0
Research Papers

Subject-Specific Finite Element Modeling of the Tibiofemoral Joint Based on CT, Magnetic Resonance Imaging and Dynamic Stereo-Radiography Data in Vivo

[+] Author and Article Information
Robert E. Carey

Department of Mechanical Engineering
and Materials Science,
Musculoskeletal Modeling Laboratory,
University of Pittsburgh,
3820 South Water Street,
Pittsburgh, PA 15203

Liying Zheng

Department of Orthopaedic Surgery,
Musculoskeletal Modeling Laboratory,
University of Pittsburgh,
3820 South Water Street,
Pittsburgh, PA 15203

Ameet K. Aiyangar

EMPA (Swiss Federal Laboratories
for Materials Science and Research),
Mechanical Systems Engineering (Lab 304),
Ueberlandstrasse 129,
Duebendorf 8400, Switzerland

Christopher D. Harner

Department of Orthopaedic Surgery,
University of Pittsburgh,
UPMC Center for Sports of Medicine,
3200 South Water Street,
Pittsburgh, PA 15203

Xudong Zhang

Department of Orthopaedic Surgery,
Department of Mechanical Engineering and Materials Science;
Department of Bioengineering,
Musculoskeletal Modeling Laboratory,
University of Pittsburgh,
3820 South Water Street,
Pittsburgh, PA 15203
e-mail: xuz9@pitt.edu

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received May 30, 2013; final manuscript received November 18, 2013; accepted manuscript posted December 12, 2013; published online March 24, 2014. Assoc. Editor: Pasquale Vena.

J Biomech Eng 136(4), 041004 (Mar 24, 2014) (8 pages) Paper No: BIO-13-1248; doi: 10.1115/1.4026228 History: Received May 30, 2013; Revised November 18, 2013; Accepted December 12, 2013

In this paper, we present a new methodology for subject-specific finite element modeling of the tibiofemoral joint based on in vivo computed tomography (CT), magnetic resonance imaging (MRI), and dynamic stereo-radiography (DSX) data. We implemented and compared two techniques to incorporate in vivo skeletal kinematics as boundary conditions: one used MRI-measured tibiofemoral kinematics in a nonweight-bearing supine position and allowed five degrees of freedom (excluding flexion-extension) at the joint in response to an axially applied force; the other used DSX-measured tibiofemoral kinematics in a weight-bearing standing position and permitted only axial translation in response to the same force. Verification and comparison of the model predictions employed data from a meniscus transplantation study subject with a meniscectomized and an intact knee. The model-predicted cartilage-cartilage contact areas were examined against “benchmarks” from a novel in situ contact area analysis (ISCAA) in which the intersection volume between nondeformed femoral and tibial cartilage was characterized to determine the contact. The results showed that the DSX-based model predicted contact areas in close alignment with the benchmarks, and outperformed the MRI-based model: the contact centroid predicted by the former was on average 85% closer to the benchmark location. The DSX-based FE model predictions also indicated that the (lateral) meniscectomy increased the contact area in the lateral compartment and increased the maximum contact pressure and maximum compressive stress in both compartments. We discuss the importance of accurate, task-specific skeletal kinematics in subject-specific FE modeling, along with the effects of simplifying assumptions and limitations.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yao, J., Snibbe, J., Maloney, M., and Lerner, A. L., 2006, “Stresses and Strains in the Medial Meniscus of an Acl Deficient Knee Under Anterior Loading: A Finite Element Analysis With Image-Based Experimental Validation,” ASME J. Biomech. Eng., 128(1), pp. 135–141. [CrossRef]
Papaioannou, G., Nianios, G., Mitrogiannis, C., Fyhrie, D., Tashman, S., and Yang, K. H., 2008, “Patient-Specific Knee Joint Finite Element Model Validation With High-Accuracy Kinematics From Biplane Dynamic Roentgen Stereogrammetric Analysis,” J. Biomech., 41(12), pp. 2633–2638. [CrossRef]
Anderson, A. E., Ellis, B. J., and Weiss, J. A., 2007, “Verification, Validation, and Sensitivity Studies in Computational Biomechanics,” Comput. Methods Biomech. Biomed. Eng., 10(3), pp. 171–184. [CrossRef]
Bao, H. R., Zhu, D., Gong, H., and Gu, G. S., 2013, “The Effect of Complete Radial Lateral Meniscus Posterior Root Tear on the Knee Contact Mechanics: A Finite Element Analysis,” J. Orthop. Sci., 18(2), pp. 256–263. [CrossRef]
Perie, D., and Hobatho, M. C., 1998, “In vivo Determination of Contact Areas and Pressure of the Femorotibial Joint Using Non-Linear Finite Element Analysis,” Clin. Biomech. (Bristol, Avon), 13(6), pp. 394–402. [CrossRef]
Andriacchi, T. P., Briant, P. L., Bevill, S. L., and Koo, S., 2006, “Rotational Changes at the Knee After Acl Injury Cause Cartilage Thinning,” Clin. Orthop. Relat. Res., 442, pp. 39–44. [CrossRef]
Beillas, P., Lee, S. W., Tashman, S., and Yang, K. H., 2007, “Sensitivity of the Tibio-Femoral Response to Finite Element Modeling Parameters,” Comput. Methods Biomech. Biomed. Eng., 10(3), pp. 209–221. [CrossRef]
Beillas, P., Papaioannou, G., Tashman, S., and Yang, K. H., 2004, “A New Method to Investigate in vivo Knee Behavior Using a Finite Element Model of the Lower Limb,” J. Biomech., 37(7), pp. 1019–1030. [CrossRef]
Yang, N. H., Canavan, P. K., Nayeb-Hashemi, H., Najafi, B., and Vaziri, A., 2010, “Protocol for Constructing Subject-Specific Biomechanical Models of Knee Joint,” Comput. Methods Biomech. Biomed. Eng., 13(5), pp. 589–603. [CrossRef]
Yang, N. H., Nayeb-Hashemi, H., Canavan, P. K., and Vaziri, A., 2010, “Effect of Frontal Plane Tibiofemoral Angle on the Stress and Strain at the Knee Cartilage During the Stance Phase of Gait,” J. Orthop. Res., 28(12), pp. 1539–1547. [CrossRef]
Tranberg, R., Saari, T., Zugner, R., and Karrholm, J., 2011, “Simultaneous Measurements of Knee Motion Using an Optical Tracking System and Radiostereometric Analysis (Rsa),” Acta. Orthop., 82(2), pp. 171–176. [CrossRef]
Benoit, D. L., Ramsey, D. K., Lamontagne, M., Xu, L., Wretenberg, P., and Renstrom, P., 2006, “Effect of Skin Movement Artifact on Knee Kinematics During Gait and Cutting Motions Measured in vivo,” Gait Posture, 24(2), pp. 152–164. [CrossRef]
Li, K., Zheng, L., Tashman, S., and Zhang, X., 2012, “The Inaccuracy of Surface-Measured Model-Derived Tibiofemoral Kinematics,” J. Biomech., 45(15), pp. 2719–2723. [CrossRef]
Bourne, D. A., Choo, A. M., Regan, W. D., Macintyre, D. L., and Oxland, T. R., 2011, “The Placement of Skin Surface Markers for Non-Invasive Measurement of Scapular Kinematics Affects Accuracy and Reliability,” Ann. Biomed. Eng., 39(2), pp. 777–785. [CrossRef]
Lindner, F., Roemer, K., and Milani, T. L., 2007, “Analysis of Skeletal Motion Kinematics for a Knee Movement Cycle,” International Symposium on Biomechanics in Sports, 25(1), pp. 188–191.
Yao, J., Salo, A. D., Lee, J., and Lerner, A. L., 2008, “Sensitivity of Tibio-Menisco-Femoral Joint Contact Behavior to Variations in Knee Kinematics,” J. Biomech., 41(2), pp. 390–398. [CrossRef]
Fukubayashi, T., and Kurosawa, H., 1980, “The Contact Area and Pressure Distribution Pattern of the Knee. A Study of Normal and Osteoarthrotic Knee Joints,” Acta Orthop. Scand., 51(6), pp. 871–879. [CrossRef]
Anderson, A. E., Ellis, B. J., Maas, S. A., Peters, C. L., and Weiss, J. A., 2008, “Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint,” ASME J. Biomech. Eng, 130(5), p. 051008. [CrossRef]
Aufderheide, A. C., and Athanasiou, K. A., 2004, “Mechanical Stimulation Toward Tissue Engineering of the Knee Meniscus,” Ann. Biomed. Eng., 32(8), pp. 1161–1174. [CrossRef]
Rath, E., and Richmond, J. C., 2000, “The Menisci: Basic Science and Advances in Treatment,” Br. J. Sports Med., 34(4), pp. 252–257. [CrossRef]
Vedi, V., Williams, A., Tennant, S. J., Spouse, E., Hunt, D. M., and Gedroyc, W. M., 1999, “Meniscal Movement. An in-vivo Study Using Dynamic Mri,” J. Bone Joint Surg. Br., 81(1), pp. 37–41. [CrossRef]
Walker, P. S., and Erkman, M. J., 1975, “The Role of the Menisci in Force Transmission Across the Knee,” Clin. Orthop. Relat. Res., 109, pp. 184–192. [CrossRef]
Bae, J. Y., Park, K. S., Seon, J. K., Kwak, D. S., Jeon, I., and Song, E. K., 2012, “Biomechanical Analysis of the Effects of Medial Meniscectomy on Degenerative Osteoarthritis,” Med. Biol. Eng. Comput., 50(1), pp. 53–60. [CrossRef]
Baratz, M. E., Fu, F. H., and Mengato, R., 1986, “Meniscal Tears: The Effect of Meniscectomy and of Repair on Intraarticular Contact Areas and Stress in the Human Knee. A Preliminary Report,” Am. J. Sports Med., 14(4), pp. 270–275. [CrossRef]
Guess, T. M., Thiagarajan, G., Kia, M., and Mishra, M., 2010, “A Subject Specific Multibody Model of the Knee With Menisci,” Med. Eng. Phys., 32(5), pp. 505–515. [CrossRef]
Kurosawa, H., Fukubayashi, T., and Nakajima, H., 1980, “Load-Bearing Mode of the Knee Joint: Physical Behavior of the Knee Joint With or Without Menisci,” Clin. Orthop. Relat. Res., 149, pp. 283–290.
Anderst, W., Zauel, R., Bishop, J., Demps, E., and Tashman, S., 2009, “Validation of Three-Dimensional Model-Based Tibio-Femoral Tracking During Running,” Med. Eng. Phys., 31(1), pp. 10–16. [CrossRef]
Bey, M. J., Zauel, R., Brock, S. K., and Tashman, S., 2006, “Validation of a New Model-Based Tracking Technique for Measuring Three-Dimensional, In Vivo Glenohumeral Joint Kinematics,” ASME J. Biomech. Eng., 128(4), pp. 604–609. [CrossRef]
Besier, T. F., Gold, G. E., Beaupre, G. S., and Delp, S. L., 2005, “A Modeling Framework to Estimate Patellofemoral Joint Cartilage Stress in vivo,” Med. Sci. Sports Exercise, 37(11), pp. 1924–1930. [CrossRef]
Donahue, T. L., Hull, M. L., Rashid, M. M., and Jacobs, C. R., 2002, “A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” ASME J. Biomech. Eng., 124(3), pp. 273–280. [CrossRef]
Pena, E., Calvo, B., Martinez, M. A., and Doblare, M., 2006, “A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint,” J. Biomech., 39(9), pp. 1686–1701. [CrossRef]
Pena, E., Calvo, B., Martinez, M. A., and Doblare, M., 2008, “Computer Simulation of Damage on Distal Femoral Articular Cartilage After Meniscectomies,” Comput. Biol. Med., 38(1), pp. 69–81. [CrossRef]
Pena, E., Calvo, B., Martinez, M. A., Palanca, D., and Doblare, M., 2006, “Why Lateral Meniscectomy is More Dangerous than Medial Meniscectomy. A Finite Element Study,” J. Orthop. Res., 24(5), pp. 1001–1010. [CrossRef]
Vadher, S. P., Nayeb-Hashemi, H., Canavan, P. K., and Warner, G. M., 2006, “Finite Element Modeling Following Partial Meniscectomy: Effect of Various Size of Resection,” IEEE Eng. Med. Biol. Soc., 1, pp. 2098–2101.
Zielinska, B., and Donahue, T. L., 2006, “3D Finite Element Model of Meniscectomy: Changes in Joint Contact Behavior,” ASME J. Biomech. Eng., 128(1), pp. 115–123. [CrossRef]
Yang, N., Nayeb-Hashemi, H., and Canavan, P. K., 2009, “The Combined Effect of Frontal Plane Tibiofemoral Knee Angle and Meniscectomy on the Cartilage Contact Stresses and Strains,” Ann. Biomed. Eng., 37(11), pp. 2360–2372. [CrossRef]
Bendjaballah, M. Z., Shirazi-Adl, A., and Zukor, D. J., 1998, “Biomechanical Response of the Passive Human Knee Joint Under Anterior-Posterior Forces,” Clin. Biomech. (Bristol, Avon), 13(8), pp. 625–633. [CrossRef]
Bendjaballah, M. Z., Shirazi-Adl, A., and Zukor, D. J., 1997, “Finite Element Analysis of Human Knee Joint in Varus-Valgus,” Clin. Biomech. (Bristol, Avon), 12(3), pp. 139–148. [CrossRef]
Yao, J., Funkenbusch, P. D., Snibbe, J., Maloney, M., and Lerner, A. L., 2006, “Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods,” ASME J. Biomech. Eng., 128(3), pp. 399–408. [CrossRef]
Armstrong, C. G., Lai, W. M., and Mow, V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” ASME J. Biomech. Eng., 106(2), pp. 165–173. [CrossRef]
Eberhardt, A. W., Keer, L. M., Lewis, J. L., and Vithoontien, V., 1990, “An Analytical Model of Joint Contact,” ASME J. Biomech. Eng., 112(4), pp. 407–413. [CrossRef]
Atmaca, H., Kesemenli, C. C., Memisoglu, K., Ozkan, A., and Celik, Y., 2013, “Changes in the Loading of Tibial Articular Cartilage Following Medial Meniscectomy: A Finite Element Analysis Study,” Knee Surg. Sports Traumatol. Arthrosc., 21(12), pp. 2667–2673. [CrossRef]
Barry, M. J., Kwon, T. H., and Dhaher, Y. Y., 2010, “Probabilistic Musculoskeletal Modeling of the Knee: A Preliminary Examination of an Acl-Reconstruction,” IEEE Eng. Med. Biol. Soc., 2010, pp. 5440–5443.
Dhaher, Y. Y., Kwon, T. H., and Barry, M., 2010, “The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions,” J. Biomech., 43(16), pp. 3118–3125. [CrossRef]
Haut Donahue, T. L., Hull, M. L., Rashid, M. M., and Jacobs, C. R., 2003, “How the Stiffness of Meniscal Attachments and Meniscal Material Properties Affect Tibio-Femoral Contact Pressure Computed Using a Validated Finite Element Model of the Human Knee Joint,” J. Biomech., 36(1), pp. 19–34. [CrossRef]
Moglo, K. E., and Shirazi-Adl, A., 2005, “Cruciate Coupling and Screw-Home Mechanism in Passive Knee Joint During Extension–Flexion,” J. Biomech., 38(5), pp. 1075–1083. [CrossRef]
Li, G., Lopez, O., and Rubash, H., 2001, “Variability of a Three-Dimensional Finite Element Model Constructed Using Magnetic Resonance Images of a Knee for Joint Contact Stress Analysis,” ASME J. Biomech. Eng., 123(4), pp. 341–346. [CrossRef]
Pena, E., Calvo, B., Martinez, M. A., Palanca, D., and Doblare, M., 2005, “Finite Element Analysis of the Effect of Meniscal Tears and Meniscectomies on Human Knee Biomechanics,” Clin. Biomech. (Bristol, Avon), 20(5), pp. 498–507. [CrossRef]
Messner, K., and Gao, J., 1998, “The Menisci of the Knee Joint. Anatomical and Functional Characteristics, and a Rationale for Clinical Treatment,” J. Anat., 193(2), pp. 161–78. [CrossRef]
Abraham, A. C., Moyer, J. T., Villegas, D. F., Odegard, G. M., and Haut Donahue, T. L., 2011, “Hyperelastic Properties of Human Meniscal Attachments,” J. Biomech., 44(3), pp. 413–418. [CrossRef]
Fithian, D. C., Kelly, M. A., and Mow, V. C., 1990, “Material Properties and Structure-Function Relationships in the Menisci,” Clin. Orthop. Relat. Res., 252, pp. 19–31.
Mononen, M. E., Jurvelin, J. S., and Korhonen, R. K., 2013, “Effects of Radial Tears and Partial Meniscectomy of Lateral Meniscus on the Knee Joint Mechanics During the Stance Phase of the Gait Cycle-a 3D Finite Element Study,” J. Orthop. Res., 31(8), pp. 1208–1217. [CrossRef]
Donzelli, P. S., Spilker, R. L., Ateshian, G. A., and Mow, V. C., 1999, “Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure,” J. Biomech., 32(10), pp. 1037–1047. [CrossRef]
Shepherd, D. E., and Seedhom, B. B., 1999, “The ‘Instantaneous' Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb,” Rheumatol. (Oxford), 38(2), pp. 124–132. [CrossRef]
Haemer, J. M., Song, Y., Carter, D. R., and Giori, N. J., 2011, “Changes in Articular Cartilage Mechanics with Meniscectomy: A Novel Image-Based Modeling Approach and Comparison to Patterns of Oa,” J. Biomech., 44(12), pp. 2307–2312. [CrossRef]
Hosseini, A., Van De Velde, S., Gill, T. J., and Li, G., 2012, “Tibiofemoral Cartilage Contact Biomechanics in Patients After Reconstruction of a Ruptured Anterior Cruciate Ligament,” J. Orthop. Res., 30(11), pp. 1781–1788. [CrossRef]
Shefelbine, S. J., Ma, C. B., Lee, K. Y., Schrumpf, M. A., Patel, P., Safran, M. R., Slavinsky, J. P., and Majumdar, S., 2006, “Mri Analysis of in vivo Meniscal and Tibiofemoral Kinematics in Acl-Deficient and Normal Knees,” J. Orthop. Res., 24(6), pp. 1208–1217. [CrossRef]
Bingham, J. T., Papannagari, R., Van De Velde, S. K., Gross, C., Gill, T. J., Felson, D. T., Rubash, H. E., and Li, G., 2008, “In vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint,” Rheumatol. (Oxford), 47(11), pp. 1622–1627. [CrossRef]
Li, G., Defrate, L. E., Park, S. E., Gill, T. J., and Rubash, H. E., 2005, “In vivo Articular Cartilage Contact Kinematics of the Knee: An Investigation Using Dual-Orthogonal Fluoroscopy and Magnetic Resonance Image-Based Computer Models,” Am. J. Sports Med., 33(1), pp. 102–7. [CrossRef]
Van De Velde, S. K., Bingham, J. T., Hosseini, A., Kozanek, M., Defrate, L. E., Gill, T. J., and Li, G., 2009, “Increased Tibiofemoral Cartilage Contact Deformation in Patients With Anterior Cruciate Ligament Deficiency,” Arthritis Rheum., 60(12), pp. 3693–3702. [CrossRef]
Von Eisenhart-Rothe, R., Lenze, U., Hinterwimmer, S., Pohlig, F., Graichen, H., Stein, T., Welsch, F., and Burgkart, R., 2012, “Tibiofemoral and Patellofemoral Joint 3D-Kinematics in Patients with Posterior Cruciate Ligament Deficiency Compared to Healthy Volunteers,” BMC Musculoskelet. Disord., 13(1), pp. 231–238. [CrossRef]
Woo, S. L., Debski, R. E., Withrow, J. D., and Janaushek, M. A., 1999, “Biomechanics of Knee Ligaments,” Am. J. Sports Med., 27(4), pp. 533–543.
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., and Thelen, D. G., 2007, “Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

A flow chart of the FE model development and verification process incorporating multimodality data

Grahic Jump Location
Fig. 2

Experimental setup for measuring 3D TF skeletal kinematics using a dynamic stereo-radiography system

Grahic Jump Location
Fig. 3

FE model geometry development sequence for the tibia

Grahic Jump Location
Fig. 4

Lateral and anterior views of FE models of the meniscectomized knee in (a) MRI-based and (b) DSX-based positions

Grahic Jump Location
Fig. 5

In situ contact area analysis (ISCAA) to determine the contact area, defined as the intersection between femoral and tibial cartilage, by co-registering the MRI-acquired cartilage models with DSX-acquired bone models

Grahic Jump Location
Fig. 6

Left: meniscectomized knee ISCAA results overlapped with (a) MRI-based position and (b) DSX-based position FE model predictions. Right: healthy knee ISCAA results overlapped with (c) MRI-based position and (d) DSX-based position FE model predictions. The green area represents the FE model contact area predictions, while the other colors are the color coded ISCAA estimate. Penetration depth increases from blue to red. M = Medial, L = Lateral, A = Anterior, P = Posterior.

Grahic Jump Location
Fig. 7

Left: contact centroid of ISCAA estimation and (a) MRI-based and (b) DSX-based FE model predictions for left, meniscectomized knee plotted on FE tibial cartilage. Right: contact centroid of ISCAA estimation and (c) MRI-based position and (d) DSX-based position FE model predictions for right, healthy knee plotted on FE tibial cartilage. M = Medial, L = Lateral, A = Anterior, P = Posterior.

Grahic Jump Location
Fig. 8

Average distances between FEM-predicted and ISCAA-estimated contact centroids at different levels of material property variation for both MRI-based and DSX-based models

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In