0
Research Papers

Diagnostic Uncertainties During Assessment of Serial Coronary Stenoses: An In Vitro Study

[+] Author and Article Information
Gavin A. D’Souza, Srikara V. Peelukhana

School of Dynamic Systems,
Mechanical Engineering Program,
University of Cincinnati,
Cincinnati, OH 45221

Rupak K. Banerjee

School of Dynamic Systems,
Mechanical Engineering Program,
University of Cincinnati,
Cincinnati, OH 45221
e-mail: rupak.banerjee@uc.edu

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received September 22, 2013; final manuscript received December 16, 2013; accepted manuscript posted December 23, 2013; published online February 5, 2014. Editor: Victor H. Barocas.

J Biomech Eng 136(2), 021026 (Feb 05, 2014) (11 pages) Paper No: BIO-13-1442; doi: 10.1115/1.4026317 History: Received September 22, 2013; Revised December 16, 2013; Accepted December 23, 2013

Currently, the diagnosis of coronary stenosis is primarily based on the well-established functional diagnostic parameter, fractional flow reserve (FFR: ratio of pressures distal and proximal to a stenosis). The threshold of FFR has a “gray” zone of 0.75–0.80, below which further clinical intervention is recommended. An alternate diagnostic parameter, pressure drop coefficient (CDP: ratio of trans-stenotic pressure drop to the proximal dynamic pressure), developed based on fundamental fluid dynamics principles, has been suggested by our group. Additional serial stenosis, present downstream in a single vessel, reduces the hyperemic flow, Q˜h, and pressure drop, Δp˜, across an upstream stenosis. Such hemodynamic variations may alter the values of FFR and CDP of the upstream stenosis. Thus, in the presence of serial stenoses, there is a need to evaluate the possibility of misinterpretation of FFR and test the efficacy of CDP of individual stenoses. In-vitro experiments simulating physiologic conditions, along with human data, were used to evaluate nine combinations of serial stenoses. Different cases of upstream stenosis (mild: 64% area stenosis (AS) or 40% diameter stenosis (DS); intermediate: 80% AS or 55% DS; and severe: 90% AS or 68% DS) were tested under varying degrees of downstream stenosis (mild, intermediate, and severe). The pressure drop-flow rate characteristics of the serial stenoses combinations were evaluated for determining the effect of the downstream stenosis on the upstream stenosis. In general, Q˜h and Δp˜ across the upstream stenosis decreased when the downstream stenosis severity was increased. The FFR of the upstream mild, intermediate, and severe stenosis increased by a maximum of 3%, 13%, and 19%, respectively, when the downstream stenosis severity increased from mild to severe. The FFR of a stand-alone intermediate stenosis under a clinical setting is reported to be ∼0.72. In the presence of a downstream stenosis, the FFR values of the upstream intermediate stenosis were either within (0.77 for 80%–64% AS and 0.79 for 80%–80% AS) or above (0.88 for 80%–90% AS) the “gray” zone (0.75–0.80). This artificial increase in the FFR value within or above the “gray” zone for an upstream intermediate stenosis when in series with a clinically relevant downstream stenosis could lead to misinterpretation of functional stenosis severity. In contrast, a distinct range of CDP values was observed for each case of upstream stenosis (mild: 8–10; intermediate: 47–54; and severe: 130–155). The nonoverlapping range of CDP could better delineate the effect of the downstream stenosis from the upstream stenosis and allow for the accurate diagnosis of the functional severity of the upstream stenosis.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Feldman, R. L., 1978, “Hemodynamic Effects of Long and Multiple Coronary Arterial Narrowings,” Chest, 74(3), p. 280–285. [CrossRef]
Dorros, G., Lewin, R. F., and Janke, L., 1987, “Multiple Lesion Transluminal Coronary Angioplasty in Single and Multivessel Coronary Artery Disease: Acute Outcome and Long-Term Effect,” J. Am. Coll. Cardiol., 10(5), pp. 1007–1013. [CrossRef] [PubMed]
White, C. W., Wright, C. B., Doty, D. B., Hiratza, L. F., Eastham, C. L., Harrison, D. G., and Marcus, M. L., 1984, “Does Visual Interpretation of the Coronary Arteriogram Predict the Physiologic Importance of a Coronary Stenosis?,” N. Engl. J. Med., 310(13), pp. 819–824. [CrossRef] [PubMed]
Pijls, N. H., van Son, J. A., Kirkeeide, R. L., De Bruyne, B., and Gould, K. L., 1993, “Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity Before and After Percutaneous Transluminal Coronary Angioplasty,” Circulation, 87(4), pp. 1354–1367. [CrossRef] [PubMed]
Kern, M. J., Lerman, A., Bech, J. W., De Bruyne, B., Eeckhout, E., Fearon, W. F,.Higano, S. T., Lim, M. J., Meuwissen, M., Piek, J. J., Pijls, N. H., Siebes, M., and Spaan, J. A., 2006, “Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory: A Scientific Statement From the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology,” Circulation, 114(12), pp. 1321–1341. [CrossRef] [PubMed]
Spaan, J. A., Piek, J. J., Hoffman, J. I., and Siebes, M., 2006, “Physiological Basis of Clinically Used Coronary Hemodynamic Indices,” Circulation, 113(3), pp. 446–455. [CrossRef] [PubMed]
Pijls, N. H., Van Gelder, B., Van der Voort, P., Peels, K., Bracke, F. A., Bonnier, H. J., and el Gamal, M. I., 1995, “Fractional Flow Reserve. A Useful Index to Evaluate the Influence of an epicardial Coronary Stenosis on Myocardial Blood Flow,” Circulation, 92(11), pp. 3183–3193. [CrossRef] [PubMed]
Pijls, N. H., van Schaardenburgh, P., Manoharan, G., Boersma, E., Bech, J. W., van’t Veer, M., Bar, F., Hoorntje, J., Koolen, J., Wijns, W., and de Bruyne, B., 2007, “Percutaneous Coronary Intervention of Functionally Nonsignificant Stenosis: 5-Year Follow-Up of the DEFER Study,” J. Am.Coll. Cardiol., 49(21), pp. 2105–2111. [CrossRef] [PubMed]
Pijls, N. H., Fearon, W. F., Tonino, P. A., Siebert, U., Ikeno, F., Bornschein, B., van’t Veer, M., Klauss, V., Manoharan, G., Engstrom, T., Oldroyd, K. G., Ver Lee, P. N., MacCarthy, P. A., and De Bruyne, B., 2010, “Fractional Flow Reserve Versus Angiography for Guiding Percutaneous Coronary Intervention in Patients With Multivessel Coronary Artery Disease: 2-Year Follow-Up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) Study,” J. Am. Coll. Cardiol., 56(3), pp. 177–184. [CrossRef] [PubMed]
Steven, J. L., Mark, A. M., and Mark, A. G., 1997, “Fractional Flow Reserve,” American College of Cardiology Current Journal Review, 6(1), pp. 34–35.
Pijls, N. H. J., 2003, “Is it Time to Measure Fractional Flow Reserve in all Patients?,” J. Am. Col. Cardiol., 41(7), pp. 1122–1124. [CrossRef]
Silber, S., Albertsson, P., Aviles, F. F., Camici, P. G., Colombo, A., Hamm, C., Jorgensen, E., Marco, J., Nordrehaug, J. E., Ruzyllo, W., Urban, P., Stone, G. W., and Wijns, W., 2005, “Guidelines for Percutaneous Coronary Interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology,” Eur. Heart J., 26(8), pp. 804–847. [CrossRef] [PubMed]
Fearon, W. F., Tonino, P. A., De Bruyne, B., Siebert, U., and Pijls, N. H., 2007, “Rationale and Design of the Fractional Flow Reserve Versus Angiography for Multivessel Evaluation (FAME) Study,” Am. Heart J., 154(4), pp. 632–636. [CrossRef] [PubMed]
Gould, K. L., Lipscomb, K., and Hamilton, G. W., 1974, “Physiologic Basis for Assessing Critical Coronary Stenosis. Instantaneous Flow Response and Regional Distribution During Coronary Hyperemia as Measures of Coronary Flow Reserve,” Am. J. Cardiol., 33(1), pp. 87–94. [CrossRef] [PubMed]
Bradley, A. J., and Alpert, J. S., 1991, “Coronary Flow Reserve,” Am. Heart J., 122(4), pp. 1116–1128. [CrossRef] [PubMed]
Hoffman, J. I., 1987, “A Critical View of Coronary Reserve,” Circulation, 75(1), pp. I6–11. [PubMed]
Rossen, J. D., and Winniford, M. D., 1993, “Effect of Increases in Heart Rate and Arterial Pressure on Coronary Flow Reserve in Humans,” J. Am. Coll. Cardiol., 21(2), pp. 343–348. [CrossRef] [PubMed]
de Bruyne, B., Bartunek, J., Sys, S. U., Pijls, N. H. J., Heyndrickx, G. R., and Wijns, W., 1996, “Simultaneous Coronary Pressure and Flow Velocity Measurements in Humans: Feasibility, Reproducibility, and Hemodynamic Dependence of Coronary Flow Velocity Reserve, Hyperemic Flow Versus Pressure Slope Index, and Fractional Flow Reserve,” Circulation, 94(8), pp. 1842–1849. [CrossRef] [PubMed]
Pijls, N. H., Kern, M. J., Yock, P. G., and De Bruyne, B., 2000, “Practice and Potential Pitfalls of Coronary Pressure Measurement,” Cathet. Cardiovasc. Interv., 49(1), pp. 1–16. [CrossRef]
Siebes, M., Chamuleau, S. A., Meuwissen, M., Piek, J. J., and Spaan, J. A., 2002, “Influence of Hemodynamic Conditions on Fractional Flow Reserve: Parametric Analysis of Underlying Model,” Am. J. Physiol. Heart Circ. Physiol., 283(4), pp. H1462–H1470. [PubMed]
Peelukhana, S. V., Back, L. H., and Banerjee, R. K., 2009, “Influence of Coronary Collateral Flow on Coronary Diagnostic Parameters: An in vitro Study,” J. Biomech., 42(16), pp. 2753–2759. [CrossRef] [PubMed]
Banerjee, R. K., Sinha Roy, A., Back, L. H., Back, M. R., Khoury, S. F., and Millard, R. W., 2007, “Characterizing Momentum Change and Viscous Loss of a Hemodynamic Endpoint in Assessment of Coronary Lesions,” J. Biomech., 40(3), pp. 652–662. [CrossRef] [PubMed]
Banerjee, R. K., Ashtekar, K. D., Effat, M. A., Helmy, T. A., Kim, E., Schneeberger, E. W., Sinha, R. A., Gottliebson, W. M., and Back, L. H., 2009, “Concurrent Assessment of Epicardial Coronary Artery Stenosis and Microvascular Dysfunction Using Diagnostic Endpoints Derived From Fundamental Fluid Dynamics Principles,” J. Invasive Cardiol., 21(10), pp. 511–517. [PubMed]
Kolli, K. K., Banerjee, R. K., Peelukhana, S. V., Helmy, T. A., Leesar, M. A., Arif, I., Schneeberger, E. W., Hand, D., Succop, P., Gottliebson, W. M., and Effat, M. A., 2011, “Influence of Heart Rate on Fractional Flow Reserve, Pressure Drop Coefficient, and Lesion Flow Coefficient for Epicardial Coronary Stenosis in a Porcine Model,” Am. J. Physiol. Heart Circ. Physiol., 300(1), pp. H382–H387. [CrossRef] [PubMed]
Kolli, K. K., Helmy, T. A., Peelukhana, S. V., Arif, I., Leesar, M. A., Back, L. H., Banerjee, R. K., and Effat, M. A., 2013, “Functional Diagnosis of Coronary Stenoses Using Pressure Drop Coefficient: A Pilot Study in Humans,” Cathet. Cardiovasc. Interv., to be published.
Peelukhana, S. V., Banerjee, R. K., Kolli, K. K., Effat, M. A., Helmy, T. A., Leesar, M. A., Schneeberger, E. W., Succop, P., Gottliebson, W., and Irif, A., 2012, “Effect of Heart Rate on Hemodynamic Endpoints Under Concomitant Microvascular Disease in a Porcine Model,” Am. J. Physiol. Heart Circ. Physiol., 302(8), pp. H1563–H1573. [CrossRef] [PubMed]
Peelukhana, S. V., Kolli, K. K., Leesar, M. A., Effat, M. A., Helmy, T. A., Arif, I., Schneeberger, E. W., Succop, P., and Banerjee, R. K., 2013, “Effect of Myocardial Contractility on Hemodynamic End Points Under Concomitant Microvascular Disease in a Porcine Model,” Heart Vessels, to be published.
Kolli, K. K., Banerjee, R. K., Peelukhana, S. V., Effat, M. A., Leesar, M. A., Arif, I., Schneeberger, E. W., Succop, P., Gottliebson, W. M., and Helmy, T. A., 2012, “Effect of Changes in Contractility on Pressure Drop Coefficient and Fractional Flow Reserve in a Porcine Model,” J. Invasive Cardiol., 24(1), pp. 6–12. [PubMed]
De Bruyne, B., Pijls, N. H. J., Heyndrickx, G. R., Hodeige, D., Kirkeeide, R., and Gould, K. L., 2000, “Pressure-Derived Fractional Flow Reserve to Assess Serial Epicardial Stenoses: Theoretical Basis and Animal Validation,” Circulation, 101(15), pp. 1840–1847. [CrossRef] [PubMed]
Kim, H. L., Koo, B. K., Nam, C. W., Doh, J. H., Kim, J. H., Yang, H. M., Park, K. W., Lee, H. Y., Kang, H. J., Cho, Y. S., Youn, T. J., Kim, S. H., Chae, I. H., Choi, D. J., Kim, H. S., Oh, B. H., and Park, Y. B., 2012, “Clinical and Physiological Outcomes of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Serial Stenoses Within One Coronary Artery,” J. Am. Coll. Cardiol. Cardiovasc. Interv., 5(10), pp. 1013–1018. [CrossRef]
Mintz, G. S., Painter, J. A., Pichard, A. D., Kent, K. M., Satler, L. F., Popma, J. J., Chuang, Y. C., Bucher, T. A., Sokolowicz, L. E., and Leon, M. B., 1995, “Atherosclerosis in Angiographically” Normal “Coronary Artery Reference Segments: An Intravascular Ultrasound Study With Clinical Correlations,” J. Am. Coll. Cardiol., 25(7), pp. 1479–1485. [CrossRef] [PubMed]
Park, S.-J., Ahn, J.-M., Pijls, N. H. J., De Bruyne, B., Shim, E. B., Kim, Y.-T., Kang, S.-J., Song, H., Lee, J.-Y., Kim, W.-J., Park, D.-W., Lee, S.-W., Kim, Y.-H., Lee, C. W., and Park, S.-W., 2012, “Validation of Functional State of Coronary Tandem Lesions Using Computational Flow Dynamics,” Am. J. Cardiol., 110(11), pp. 1578–1584. [CrossRef] [PubMed]
Pijls, N. H. J., De Bruyne, B., Bech, G. J. W., Liistro, F., Heyndrickx, G. R., Bonnier, H. J. R. M., and Koolen, J. J., 2000, “Coronary Pressure Measurement to Assess the Hemodynamic Significance of Serial Stenoses Within One Coronary Artery: Validation in Humans,” Circulation, 102(19), pp. 2371–2377. [CrossRef] [PubMed]
Tobis, J., Azarbal, B., and Slavin, L., 2007, “Assessment of Intermediate Severity Coronary Lesions in the Catheterization Laboratory,” J. Am. Coll. Cardiol., 49(8), pp. 839–848. [CrossRef] [PubMed]
Gould, K. L., and Lipscomb, K., 1974, “Effects of Coronary Stenoses on Coronary Flow Reserve and Resistance,” Am. J. Cardiol., 34(1), pp. 48–55. [CrossRef] [PubMed]
Sabbah, H. N., and Stein, P. D., 1982, “Hemodynamics of Multiple Versus Single 50 Percent Coronary Arterial Stenoses,” Am. J. Cardiol., 50(2), pp. 276–280. [CrossRef] [PubMed]
Flanigan, D. P., Tullis, J. P., Streeter, V. L., Whitehouse, W. M., Jr., Fry, W. J., and Stanley, J. C., 1977, “Multiple Subcritical Arterial Stenoses: Effect on Poststenotic Pressure and Flow,” Ann. Surg., 186(5), pp. 663–668. [CrossRef] [PubMed]
Karayannacos, P. E., Talukder, N., Nerem, R. M., Roshon, S., and Vasko, J. S., 1977, “The Role of Multiple Noncritical Arterial Stenoses in the Pathogenesis of Ischemia,” J. Thorac. Cardiovasc. Surg., 73(3), pp. 458–469. [PubMed]
Vonruden, W. J., Blaisdell, F. W., Hall, A. D., and Thomas, A. N., 1964, “Multiple Arterial Stenoses: Effect on Blood Flow: An Experimental Study,” Arch. Surg., 89, pp. 307–315. [CrossRef] [PubMed]
Weale, F. E., 1964, “The Values of Series and Parallel Resistances in Steady Blood-Flow,” Br. J. Surg., 51, pp. 623–627. [CrossRef] [PubMed]
Beckmann, C. F., Levin, D. C., Kubicka, R. A., and Henschke, C. I., 1981, “The Effect of Sequential Arterial Stenoses on Flow and Pressure,” Radiology, 140(3), pp. 655–658. [PubMed]
Dodds, S. R., and Phillips, P. S., 2003, “The Haemodynamics of Multiple Sequential Stenoses and the Criteria for a Critical Stenosis,” Eur. J. Vasc. Endovasc. Surg., 26(4), pp. 348–353. [CrossRef] [PubMed]
Wilson, R. F., Johnson, M. R., Marcus, M. L., Aylward, P. E., Skorton, D. J., Collins, S., and White, C. W., 1988, “The Effect of Coronary Angioplasty on Coronary Flow Reserve,” Circulation, 77(4), pp. 873–885. [CrossRef] [PubMed]
Banerjee, R. K., Back, L. H., Back, M. R., and Cho, Y. I., 2000, “Physiological Flow Simulation in Residual Human Stenoses After Coronary Angioplasty,” ASME J. Biomech. Eng., 122(4), pp. 310–320. [CrossRef]
Banerjee, R. K., Back, L. H., Back, M. R., and Cho, Y. I., 2003, “Physiological Flow Analysis in Significant Human Coronary Artery Stenoses,” Biorheology, 40(4), pp. 451–476. [PubMed]
Roy, A. S., Banerjee, R. K., Back, L. H., Back, M. R., Khoury, S., and Millard, R. W., 2005, “Delineating the Guide-Wire Flow Obstruction Effect in Assessment of Fractional Flow Reserve and Coronary Flow Reserve Measurements,” Am. J. Physiol. Heart Circ. Physiol., 289(1), pp. H392–H397. [CrossRef] [PubMed]
Back, L. H., and Denton, T., 1992, “Some Arterial Wall Shear Stress Estimates in Coronary Angioplasty,” Adv. Bioeng.,22, pp. 337–340.
Ashtekar, K. D., Back, L. H., Khoury, S. F., and Banerjee, R. K., 2007, “in vitro Quantification of Guidewire Flow-Obstruction Effect in Model Coronary Stenoses for Interventional Diagnostic Procedure,” ASME J. Med. Dev., 1(3), p. 185–196. [CrossRef]
Banerjee, R. K., Ashtekar, K. D., Helmy, T. A., Effat, M. A., Back, L. H., and Khoury, S. F., 2008, “Hemodynamic Diagnostics of Epicardial Coronary Stenoses: In-Vitro Experimental and Computational Study,” Biomed. Eng. Online, 7(24), pp. 1–22. [CrossRef]
Cho, Y. I., and Kensey, K. R., 1991, “Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows,” Biorheology, 28(3–4), pp. 241–262. [PubMed]
Goswami, I., Peelukhana, S. V., Al-Rjoub, M. F., Back, L. H., and Banerjee, R. K., 2013, “Influence of Variable Native Arterial Diameter and Vasculature Status on Coronary Diagnostic Parameters,” ASME J. Biomech. Eng., 135(9), p. 091005. [CrossRef]
Young, D. F., and Tsai, F. Y., 1973, “Flow Characteristics in Models of Arterial Stenoses. I. Steady Flow,” J. Biomech., 6(4), pp. 395–410. [CrossRef] [PubMed]
Young, D. F., and Tsai, F. Y., 1973, “Flow Characteristics in Models of Arterial Stenoses. II. Unsteady Flow,” J. Biomech., 6(5), pp. 547–559. [CrossRef] [PubMed]
Gould, K. L., Kelley, K. O., and Bolson, E. L., 1982, “Experimental Validation of Quantitative Coronary Arteriography for Determining Pressure-Flow Characteristics of Coronary Stenosis,” Circulation, 66(5), pp. 930–937. [CrossRef] [PubMed]
Kilpatrick, D., Webber, S. D., and Colle, J. P., 1990, “The Vascular Resistance of Arterial Stenoses in Series,” Angiology, 41(4), pp. 278–285. [CrossRef] [PubMed]
Brown, B. G., Bolson, E. L., and Dodge, H. T., 1984, “Dynamic Mechanisms in Human Coronary Stenosis,” Circulation, 70(6), pp. 917–922. [CrossRef] [PubMed]
Van Herck, P. L., Carlier, S. G., Claeys, M. J., Haine, S. E., Gorissen, P., Miljoen, H., Bosmans, J. M., and Vrints, C. J., 2007, “Coronary Microvascular Dysfunction After Myocardial Infarction: Increased Coronary Zero Flow Pressure Both in the Infarcted and in the Remote Myocardium is Mainly Related to Left Ventricular Filling Pressure,” Heart, 93(10), pp. 1231–1237. [CrossRef] [PubMed]
Bache, R. J., and Schwartz, J. S., 1982, “Effect of Perfusion Pressure Distal to a Coronary Stenosis on Transmural Myocardial Blood Flow,” Circulation, 65(5), pp. 928–935. [CrossRef] [PubMed]
Kirkeeide, R. L., Gould, K. L., and Parsel, L., 1986, “Assessment of Coronary Stenoses by Myocardial Perfusion Imaging During Pharmacologic Coronary Vasodilation. VII. Validation of Coronary Flow Reserve as a Single Integrated Functional Measure of Stenosis Severity Reflecting all its Geometric Dimensions,” J. Am. Coll. Cardiol., 7(1), pp. 103–113. [CrossRef] [PubMed]
Claeys, M. J., Bosmans, J. M., Hendrix, J., and Vrints, C. J., 2001, “Reliability of Fractional Flow Reserve Measurements in Patients With Associated Microvascular Dysfunction: Importance of Flow on Translesional Pressure Gradient,” Cathet. Cardiovasc. Interv., 54(4), pp. 427–434. [CrossRef]
Banerjee, R. K., Back, L. H., Back, M. R., and Cho, Y. I., 1999, “Catheter Obstruction Effect on Pulsatile Flow Rate—Pressure Drop During Coronary Angioplasty,” ASME J. Biomech. Eng., 121(3), pp. 281–289. [CrossRef]
Banerjee, R. K., Back, L. H., and Back, M. R., 2003, “Effects of Diagnostic Guidewire Catheter Presence on Translesional Hemodynamic Measurements Across Significant Coronary Artery Stenoses,” Biorheology, 40(6), pp. 613–635. [PubMed]
Sinha Roy, A., Back, L. H., and Banerjee, R. K., 2006, “Guidewire Flow Obstruction Effect on Pressure Drop-Flow Relationship in Moderate Coronary Artery Stenosis,” J. Biomech., 39(5), pp. 853–864. [CrossRef] [PubMed]
Drexler, H., Zeiher, A. M., Wollschlager, H., Meinertz, T., Just, H., and Bonzel, T., 1989, “Flow-Dependent Coronary Artery Dilatation in Humans,” Circulation, 80(3), pp. 466–474. [CrossRef] [PubMed]
Vita, J. A., Treasure, C. B., Ganz, P., Cox, D. A., Fish, R. D., and Selwyn, A. P., 1989, “Control of Shear Stress in the Epicardial Coronary Arteries of Humans: Impairment by Atherosclerosis,” J. Am. Coll. Cardiol., 14(5), pp. 1193–1199. [CrossRef] [PubMed]
Konala, B. C., Das, A., and Banerjee, R. K., 2011, “Influence of Arterial Wall-Stenosis Compliance on the Coronary Diagnostic Parameters,” J. Biomech., 44(5), pp. 842–847. [CrossRef] [PubMed]
Mates, R. E., Gupta, R. L., Bell, A. C., and Klocke, F. J., 1978, “Fluid Dynamics of Coronary Artery Stenosis,” Circ. Res., 42(1), pp. 152–162. [CrossRef] [PubMed]
May, A. G., De Weese, J. A., and Rob, C. G., 1963, “Hemodynamic Effects of Arterial Stenosis,” Surgery, 53, pp. 513–524. [PubMed]

Figures

Grahic Jump Location
Fig. 1

(a) The schematic of the stenotic geometry used. The subscripts e, c, m, and r denote proximal, convergent, throat, and distal, respectively for diameter (d) and length (l). (b) A schematic of the experimental flow loop.

Grahic Jump Location
Fig. 2

Pressure and flow pulses obtained during the experiments

Grahic Jump Location
Fig. 3

Pressure drop – flow rate (Δp˜-Q˜) characteristics of serial coronary stenoses combinations with varying degrees of severities: (a) condition C1: 0.014 in. guidewire across both stenoses, and (b) condition C2: 0.014 in. guidewire across the upstream stenosis

Grahic Jump Location
Fig. 4

CFR – p˜rh curves of serial coronary stenoses combinations with varying degrees of severities: (a) condition C1: 0.014 in. guidewire across both stenoses, and (b) condition C2: 0.014 in. guidewire across the upstream stenosis

Grahic Jump Location
Fig. 5

Bar graphs indicating the effect of serial coronary stenoses on hemodynamic parameters under condition C1: (a) hyperemic flow, and (b) upstream stenosis pressure drop

Grahic Jump Location
Fig. 6

Bar graphs indicating the effect of serial coronary stenoses on diagnostic parameters under condition C1: (a) FFR, and (b) CDP

Grahic Jump Location
Fig. 7

Bar graphs indicating the effect of serial coronary stenoses on hemodynamic parameters under condition C2: (a) hyperemic flow, and (b) upstream stenosis pressure drop

Grahic Jump Location
Fig. 8

Bar graphs indicating the effect of serial coronary stenoses on diagnostic parameters under condition C2: (a) FFR, and (b) CDP

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In