0
Research Papers

A One-Dimensional Mathematical Model for Studying the Pulsatile Flow in Microvascular Networks

[+] Author and Article Information
Qing Pan

Department of Biomedical Engineering,
Key Laboratory of Biomedical
Engineering of MOE,
Zhejiang University,
Hangzhou 310027, China
College of Information Engineering,
Zhejiang University of Technology,
Hangzhou 310023, China

Ruofan Wang

Department of Biomedical Engineering,
Key Laboratory of Biomedical
Engineering of MOE,
Zhejiang University,
Hangzhou 310027, China

Bettina Reglin

Department of Physiology and CCR,
Charité, Charitéplatz 1,
Berlin 10117, Germany

Jing Yan

Department of ICU,
Zhejiang Hospital,
Lingyin Road 12,
Hangzhou 310013, China

Axel R. Pries

Department of Physiology and CCR,
Charité, Charitéplatz 1,
Berlin 10117, Germany
Deutsches Herzzentrum Berlin,
Augustenburger Platz 1,
Berlin D-13353, Germany
e-mail: axel.pries@charite.de

Gangmin Ning

Department of Biomedical Engineering,
Key Laboratory of Biomedical
Engineering of MOE,
Zhejiang University,
Zheda Road 38,
Hangzhou 310027, China
e-mail: gmning@zju.edu.cn

lCorresponding authors.

Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received April 9, 2013; final manuscript received October 19, 2013; accepted manuscript posted October 31, 2013; published online December 4, 2013. Assoc. Editor: Dalin Tang.

J Biomech Eng 136(1), 011009 (Dec 04, 2013) (11 pages) Paper No: BIO-13-1179; doi: 10.1115/1.4025879 History: Received April 09, 2013; Revised October 19, 2013; Accepted October 31, 2013

Techniques that model microvascular hemodynamics have been developed for decades. While the physiological significance of pressure pulsatility is acknowledged, most of the microcirculatory models use steady flow approaches. To theoretically study the extent and transmission of pulsatility in microcirculation, dynamic models need to be developed. In this paper, we present a one-dimensional model to describe the dynamic behavior of microvascular blood flow. The model is applied to a microvascular network from a rat mesentery. Intravital microscopy was used to record the morphology and flow velocities in individual vessel segments, and boundaries are defined according to the experimental data. The system of governing equations constituting the model is solved numerically using the discontinuous Galerkin method. An implicit integration scheme is adopted to increase computing efficiency. The model allows the simulation of the dynamic properties of blood flow in microcirculatory networks, including the pressure pulsatility (quantified by a pulsatility index) and pulse wave velocity (PWV). From the main input arteriole to the main output venule, the pulsatility index decreases by 66.7%. PWV obtained along arterioles declines with decreasing diameters, with mean values of 77.16, 25.31, and 8.30 cm/s for diameters of 26.84, 17.46, and 13.33 μm, respectively. These results suggest that the 1D model developed is able to simulate the characteristics of pressure pulsatility and wave propagation in complex microvascular networks.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gaehtgens, P., 1970, “Pulsatile Pressure and Flow in the Mesenteric Vascular Bed of the Cat,” Pfluegers Arch. Eur. J. Physiol., 316(2), pp. 140–151. [CrossRef]
Seki, J., 1994, “Flow Pulsation and Network Structure in Mesenteric Microvasculature of Rats,” Am. J. Physiol. Heart Circ. Physiol., 266(2), pp. H811–H821.
Wiederhielm, C. A., Woodbury, J. W., Kirk, S., and Rushmer, R. F., 1964, “Pulsatile Pressures in the Microcirculation of Frog's Mesentery,” Am. J. Physiol., 207(1), pp. 173–176. [PubMed]
Huang, W., Tian, Y., Gao, J., and Yen, M. R. T., 1998, “Comparison of Theory and Experiment in Pulsatile Flow in Cat Lung,” Ann. Biomed. Eng., 26(5), pp. 812–820. [CrossRef] [PubMed]
Mahler, F., Muheim, M. H., Intaglietta, M., Bollinger, A., and Anliker, M., 1979, “Blood Pressure Fluctuations in Human Nailfold Capillaries,” Am. J. Physiol. Heart Circ. Physiol., 236(6), pp. H888–H893.
Nakano, T., Tominaga, R., Nagano, I., Okabe, H., and Yasui, H., 2000, “Pulsatile Flow Enhances Endothelium-Derived Nitric Oxide Release in the Peripheral Vasculature,” Am. J. Physiol. Heart Circ. Physiol., 278(4), pp. H1098–H1104. [PubMed]
Li, Y., Zheng, J., Bird, I. M., and Magness, R. R., 2003, “Effects of Pulsatile Shear Stress on Nitric Oxide Production and Endothelial Cell Nitric Oxide Synthase Expression by Ovine Fetoplacental Artery Endothelial Cells,” Biol. Reprod., 69(3), pp. 1053–1059. [CrossRef] [PubMed]
Uryash, A., Wu, H., Bassuk, J., Kurlansky, P., Sackner, M. A., and Adams, J. A., 2009, “Low-Amplitude Pulses to the Circulation Through Periodic Acceleration Induces Endothelial-Dependent Vasodilatation,” J. Appl. Physiol., 106(6), pp. 1840–1847. [CrossRef] [PubMed]
Sezai, A., Shiono, M., Orime, Y., Nakata, K., Hata, M., Yamada, H., Iida, M., Kashiwazaki, S., Kinishita, J., Nemoto, M., Koujima, T., Sezai, Y., and Saitoh, T., 1997, “Renal Circulation and Cellular Metabolism During Left Ventricular Assisted Circulation: Comparison Study of Pulsatile and Nonpulsatile Assists,” Artif. Organs, 21(7), pp. 830–835. [CrossRef] [PubMed]
Orime, Y., Shiono, M., Nakata, K.-I., Hata, M., Sezai, A., Yamada, H., Iida, M., Kashiwazaki, S., Nemoto, M., Kinoshita, J.-I., Kojima, T., Saito, T., and Sezai, Y., 1996, “The Role of Pulsatility in End-Organ Microcirculation After Cardiogenic Shock,” ASAIO J., 42(5), pp. M724–728. [CrossRef] [PubMed]
O'Neil, M. P., Fleming, J. C., Badhwar, A., and Guo, L. R., 2012, “Pulsatile Versus Nonpulsatile Flow During Cardiopulmonary Bypass: Microcirculatory and Systemic Effects,” Ann. Thorac. Surg., 94(6), pp. 2046–2053. [CrossRef] [PubMed]
Lee, J., and Smith, N., 2008, “Theoretical Modeling in Hemodynamics of Microcirculation,” Microcirculation, 15(8), pp. 699–714. [CrossRef] [PubMed]
Secomb, T., Beard, D. A., Frisbee, J. C., Smith, N. P., and Pries, A. R., 2008, “The Role of Theoretical Modeling in Microcirculation Research,” Microcirculation, 15(8), pp. 693–698. [CrossRef] [PubMed]
Mittal, N., Zhou, Y., Linares, C., Ung, S., Kaimovitz, B., Molloi, S., and Kassab, G. S., 2005, “Analysis of Blood Flow in the Entire Coronary Arterial Tree,” Am. J. Physiol. Heart Circ. Physiol., 289(1), pp. H439–H446. [CrossRef] [PubMed]
Lipowsky, H. H., and Zweifach, B. W., 1974, “Network Analysis of Microcirculation of Cat Mesentery,” Microvasc. Res., 7(1), pp. 73–83. [CrossRef] [PubMed]
Pries, A. R., Secomb, T. W., Gaehtgens, P., and Gross, J. F., 1990, “Blood Flow in Microvascular Networks. Experiments and Simulation,” Circ. Res., 67(4), pp. 826–834. [CrossRef] [PubMed]
Grinberg, L., Cheever, E., Anor, T., Madsen, J. R., and Karniadakis, G. E., 2011, “Modeling Blood Flow Circulation in Intracranial Arterial Networks: A Comparative 3D/1D Simulation Study,” Ann. Biomed. Eng., 39(1), pp. 297–309. [CrossRef] [PubMed]
Shi, Y., Lawford, P., and Hose, R., 2011, “Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System,” Biomed. Eng. Online, 10(1), Paper No. 33. [CrossRef]
Olufsen, M. S., Peskin, C. S., Kim, W. Y., Pedersen, E. M., Nadim, A., and Larsen, J., 2000, “Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions,” Ann. Biomed. Eng., 28(11), pp. 1281–1299. [CrossRef] [PubMed]
Alastruey, J., Parker, K. H., Peiro, J., Byrd, S. M., and Sherwin, S. J., 2007, “Modelling the Circle of Willis to Assess the Effects of Anatomical Variations and Occlusions on Cerebral Flows,” J. Biomech., 40(8), pp. 1794–1805. [CrossRef] [PubMed]
Huo, Y. L., and Kassab, G. S., 2006, “Pulsatile Blood Flow in the Entire Coronary Arterial Tree: Theory and Experiment,” Am. J. Physiol. Heart Circ. Physiol., 291(3), pp. H1074–H1087. [CrossRef] [PubMed]
Huo, Y., and Kassab, G. S., 2007, “A Hybrid One-Dimensional/Womersley Model of Pulsatile Blood Flow in the Entire Coronary Arterial Tree,” Am. J. Physiol. Heart Circ. Physiol., 292(6), pp. H2623–2633. [CrossRef] [PubMed]
Alastruey, J., Khir, A. W., Matthys, K. S., Segers, P., Sherwin, S. J., Verdonck, P. R., Parker, K. H., and Peiro, J., 2011, “Pulse Wave Propagation in a Model Human Arterial Network: Assessment of 1-D Visco-Elastic Simulations Against in vitro Measurements,” J. Biomech., 44(12), pp. 2250–2258. [CrossRef] [PubMed]
Alastruey, J., Moore, S. M., Parker, K. H., David, T., Peiro, J., and Sherwin, S. J., 2008, “Reduced Modelling of Blood Flow in the Cerebral Circulation: Coupling 1-D, 0-D and Cerebral Auto-Regulation Models,” Int. J. Numer. Methods Fluids, 56(8), pp. 1061–1067. [CrossRef]
Formaggia, L., Gerbeau, J. F., Nobile, F., and Quarteroni, A., 2001, “On the Coupling of 3D and 1D Navier-Stokes Equations for Flow Problems in Compliant Vessels,” Comput. Methods Appl. Mech. Eng., 191(6–7), pp. 561–582. [CrossRef]
Ganesan, P., He, S., and Xu, H., 2011, “Modelling of Pulsatile Blood Flow in Arterial Trees of Retinal Vasculature,” Med. Eng. Phys., 33(7), pp. 810–823. [CrossRef] [PubMed]
Lee, J., and Smith, N., 2008, “Development and Application of a One-Dimensional Blood Flow Model for Microvascular Networks,” Proc. Inst. Mech. Eng., Part H: J Eng. Med., 222(H4), pp. 487–511. [CrossRef]
Pries, A. R., Ley, K., and Gaehtgens, P., 1986, “Generalization of the Fahraeus Principle for Microvessel Networks,” Am. J. Physiol. Heart Circ. Physiol., 251(6), pp. H1324–1332.
Nakano, A., Sugii, Y., Minamiyama, M., and Niimi, H., 2003, “Measurement of Red Cell Velocity in Microvessels Using Particle Image Velocimetry (PIV),” Clin. Hemorheol. Microcirc., 29(3), pp. 445–455. [PubMed]
Golub, A. S., Barker, M. C., and Pittman, R. N., 2008, “Microvascular Oxygen Tension in the Rat Mesentery,” Am. J. Physiol. Heart Circ. Physiol., 294(1), pp. H21–H28. [CrossRef] [PubMed]
Pries, A. R., and Secomb, T. W., 2009, “Origins of Heterogeneity in Tissue Perfusion and Metabolism,” Cardiovasc. Res., 81(2), pp. 328–335. [CrossRef] [PubMed]
Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F., and Gaehtgens, P., 1994, “Resistance to Blood Flow in Microvessels in vivo,” Circ. Res., 75(5), pp. 904–915. [CrossRef] [PubMed]
Pries, A. R., Secomb, T. W., and Gaehtgens, P., 1998, “Structural Adaptation and Stability of Microvascular Networks: Theory and Simulations,” Am. J. Physiol. Heart Circ. Physiol., 275(2), pp. H349–360.
Pries, A. R., Reglin, B., and Secomb, T. W., 2001, “Structural Adaptation of Microvascular Networks: Functional Roles of Adaptive Responses,” Am. J. Physiol. Heart Circ. Physiol., 281(3), pp. H1015–1025. [PubMed]
Pries, A. R., Reglin, B., and Secomb, T. W., 2005, “Remodeling of Blood Vessels: Responses of Diameter and Wall Thickness to Hemodynamic and Metabolic Stimuli,” Hypertension, 46(4), pp. 725–731. [CrossRef] [PubMed]
Rakusan, K., and Wicker, P., 1990, “Morphometry of the Small Arteries and Arterioles in the Rat Heart: Effects of Chronic Hypertension and Exercise,” Cardiovasc. Res., 24(4), pp. 278–284. [CrossRef] [PubMed]
Goodman, A. H., Guyton, A. C., Drake, R., and Loflin, J. H., 1974, “A Television Method for Measuring Capillary Red Cell Velocities,” J. Appl. Physiol., 37(1), pp. 126–130. [PubMed]
Sherwin, S. J., Franke, V., Peiró, J., and Parker, K., 2003, “One-Dimensional Modelling of a Vascular Network in Space-Time Variables,” J. Eng. Math., 47(3), pp. 217–250. [CrossRef]
Tuma, R. F., Duran, W. N., and Ley, K., 2008, Microcirculation, Academic Press, New York.
Fung, Y. C., Zweifach, B. W., and Intaglietta, M., 1966, “Elastic Environment of the Capillary Bed,” Circ. Res., 19(2), pp. 441–461. [CrossRef] [PubMed]
Salotto, A. G., Muscarella, L. F., Melbin, J., Li, J. K. J., and Noordergraaf, A., 1986, “Pressure Pulse Transmission Into Vascular Beds,” Microvasc. Res., 32(2), pp. 152–163. [CrossRef] [PubMed]
Gore, R. W., 1974, “Pressures in Cat Mesenteric Arterioles and Capillaries During Changes in Systemic Arterial Blood Pressure,” Circ. Res., 34(4), pp. 581–591. [CrossRef] [PubMed]
Smaje, L. H., Fraser, P. A., and Clough, G., 1980, “The Distensibility of Single Capillaries and Venules in the Cat Mesentery,” Microvasc. Res., 20(3), pp. 358–370. [CrossRef] [PubMed]
Pries, A. R., Secomb, T. W., and Gaehtgens, P., 1996, “Biophysical Aspects of Blood Flow in the Microvasculature,” Cardiovasc. Res., 32(4), pp. 654–667. [PubMed]
Pries, A. R., and Secomb, T. W., 2005, “Microvascular Blood Viscosity in vivo and the Endothelial Surface Layer,” Am. J. Physiol. Heart Circ. Physiol., 289(6), pp. H2657–H2664. [CrossRef] [PubMed]
Lindert, J., Werner, J., Redlin, M., Kuppe, H., Habazettl, H., and Pries, A. R., 2002, “OPS Imaging of Human Microcirculation: A Short Technical Report,” J. Vasc. Res., 39(4), pp. 368–372. [CrossRef] [PubMed]
Alastruey, J., Parker, K. H., Peiro, J., and Sherwin, S. J., 2008, “Lumped Parameter Outflow Models for 1-D Blood Flow Simulations: Effect on Pulse Waves and Parameter Estimation,” Comm. Comp. Phys., 4(2), pp. 317–336.
Karniadakis, G., and Sherwin, S. J., 2005, Spectral/hp Element Methods for Computational Fluid Dynamics, Oxford University, New York.
Sherwin, S. J., Formaggia, L., Peiro, J., and Franke, V., 2003, “Computational Modelling of 1D Blood Flow With Variable Mechanical Properties and its Application to the Simulation of Wave Propagation in the Human Arterial System,” Int. J. Numer. Methods Fluids, 43(6–7), pp. 673–700. [CrossRef]
Cockburn, B., and Shu, C. W., 1989, “TVB Runge–Kutta Local Projection Discontinuous Galerkin Finite-Element Method for Conservation-Laws. II. General Framework,” Math. Comput., 52(186), pp. 411–435.
Jackson, K. R., and Sacks-Davis, R., 1980, “An Alternative Implementation of Variable Step-Size Multistep Formulas for Stiff ODEs,” ACM Trans. Math. Softw., 6(3), pp. 295–318. [CrossRef]
Davis, T. A., 2004, “A Column Pre-Ordering Strategy for the Unsymmetric-Pattern Multifrontal Method,” ACM Trans. Math. Softw., 30(2), pp. 165–195. [CrossRef]
Davis, T. A., 2004, “Algorithm 832: UMFPACK V4.3—An Unsymmetric-Pattern Multifrontal Method,” ACM Trans. Math. Softw., 30(2), pp. 196–199. [CrossRef]
Gosling, R., and King, D., 1974, “Arterial Assessment by Doppler-Shift Ultrasound,” J. R. Soc. Med., 67(6), pp. 447–449.
Zweifach, B. W., 1974, “Quantitative Studies of Microcirculatory Structure and Function,” Circ. Res., 34(6), pp. 841–857. [CrossRef]
Zweifach, B. W., and Lipowsky, H. H., 1977, “Quantitative Studies of Microcirculatory Structure and Function. III. Microvascular Hemodynamics of Cat Mesentery and Rabbit Omentum,” Circ. Res., 41(3), pp. 380–390. [CrossRef] [PubMed]
Safar, M. E., and Lacolley, P., 2007, “Disturbance of Macro- and Microcirculation: Relations With Pulse Pressure and Cardiac Organ Damage,” Am. J. Physiol. Heart Circ. Physiol., 293(1), pp. H1–H7. [CrossRef] [PubMed]
Carlson, B. E., Arciero, J. C., and Secomb, T. W., 2008, “Theoretical Model of Blood Flow Autoregulation: Roles of Myogenic, Shear-Dependent, and Metabolic Responses,” Am. J. Physiol. Heart Circ. Physiol., 295(4), pp. H1572–H1579. [CrossRef] [PubMed]
Li, J. K.-J., 2004, Dynamics of Vascular System, World Scientific Publishing, Singapore.
Falcone, J. C., Davis, M. J., and Meininger, G. A., 1991, “Endothelial Independence of Myogenic Response in Isolated Skeletal Muscle Arterioles,” Am. J. Physiol. Heart Circ. Physiol., 260(1), pp. H130–H135.
Van Bortel, L. M. A. B., Struijker-Boudier, H. A. J., and Safar, M. E., 2001, “Pulse Pressure, Arterial Stiffness, and Drug Treatment of Hypertension,” Hypertension, 38(4), pp. 914–921. [CrossRef] [PubMed]
Fry, B. C., Lee, J., Smith, N. P., and Secomb, T. W., 2012, “Estimation of Blood Flow Rates in Large Microvascular Networks,” Microcirculation, 19(6), pp. 530–538. [CrossRef] [PubMed]
Hyde, E., Michler, C., Lee, J., Cookson, A., Chabiniok, R., Nordsletten, D., and Smith, N., 2013, “Parameterisation of Multi-Scale Continuum Perfusion Models from Discrete Vascular Networks,” Med. Biol. Eng. Comput., 51(5), pp. 557–570. [CrossRef] [PubMed]
Kassab, G. S., Rider, C. A., Tang, N. J., and Fung, Y. C., 1993, “Morphometry of Pig Coronary Arterial Trees,” Am. J. Physiol. Heart Circ. Physiol., 265(1), pp. H350–365.
Kassab, G. S., and Fung, Y. C., 1994, “Topology and Dimensions of Pig Coronary Capillary Network,” Am. J. Physiol. Heart Circ. Physiol., 267(1), pp. H319–325.
Kassab, G. S., Lin, D. H., and Fung, Y. C., 1994, “Morphometry of Pig Coronary Venous System,” Am. J. Physiol. Heart Circ. Physiol., 267(6), pp. H2100–2113.
Huang, W., Yen, R. T., McLaurine, M., and Bledsoe, G., 1996, “Morphometry of the Human Pulmonary Vasculature,” J. Appl. Physiol., 81(5), pp. 2123–2133. [PubMed]
Ganesan, P., He, S., and Xu, H., 2010, “Development of an Image-Based Network Model of Retinal Vasculature,” Ann. Biomed. Eng., 38(4), pp. 1566–1585. [CrossRef] [PubMed]
Levy, B. I., Ambrosio, G., Pries, A. R., and Struijker-Boudier, H. A. J., 2001, “Microcirculation in Hypertension: A New Target for Treatment?,” Circulation, 104(6), pp. 735–740. [CrossRef] [PubMed]
Kaimovitz, B., Lanir, Y., and Kassab, G. S., 2010, “A Full 3-D Reconstruction of the Entire Porcine Coronary Vasculature,” Am. J. Physiol. Heart Circ. Physiol., 299(4), pp. H1064–1076. [CrossRef] [PubMed]
Lauwers, F., Cassot, F., Lauviers-Cances, V., Puwanarajah, P., and Duvernoy, H., 2008, “Morphometry of the Human Cerebral Cortex Microcirculation: General Characteristics and Space-Related Profiles,” Neuroimage, 39(3), pp. 936–948. [CrossRef] [PubMed]
Ando, J., and Yamamoto, K., 2011, “Effects of Shear Stress and Stretch on Endothelial Function,” Antioxid. Redox. Signal., 15(5), pp. 1389–1403. [CrossRef] [PubMed]
Busse, R., and Fleming, I., 1998, “Pulsatile Stretch and Shear Stress: Physical Stimuli Determining the Production of Endothelium-Derived Relaxing Factors,” J. Vasc. Res., 35(2), pp. 73–84. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Topology of the rat mesenteric vascular network. Arterioles, capillaries, and venules are colored red, yellow, and blue, respectively. The main feeding arteriole and the main draining venule are indicated by red and blue arrows, respectively. Secondary boundaries are indicated by small white directional arrows.

Grahic Jump Location
Fig. 2

Flow diagrams of the strategies of applying phase separation and the Fahraeus–Lindqvist effect. Strategy I: The phase separation effect is used in each simulation step. The viscosity is updated by the hematocrit derived by the phase separation effect and the varying diameter in each simulation step. The simulation moves to the next step until the pressure and velocity are converged in the inner iteration. Strategy II: The simulation begins with fixed discharge hematocrits. In each simulation step, the viscosity is updated by the fixed hematocrit and varying diameter. The gray block demonstrates the strategy finally adopted in this study, which uses fixed hematocrits calculated by a steady state model.

Grahic Jump Location
Fig. 3

Distribution of the mean pressure and flow velocity against vessel diameter in arterioles and venules. Shown in the figure are mean values for the indicated diameter range with standard deviations.

Grahic Jump Location
Fig. 4

Distribution maps of PIP (pulsatility index of pressure, (a)) and PTTP (pulse transit time of pressure, (b)). (a) The main feeding arteriole and the main draining venule are indicated by red and blue arrows, respectively. PIP decreases in the arteriolar tree and remains constant in the venular portion. The white arrows indicate secondary input boundaries, which are far from the feeding arteriole but exhibit high PIP values. They influence network regions limited to two to three generations of bifurcations. (b) PTTP continuously increases from the main feeding arteriole to the venular portion.

Grahic Jump Location
Fig. 5

Four exemplary flow pathways from the main feeding arteriole to the main draining venule. The selected segments for showing PIP are indicated by A1–A4, C1, and V1–V4, respectively.

Grahic Jump Location
Fig. 6

PIP on the four exemplary arteriovenous pathways shown in Fig. 5 (mean ± standard deviation). The PIP decreases from the main feeding arteriole to the postcapillary level and remains almost constant in the venular pathway.

Grahic Jump Location
Fig. 7

The pressure waveforms of the selected segments on the arteriovenous pathway “A”. The waveforms are substantially damped from the main feeding arteriole to the capillary level and remain almost unchanged in the venular section.

Grahic Jump Location
Fig. 8

Normalized PIP on the exemplary pathway “A” with input heart rates of 75, 150, 225, and 300 bpm

Grahic Jump Location
Fig. 9

Pulsatility damping on the arteriovenous pathway “A” under different settings for Young's modulus. E1: initial modulus setting. EA2: 200% arteriolar modulus. EA0.5: 50% arteriolar modulus. EC2: 200% capillary modulus. EC0.5: 50% capillary modulus. EV2: 200% venular modulus. EV0.5: 50% venular modulus.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In