular and Molecular Sequelae of CNS Injury: Modeling in vivo Complexity With in vitro Simplicity,” Prog. Brain Res., 161, pp. 27–39. [CrossRef] [PubMed]
Ferrario, C. R., Ndukwe, B. O., Ren, J., Satin, L. S., and Goforth, P. B., 2013, “Stretch Injury Selectively Enhances Extrasynaptic, GluN2B-Containing NMDA Receptor Function in Cortical Neurons,” J. Neurophysiol., 110(1), pp. 131–140. [CrossRef] [PubMed]
Goforth, P. B., Ellis, E. F., and Satin, L. S., 2004, “Mechanical Injury Modulates AMPA Receptor Kinetics via an NMDA Receptor-Dependent Pathway,” J. Neurotrauma, 21(6), pp. 719–732. [CrossRef] [PubMed]
Kao, C. Q., Goforth, P. B., Ellis, E. F., and Satin, L. S., 2004, “Potentiation of GABA(A) Currents After Mechanical Injury of Cortical Neurons,” J. Neurotrauma, 21(3), pp. 259–270. [CrossRef] [PubMed]
Di, X., Goforth, P. B., Bullock, R., Ellis, E., and Satin, L., 2000, “Mechanical Injury Alters Volume Activated Ion Channels in Cortical Astrocytes,” Acta Neurochir. Suppl., 76, pp. 379–383. [PubMed]
Goforth, P. B., Ellis, E. F., and Satin, L. S., 1999, “Enhancement of AMPA-Mediated Current After Traumatic Injury in Cortical Neurons,” J. Neurosci., 19(17), pp. 7367–7374. [PubMed]
Singh, P., Doshi, S., Spaethling, J. M., Hockenberry, A. J., Patel, T. P., Geddes-Klein, D. M., Lynch, D. R., and Meaney, D. F., 2012, “N-methyl-D-aspartate Receptor Mechanosensitivity is Governed by C Terminus of NR2B Subunit,” J. Biol. Chem., 287(6), pp. 4348–4359. [CrossRef] [PubMed]
Kilinc, D., Gallo, G., and Barbee, K. A., 2009, “Mechanical Membrane Injury Induces Axonal Beading Through Localized Activation of Calpain,” Exp. Neurol., 219(2), pp. 553–561. [CrossRef] [PubMed]
Kilinc, D., Gallo, G., and Barbee, K. A., 2008, “Mechanically-Induced Membrane Poration Causes Axonal Beading and Localized Cytoskeletal Damage,” Exp. Neurol., 212(2), pp. 422–430. [CrossRef] [PubMed]
Barbee, K. A., 2005, “Mechanical Cell Injury,” Ann. NY Acad. Sci., 1066, pp. 67–84. [CrossRef]
Cullen, D. K., Vernekar, V. N., and LaPlaca, M. C., 2011, “Trauma-Induced Plasmalemma Disruptions in Three-Dimensional Neural Cultures Are Dependent on Strain Modality and Rate,” J. Neurotrauma, 28(11), pp. 2219–2233. [CrossRef] [PubMed]
LaPlaca, M. C., Prado, G. R., Cullen, D., and Simon, C. M., 2009, “Plasma Membrane Damage as a Marker of Neuronal Injury,” Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1113–1116.
Geddes, D. M., Cargill, R. S., 2nd, and LaPlaca, M. C., 2003, “Mechanical Stretch to Neurons Results in a Strain Rate and Magnitude-Dependent Increase in Plasma Membrane Permeability,” J. Neurotrauma, 20(10), pp. 1039–1049. [CrossRef] [PubMed]
LaPlaca, M. C., and Thibault, L. E., 1998, “Dynamic Mechanical Deformation of Neurons Triggers an Acute Calcium Response and Cell Injury Involving the N-methyl-D-aspartate glutamate Receptor,” J. Neurosci. Res., 52(2), pp. 220–229. [CrossRef] [PubMed]
Hue, C. D., Cao, S., Haider, S. F., Vo, K. V., Effgen, G. B., Vogel, E.3rd, Panzer, M. B., Bass, C. R., Meaney, D. F., and Morrison, B., 3rd, 2013, “Blood-Brain Barrier Dysfunction After Primary Blast Injury in vitro,” J. Neurotrauma., 30(19), pp. 1652–1663. [CrossRef]
Panzer, M. B., Matthews, K. A., Yu, A. W., Morrison, B., 3rd, Meaney, D. F., and Bass, C. R., 2012, “A Multiscale Approach to Blast Neurotrauma Modeling: Part I—Development of Novel Test Devices for in vivo and in vitro Blast Injury Models,” Front. Neurol., 3, pp. 1–11. [CrossRef]
Arun, P., Abu-Taleb, R., Valiyaveettil, M., Wang, Y., Long, J. B., and Nambiar, M. P., 2012, “Transient Changes in Neuronal Cell Membrane Permeability After Blast Exposure,” Neuroreport, 23(6), pp. 342–346. [CrossRef] [PubMed]
Skotak, M., Wang, F., and Chandra, N., 2012, “An in vitro Injury Model for SH-SY5Y Neuroblastoma Cells: effect of Strain and Strain Rate,” J. Neurosci. Meth., 205(1), pp. 159–168. [CrossRef]
Nienaber, M., Lee, J. S., Feng, R., and Lim, J. Y., 2011, “Impulsive Pressurization of Neuronal Cells for Traumatic Brain Injury Study,” J. Vis. Exp., 56(e2723), pp. 1–4.
Alford, P. W., Dabiri, B. E., Goss, J. A., Hemphill, M. A., Brigham, M. D., and Parker, K. K., 2011, “Blast-Induced Phenotypic Switching in Cerebral Vasospasm,” Proc. Natl. Acad. Sci. USA, 108(31), pp. 12705–12710. [CrossRef]
Arun, P., Spadaro, J., John, J., Gharavi, R. B., Bentley, T. B., and Nambiar, M. P., 2011, “Studies on Blast Traumatic Brain Injury Using in-vitro Model With Shock Tube,” Neuroreport, 22(8), pp. 379–384. [CrossRef] [PubMed]
Nakagawa, A., Manley, G. T., Gean, A. D., Ohtani, K., Armonda, R., Tsukamoto, A., Yamamoto, H., Takayama, K., and Tominaga, T., 2011, “Mechanisms of Primary Blast-Induced Traumatic Brain Injury: Insights From Shock-Wave Research,” J. Neurotrauma, 28(6), pp. 1101–1119. [CrossRef] [PubMed]
Sonden, A., Svensson, B., Roman, N., Ostmark, H., Brismar, B., Palmblad, J., and Kjellstrom, B. T., 2000, “Laser-Induced Shock Wave Endothelial Cell Injury,” Lasers Surg. Med., 26(4), pp. 364–375. [CrossRef] [PubMed]
Cater, H. L., Gitterman, D., Davis, S. M., Benham, C. D., Morrison, B., 3rd, and Sundstrom, L. E., 2007, “Stretch-Induced Injury in Organotypic Hippocampal Slice Cultures Reproduces in vivo Post-Traumatic Neurodegeneration: Role of Glutamate Receptors and Voltage-Dependent calcium Channels,” J. Neurochem., 101(2), pp. 434–447. [CrossRef] [PubMed]
Cater, H. L., Sundstrom, L. E., and Morrison, B., 3rd, 2006, “Temporal Development of Hippocampal Cell Death is Dependent on Tissue Strain but Not Strain Rate,” J. Biomech., 39(15), pp. 2810–2818. [CrossRef] [PubMed]
Elkin, B. S., and Morrison, B., 3rd, 2007, “Region-Specific Tolerance Criteria for the Living Brain,” Stapp Car Crash J., 51, pp. 127–138. [PubMed]
Morrison, B.3rd, Cater, H. L., Benham, C. D., and Sundstrom, L. E., 2006, “An in vitro Model of Traumatic Brain Injury Utilising Two-Dimensional Stretch of Organotypic Hippocampal Slice Cultures,” J. Neurosci. Meth., 150(2), pp. 192–201. [CrossRef]
Morrison, B.3rd, Cater, H. L., Wang, C. C., Thomas, F. C., Hung, C. T., Ateshian, G. A., and Sundstrom, L. E., 2003, “A Tissue Level Tolerance Criterion for Living Brain Developed With an in vitro Model of Traumatic Mechanical Loading,” Stapp Car Crash J., 47, pp. 93–105. [PubMed]
Morrison, B.3rd, Meaney, D. F., and McIntosh, T. K., 1998, “Mechanical Characterization of an in vitro Device Designed to Quantitatively Injure Living Brain Tissue,” Ann. Biomed. Eng., 26(3), pp. 381–390. [CrossRef] [PubMed]
Yu, Z., Elkin, B. S., and Morrison, B., 2009, “Quantification of Functional Alterations After in vitro Traumatic Brain Injury,” Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1135–1138.
Yu, Z., and Morrison, B., 3rd, 2010, “Experimental Mild Traumatic Brain Injury Induces Functional Alteration of the Developing Hippocampus,” J. Neurophysiol., 103(1), pp. 499–510. [CrossRef] [PubMed]
Mertz, H. J., Irwin, A. L., and Prasad, P., 2003, “Biomechanical and Scaling Bases for Frontal and Side Impact Injury Assessment Reference Values,” Stapp Car Crash J., 47, pp. 155–188. [PubMed]
Bass, C. R., Rafaels, K. A., and Salzar, R. S., 2008, “Pulmonary Injury Risk Assessment for Short-Duration Blasts,” J. Trauma, 65(3), pp. 604–615. [CrossRef] [PubMed]
Prado, G. R., Ross, J. D., DeWeerth, S. P., and LaPlaca, M. C., 2005, “Mechanical Trauma Induces Immediate Changes in Neuronal Network Activity,” J. Neural. Eng., 2(4), pp. 148–158. [CrossRef] [PubMed]
Yu, Z., Graudejus, O., Tsay, C., Lacour, S. P., Wagner, S., and Morrison, B., 3rd, 2009, “Monitoring Hippocampus Electrical Activity in vitro on an Elastically Deformable Microelectrode Array,” J. Neurotrauma, 26(7), pp. 1135–1145. [CrossRef] [PubMed]
Duma, S. M., Manoogian, S. J., Bussone, W. R., Brolinson, P. G., Goforth, M. W., Donnenwerth, J. J., Greenwald, R. M., Chu, J. J., and Crisco, J. J., 2005, “Analysis of Real-Time Head Accelerations in Collegiate Football Players,” Clin. J. Sport Med., 15(1), pp. 3–8. [CrossRef] [PubMed]
Rowson, S., Beckwith, J. G., Chu, J. J., Leonard, D. S., Greenwald, R. M., and Duma, S. M., 2011, “A Six Degree of Freedom Head Acceleration Measurement Device for Use in Football,” J. Appl. Biomech., 27(1), pp. 8–14. [PubMed]
Greenwald, R. M., Gwin, J. T., Chu, J. J., and Crisco, J. J., 2008, “Head Impact Severity Measures for Evaluating Mild Traumatic Brain Injury Risk Exposure,” Neurosurgery, 62(4), pp. 789–798, discussion p. 798. [CrossRef] [PubMed]
Crisco, J. J., Wilcox, B. J., Beckwith, J. G., Chu, J. J., Duhaime, A. C., Rowson, S., Duma, S. M., Maerlender, A. C., McAllister, T. W., and Greenwald, R. M., 2011, “Head Impact Exposure in Collegiate Football Players,” J. Biomech., 44(15), pp. 2673–2678. [CrossRef] [PubMed]
Beckwith, J. G., Greenwald, R. M., Chu, J. J., Crisco, J. J., Rowson, S., Duma, S. M., Broglio, S. P., McAllister, T. W., Guskiewicz, K. M., Mihalik, J. P., Anderson, S., Schnebel, B., Brolinson, P. G., and Collins, M. W., 2013, “Head Impact Exposure Sustained by Football Players on Days of Diagnosed Concussion,” Med. Sci. Sports Exerc., 45(4), pp. 737–746. [CrossRef] [PubMed]
Pellman, E. J., Viano, D. C., Tucker, A. M., and Casson, I. R., 2003, “Concussion in Professional Football: Location and Direction of Helmet Impacts—Part 2,” Neurosurgery, 53(6), pp. 1328–1340, discussion pp. 1340–1321. [CrossRef] [PubMed]
Pellman, E. J.Viano, D. C.Tucker, A. M.Casson, I. R. and Waeckerle, J. F., 2003, “Concussion in Professional football: Reconstruction of game Impacts and Injuries,” Neurosurgery, 53(4), pp. 799–812, discussion pp. 812–794. [PubMed]
Casson, I. R.Viano, D. C.Powell, J. W. and Pellman, E. J., 2010, “Twelve years of national football league Concussion data,” Sports Health, 2(6), pp. 471–483. [CrossRef] [PubMed]
Jadischke, R., Viano, D. C., Dau, N., King, A. I., and McCarthyJ., 2013, “On the Accuracy of the Head Impact Telemetry (HIT) System Used in Football Helmets,” J. Biomech., 46(13), pp. 2310–2315. [CrossRef] [PubMed]
Allison, M. A., Kang, Y. S., Maltese, M. R., Bolte, J. H.4th, Arbogast, K. B., 2013, “Validation of a Helmet-Based System to Measure Head Impact Biomechanics in Ice Hockey,” Med. Sci. Sports Exerc., 46(1), pp. 115–123. [CrossRef]
Chu, J. J., Beckwith, J. G., Leonard, D. S., Paye, C. M., and Greenwald, R. M., 2012, “Development of a Multimodal Blast Sensor for Measurement of Head Impact and Over-Pressurization Exposure,” Ann. Biomed. Eng., 40(1), pp. 203–212. [CrossRef] [PubMed]
Wu, N., Wang, W., Tian, Y., Zou, X., Maffeo, M., Niezrecki, C., Chen, J., and Wang, X., 2011, “Low-Cost Rapid Miniature Optical Pressure Sensors for Blast Wave Measurements,” Opt. Express, 19(11), pp. 10797–10804. [CrossRef] [PubMed]
Cullen, D. K., Browne, K. D., Xu, Y., Adeeb, S., Wolf, J. A., McCarron, R. M., Yang, S., Chavko, M., and Smith, D. H., 2011, “Blast-Induced Color Change in Photonic Crystals Corresponds With Brain Pathology,” J. Neurotrauma, 28(11), pp. 2307–2318. [CrossRef] [PubMed]
Palm, E. J., Bass, C. R., Panzer, M. B., Shridharani, J., Salzar, R. S., Rafaels, K. A., Waliko, T., Weiss, G., Perritt, C., Haynes, N., and Masters, K., 2010, “Test Methodology for the Assessment of Blast Trauma Behind Military Helmets,” Personal Armor Systems Symposium (PASS-2010), Quebec City, Canada.
Shridharani, J., Wood, G. W., Panzer, M. B., Matthews, K. A., Perritt, C., Masters, K., and Bass, C. R., 2012, “Blast Effects Behind Ballistic Protective Helmets,” Personal Armor Systems Symposium Nuremberg, Germany.
Smith, D. H., Johnson, V. E., and StewartW., 2013, “Chronic Neuropathologies of Single and Repetitive TBI: Substrates of Dementia?,” Nat. Rev. Neurol., 9(4), pp. 211–221. [CrossRef] [PubMed]


Grahic Jump Location
Fig. 1

The research cycle of reducing the societal burden of traumatic brain injury. Epidemiological evidence collected from clinical studies, and analysis of motor vehicles crashes, forms part of the first tier for defining where the most significant brain injuries occur and if these injuries change over time (red). The work transitions to the research laboratory (green) for defining how these injuries occur, establishing key relationships between the physical inputs in these environments and their resulting injuries. The inevitable translation of this new knowledge into the next generation of protection technologies completes the cycle and also triggers the next research cycle for focusing efforts on the most significant injuries in the population. One broad research cycle has already occurred for moderate and severe brain injuries, resulting in advances in helmet protection technologies and passive safety systems. Emerging efforts have now shifted to include more focus on mild TBI, which occurs across both the civilian and military population.

Grahic Jump Location
Fig. 2

(a) The relative incidence of TBI in the civilian and military population, and their causes. Excluding penetrating TBI and unclassified injuries, the relative incidence rates for the military and civilian population appear distinct. However, the possible underreporting of mild TBI in the military may alter the relative incidence rates significantly. (b) Within each population, the causes of TBI span a broad range. Primary blast TBI is unique to the military environment.

Grahic Jump Location
Fig. 3

Large variance in reported white matter and brain material properties by study. Early work estimated both bulk and shear modulus. In the past two decades, work has shown that brain is one of the softest biological tissues, more than ten times more compliant than the earliest measurements.

Grahic Jump Location
Fig. 4

Multimodal modeling approaches for defining the structural response of the brain to applied mechanical loading. Historically, experimental approaches led to insight into the most important types of mechanical loading associated with severe brain injuries. These experimental approaches span both human and animate models and use physical surrogates to complement either scale. The most significant development in the past decade is the growth of computational approaches to examine the biomechanics of TBI in both experimental models and humans. However, the need to validate these models for numerical issues (e.g., mesh convergence, mesh quality) as well as biofidelic output is even higher given their increased complexity and proliferation.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In