Research Papers

The Effects of Elastic Fiber Protein Insufficiency and Treatment on the Modulus of Arterial Smooth Muscle Cells

[+] Author and Article Information
M. Gabriela Espinosa

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: mgespinosa@wustl.edu

William S. Gardner

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: wgardner@slu.edu

Lisa Bennett

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: ljbenn.lb@gmail.com

Bradley A. Sather

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: sather_brad@yahoo.com

Hiromi Yanagisawa

University of Texas Southwestern,
6000 Harry Hines Boulevard NA5.320,
Dallas, TX 75390-9148
e-mail: hiromi.yanagisawa@utsouthwestern.edu

Jessica E. Wagenseil

Washington University,
1 Brookings Drive, CB 1185,
Saint Louis, MO 63130
e-mail: jessica.wagenseil@wustl.edu

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received August 29, 2013; final manuscript received December 2, 2013; accepted manuscript posted December 11, 2013; published online February 5, 2014. Editor: Victor H. Barocas.

J Biomech Eng 136(2), 021030 (Feb 05, 2014) (7 pages) Paper No: BIO-13-1391; doi: 10.1115/1.4026203 History: Received August 29, 2013; Revised December 02, 2013; Accepted December 11, 2013

Elastic fibers are critical for the mechanical function of the large arteries. Mechanical effects of elastic fiber protein deficiency have been investigated in whole arteries, but not in isolated smooth muscle cells (SMCs). The elastic moduli of SMCs from elastin (Eln-/-) and fibulin-4 (Fbln4-/-) knockout mice were measured using atomic force microscopy. Compared to control SMCs, the modulus of Eln-/- SMCs is reduced by 40%, but is unchanged in Fbln4-/- SMCs. The Eln-/- SMC modulus is rescued by soluble or α elastin treatment. Altered gene expression, specifically of calponin, suggests that SMC phenotypic modulation may be responsible for the modulus changes.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.



Grahic Jump Location
Fig. 1

Comparison of data analysis methods: low modulus values are highly correlated between the manual and automated methods, but diverge as the modulus increases

Grahic Jump Location
Fig. 2

Representative force-displacement curve and fitted Hertz model with the manual contact point method (A). Across the SMC surface (B) the modulus varies significantly, increasing as the AFM probe approaches the SMC edge (C). * = P < 0.05 compared to the location adjacent to the nucleus.

Grahic Jump Location
Fig. 3

Elastin deficiency significantly reduces the modulus of Eln-/- SMCs. * = P < 0.05 compared to Eln-/- SMCs

Grahic Jump Location
Fig. 4

Fibulin-4 deficiency has no effect on the SMC modulus

Grahic Jump Location
Fig. 5

Either elastin treatment increases the Eln-/- SMC modulus compared to untreated Eln-/- SMCs (# = P < 0.05). For both genotypes, soluble elastin treated SMCs have a higher modulus than those treated with α elastin (* = P < 0.05).

Grahic Jump Location
Fig. 6

Fluorescent staining does not reveal obvious differences in actin stress fiber density (green) between genotypes or treatments. Images are from untreated Eln-/- (A), untreated Eln+/+ (B), α elastin treated Eln-/- (C), and α elastin Eln+/+ (D) SMCs with the cell nuclei in blue. Scale bar = 50 μm.

Grahic Jump Location
Fig. 7

Gene expression varies across genotype and treatment conditions. * = P < 0.05 compared to untreated Eln+/+ SMCs




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In