0
Research Papers

The Effects of Elastic Fiber Protein Insufficiency and Treatment on the Modulus of Arterial Smooth Muscle Cells

[+] Author and Article Information
M. Gabriela Espinosa

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: mgespinosa@wustl.edu

William S. Gardner

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: wgardner@slu.edu

Lisa Bennett

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: ljbenn.lb@gmail.com

Bradley A. Sather

Saint Louis University,
3507 Lindell Boulevard,
Saint Louis, MO 63103
e-mail: sather_brad@yahoo.com

Hiromi Yanagisawa

University of Texas Southwestern,
6000 Harry Hines Boulevard NA5.320,
Dallas, TX 75390-9148
e-mail: hiromi.yanagisawa@utsouthwestern.edu

Jessica E. Wagenseil

Washington University,
1 Brookings Drive, CB 1185,
Saint Louis, MO 63130
e-mail: jessica.wagenseil@wustl.edu

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received August 29, 2013; final manuscript received December 2, 2013; accepted manuscript posted December 11, 2013; published online February 5, 2014. Editor: Victor H. Barocas.

J Biomech Eng 136(2), 021030 (Feb 05, 2014) (7 pages) Paper No: BIO-13-1391; doi: 10.1115/1.4026203 History: Received August 29, 2013; Revised December 02, 2013; Accepted December 11, 2013

Elastic fibers are critical for the mechanical function of the large arteries. Mechanical effects of elastic fiber protein deficiency have been investigated in whole arteries, but not in isolated smooth muscle cells (SMCs). The elastic moduli of SMCs from elastin (Eln-/-) and fibulin-4 (Fbln4-/-) knockout mice were measured using atomic force microscopy. Compared to control SMCs, the modulus of Eln-/- SMCs is reduced by 40%, but is unchanged in Fbln4-/- SMCs. The Eln-/- SMC modulus is rescued by soluble or α elastin treatment. Altered gene expression, specifically of calponin, suggests that SMC phenotypic modulation may be responsible for the modulus changes.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Wagenseil, J. E., and Mecham, R. P., 2009, “Vascular Extracellular Matrix and Arterial Mechanics,” Physiol. Rev., 89(3), pp. 957–989. [CrossRef] [PubMed]
Glagov, S., Vito, R., Giddens, D. P., and Zarins, C. K., 1992, “Micro-Architecture and Composition of Artery Walls: Relationship to Location, Diameter and the Distribution of Mechanical Stress,” J. Hypertens. Suppl., 10(6), pp. S101–S104. [CrossRef] [PubMed]
Standley, P. R., Camaratta, A., Nolan, B. P., Purgason, C. T., and Stanley, M. A., 2002, “Cyclic Stretch Induces Vascular Smooth Muscle Cell Alignment via No Signaling,” Am. J. Physiol., Heart and Circulatory Physiol., 283(5), pp. H1907–H1914.
Wolinsky, H., and Glagov, S., 1967, “A Lamellar Unit of Aortic Medial Structure and Function in Mammals,” Circ. Res., 20(1), pp. 99–111. [CrossRef] [PubMed]
Wagenseil, J. E., and Mecham, R. P., 2007, “New Insights into Elastic Fiber Assembly,” Birth Defects Res. C Embryo Today, 81(4), pp. 229–240. [CrossRef] [PubMed]
Li, D. Y., Brooke, B., Davis, E. C., Mecham, R. P., Sorensen, L. K., Boak, B. B., Eichwald, E., and Keating, M. T., 1998, “Elastin is an Essential Determinant of Arterial Morphogenesis,” Nature, 393(6682), pp. 276–280. [CrossRef] [PubMed]
Wagenseil, J. E., Nerurkar, N. L., Knutsen, R. H., Okamoto, R. J., Li, D. Y., and Mecham, R. P., 2005, “Effects of Elastin Haploinsufficiency on the Mechanical Behavior of Mouse Arteries,” Am. J. Physiol. Heart Circ. Physiol., 289(3), pp. H1209–H1217. [CrossRef] [PubMed]
Li, D. Y., Faury, G., Taylor, D. G., Davis, E. C., Boyle, W. A., Mecham, R. P., Stenzel, P., Boak, B., and Keating, M. T., 1998, “Novel Arterial Pathology in Mice and Humans Hemizygous for Elastin,” J. Clin. Invest., 102(10), pp. 1783–1787. [CrossRef] [PubMed]
Li, D. Y., Toland, A. E., Boak, B. B., Atkinson, D. L., Ensing, G. J., Morris, C. A., and Keating, M. T., 1997, “Elastin Point Mutations Cause an Obstructive Vascular Disease, Supravalvular Aortic Stenosis,” Human Mol. Genet., 6(7), pp. 1021–1028. [CrossRef]
Mclaughlin, P. J., Chen, Q., Horiguchi, M., Starcher, B. C., Stanton, J. B., Broekelmann, T. J., Marmorstein, A. D., McKay, B., Mecham, R., Nakamura, T., and Marmorstein, L. Y., 2006, “Targeted Disruption of Fibulin-4 Abolishes Elastogenesis and Causes Perinatal Lethality in Mice,” Mol. Cell Biol., 26(5), pp. 1700–1709. [CrossRef] [PubMed]
Huang, J., Davis, E. C., Chapman, S. L., Budatha, M., Marmorstein, L. Y., Word, R. A., and Yanagisawa, H., 2010, “Fibulin-4 Deficiency Results in Ascending Aortic Aneurysms: A Potential Link between Abnormal Smooth Muscle Cell Phenotype and Aneurysm Progression,” Circ. Res., 106(3), pp. 583–592. [CrossRef] [PubMed]
Hucthagowder, V., Sausgruber, N., Kim, K. H., Angle, B., Marmorstein, L. Y., and Urban, Z., 2006, “Fibulin-4: A Novel Gene for an Autosomal Recessive Cutis Laxa Syndrome,” Am. J. Human Genet., 78(6), pp. 1075–1080. [CrossRef]
Wagenseil, J. E., Ciliberto, C. H., Knutsen, R. H., Levy, M. A., Kovacs, A., and Mecham, R. P., 2009, “Reduced Vessel Elasticity Alters Cardiovascular Structure and Function in Newborn Mice,” Circ. Res., 104(10), pp. 1217–1224. [CrossRef] [PubMed]
Huang, J., Yamashiro, Y., Papke, C. L., Ikeda, Y., Lin, Y., Patel, M., Inagami, T., Le, V. P., Wagenseil, J. E., and Yanagisawa, H., 2013, “Angiotensin-Converting Enzyme-Induced Activation of Local Angiotensin Signaling is Required for Ascending Aortic Aneurysms in Fibulin-4-Deficient Mice,” Sci. Transl. Med., 5(183), p. 018358. [CrossRef]
Martens, J. C., and Radmacher, M., 2008, “Softening of the Actin Cytoskeleton by Inhibition of Myosin Ii,” Pflugers Arch., 456(1), pp. 95–100. [CrossRef] [PubMed]
Prabhune, M., Belge, G., Dotzauer, A., Bullerdiek, J., and Radmacher, M., 2012, “Comparison of Mechanical Properties of Normal and Malignant Thyroid Cells,” Micron, 43(12), pp. 1267–1272. [CrossRef] [PubMed]
Qiu, H., Zhu, Y., Sun, Z., Trzeciakowski, J. P., Gansner, M., Depre, C., Resuello, R. R., Natividad, F. F., Hunter, W. C., Genin, G. M., Elson, E. L., Vatner, D. E., Meininger, G. A., and Vatner, S. F., 2010, “Short Communication: Vascular Smooth Muscle Cell Stiffness as a Mechanism for Increased Aortic Stiffness With Aging,” Circ. Res., 107(5), pp. 615–619. [CrossRef] [PubMed]
Karnik, S. K., Brooke, B. S., Bayes-Genis, A., Sorensen, L., Wythe, J. D., Schwartz, R. S., Keating, M. T., and Li, D. Y., 2003, “A Critical Role for Elastin Signaling in Vascular Morphogenesis and Disease,” Development, 130(2), pp. 411–423. [CrossRef] [PubMed]
Svitkina, T. M., and Parsons, D. F., 1993, “Binding of Some Metastatic Tumor Cell Lines to Fibrous Elastin and Elastin Peptides,” Int. J. Cancer, 53(5), pp. 824–828. [CrossRef] [PubMed]
Sun, Z., Martinez-Lemus, L. A., Trache, A., Trzeciakowski, J. P., Davis, G. E., Pohl, U., and Meininger, G. A., 2005, “Mechanical Properties of the Interaction between Fibronectin and α5β1-Integrin on Vascular Smooth Muscle Cells Studied Using Atomic Force Microscopy,” Am. J. Physiol. Heart Circ. Physiol., 289(6), pp. H2526–H2535. [CrossRef] [PubMed]
Sader, J. E., 1995, “Parallel Beam Approximation for V-Shaped Atomic-Force Microscope Cantilevers,” Rev. Sci. Instrum., 66(9), pp. 4583–4587. [CrossRef]
Costa, K. D., 2006, “Imaging and Probing Cell Mechanical Properties With the Atomic Force Microscope,” Methods Mol. Biol., 319, pp. 331–361. [CrossRef] [PubMed]
Wang, Z., Wang, D. Z., Pipes, G. C., and Olson, E. N., 2003, “Myocardin Is a Master Regulator of Smooth Muscle Gene Expression,” Proc. Natl. Acad. Sci. USA, 100(12), pp. 7129–7134. [CrossRef]
Wright, D. B., Trian, T., Siddiqui, S., Pascoe, C. D., Johnson, J. R., Dekkers, B. G., Dakshinamurti, S., Bagchi, R., Burgess, J. K., Kanabar, V., and Ojo, O. O., 2013, “Phenotype Modulation of Airway Smooth Muscle in Asthma,” Pulmonary Pharmacol. Therapeutics, 26(1), pp. 42–49. [CrossRef]
Stegemann, J. P., Hong, H., and Nerem, R. M., 2005, “Mechanical, Biochemical, and Extracellular Matrix Effects on Vascular Smooth Muscle Cell Phenotype,” J. Appl. Physiol., 98(6), pp. 2321–2327. [CrossRef] [PubMed]
Han, M., Dong, L. H., Zheng, B., Shi, J. H., Wen, J. K., and Cheng, Y., 2009, “Smooth Muscle 22 Alpha Maintains the Differentiated Phenotype of Vascular Smooth Muscle Cells by Inducing Filamentous Actin Bundling,” Life Sci., 84(13–14), pp. 394–401. [CrossRef] [PubMed]
Kuang, S. Q., Kwartler, C. S., Byanova, K. L., Pham, J., Gong, L., Prakash, S. K., Huang, J., Kamm, K. E., Stull, J. T., Sweeney, H. L., and Milewicz, D. M., 2012, “Rare, Nonsynonymous Variant in the Smooth Muscle-Specific Isoform of Myosin Heavy Chain, Myh11, R247c, Alters Force Generation in the Aorta and Phenotype of Smooth Muscle Cells,” Circ. Res., 110(11), pp. 1411–1422. [CrossRef] [PubMed]
Mayanagi, T., and Sobue, K., 2011, “Diversification of Caldesmon-Linked Actin Cytoskeleton in Cell Motility,” Cell Adh. Migr., 5(2), pp. 150–159. [CrossRef] [PubMed]
Lin, S., and Mequanint, K., 2012, “The Role of Ras-Erk-Il-1beta Signaling Pathway in Upregulation of Elastin Expression by Human Coronary Artery Smooth Muscle Cells Cultured in 3d Scaffolds,” Biomaterials, 33(29), pp. 7047–7056. [CrossRef] [PubMed]
Gimona, M., Herzog, M., Vandekerckhove, J., and Small, J. V., 1990, “Smooth Muscle Specific Expression of Calponin,” FEBS Lett., 274(1–2), pp. 159–162. [CrossRef] [PubMed]
Menice, C. B., Hulvershorn, J., Adam, L. P., Wang, C. A., and Morgan, K. G., 1997, “Calponin and Mitogen-Activated Protein Kinase Signaling in Differentiated Vascular Smooth Muscle,” J. Biol. Chem., 272(40), pp. 25157–12561. [CrossRef] [PubMed]
Azeloglu, E. U., and Costa, K. D., 2011, “Atomic Force Microscopy in Mechanobiology: Measuring Microelastic Heterogeneity of Living Cells,” Methods Mol. Biol., 736, pp. 303–329. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Comparison of data analysis methods: low modulus values are highly correlated between the manual and automated methods, but diverge as the modulus increases

Grahic Jump Location
Fig. 2

Representative force-displacement curve and fitted Hertz model with the manual contact point method (A). Across the SMC surface (B) the modulus varies significantly, increasing as the AFM probe approaches the SMC edge (C). * = P < 0.05 compared to the location adjacent to the nucleus.

Grahic Jump Location
Fig. 3

Elastin deficiency significantly reduces the modulus of Eln-/- SMCs. * = P < 0.05 compared to Eln-/- SMCs

Grahic Jump Location
Fig. 4

Fibulin-4 deficiency has no effect on the SMC modulus

Grahic Jump Location
Fig. 5

Either elastin treatment increases the Eln-/- SMC modulus compared to untreated Eln-/- SMCs (# = P < 0.05). For both genotypes, soluble elastin treated SMCs have a higher modulus than those treated with α elastin (* = P < 0.05).

Grahic Jump Location
Fig. 6

Fluorescent staining does not reveal obvious differences in actin stress fiber density (green) between genotypes or treatments. Images are from untreated Eln-/- (A), untreated Eln+/+ (B), α elastin treated Eln-/- (C), and α elastin Eln+/+ (D) SMCs with the cell nuclei in blue. Scale bar = 50 μm.

Grahic Jump Location
Fig. 7

Gene expression varies across genotype and treatment conditions. * = P < 0.05 compared to untreated Eln+/+ SMCs

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In