Brekelmans, W. A. M., Poort, H. W., and Slooff, T. J. J. H., 1972, “A New Method to Analyse the Mechanical Behaviour of Skeletal Parts,” Acta Orthopaedica, 43(5), pp. 301–317.

[CrossRef]Dalstra, M., Huiskes, R., and van ErningL., 1995, “Development and Validation of a Three-Dimensional Finite Element Model of the Pelvic Bone,” ASME J. Biomech. Eng., 117(3), pp. 272–278.

[CrossRef]Anderson, A. E., Peters, C. L., Tuttle, B. D., and Weiss, J. A., 2005, “Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies,” ASME J. Biomech. Eng., 127(3), pp. 364–373.

[CrossRef]Anderson, A. E., Ellis, B. J., Maas, S. A., and Weiss, J. A., 2010, “Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip,” J. Biomech., 43, pp. 1351–1357.

[CrossRef] [PubMed]Bachtar, F., Chen, X., and Hisada, T., 2006, “Finite Element Contact Analysis of the Hip Joint,” Med. Biol. Eng. Comput., 44, pp. 643–651.

[CrossRef] [PubMed]Majumder, S., Roychowdhury, A., and Pal, S., 2004, “Variations of Stress in Pelvic Bone During Normal Walking, Considering All Active Muscles,” Trends Biomater Artif Organs, 17(2), pp. 48–53. Available at

http://www.biomaterials.org.in/ojs/index.php/tibao/article/view/221Silvestri.C., 2008, “Development and Validation of a Knee-Thigh-Hip LSDYNA Model of a 50th Percentile Male,” Ph.D. thesis, Worcester Polytechnic Institute.

Anderson, A. E., Ellis, B. J., Maas, S. A., Peters, C. L., and Weiss, J. A., 2008, “Validation of Finite Element Predictions of Cartilage Contact Pressure in the Human Hip Joint,” ASME J. Biomech. Eng., 130(5), p. 051008.

[CrossRef]Anderson, A. E., Ellis, B. J., Peters, C. L., and Weiss, J. A., 2008, “Cartilage Thickness: Factors Influencing Multidetector CT Measurements in a Phantom Study,” Radiology, 246(1), pp. 133–141.

[CrossRef] [PubMed]Ota, T., Yamamoto, I., and Morita, R., 1999, “Fracture Simulation of the Femoral Bone Using the Finite-Element Method: How a Fracture Initiates and Proceeds,” J. Bone and Mineral Metabolisms, 17(2), pp. 108–112.

[CrossRef]Yosibash, Z., Padan, R., Joskowicz, L., and Milgrom, C., 2007, “A CT-Based High-Order Finite Element Analysis of the Human Proximal Femur Compared To In-Vitro Experiments,” ASME J. Biomech. Eng., 129(3), pp. 297–309.

[CrossRef]Taddei, F., Martelli, S., Reggiani, B., Cristofolini, L., andViceconti, M., 2006, “Finite-Element Modeling of Bones from CT Data: Sensitivity to Geometry and Material Uncertainties,” IEEE Trans. Biomed. Eng., 53(11), pp. 2194–2200.

[CrossRef] [PubMed]Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J., Cauley, J. A., Ensrud, K., Lane, N., Hoffmann, P. R., Kopperdahl, D. L., and Keaveny, T. M., 2009, “Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men,” J. Bone and Mineral Res., 24(3), pp. 475–483.

[CrossRef]Harris, M. D., Anderson, A. E., Henak, C. R., Ellis, B. J., Peters, C. L., and Weiss, J. A., 2012, “Finite Element Prediction of Cartilage Contact Stresses in Normal Human Hips,” J. Orthop. Res., 30, pp. 1133–1139.

[CrossRef] [PubMed]Oonishi, H., Isha, H., and Hasegawa, T., 1983, “Mechanical Analysis of the Human Pelvis and Its Application to the Artificial Hip Joint–By Means of the Three Dimensional Finite Element Method,” J. Biomech., 16, pp. 427–444.

[CrossRef] [PubMed]Brown, T. D., and DiGioia, A. M., 1984, “A Contact-Coupled Finite Element Analysis of the Natural Adult Hip,” J. Biomech., 17, pp. 437–448.

[CrossRef] [PubMed]Afoke, N. Y. P., Byers, P. D., and Hutton, W. C., 1987, “Contact Pressures in the Human Hip Joint,” J. Bone Joint Surgery, 69-B(4), pp. 536–541. Available at

http://www.bjj.boneandjoint.org.uk/content/69-B/4/536.full.pdfDalstra, M., and Huiskes, R., 1995, “Load Transfer Across the Pelvic Bone,” J. Biomech., 28(6), pp. 715–724.

[CrossRef] [PubMed]Russell, M. E., Shivanna, K. H., Grosland, N. M., and Pedersen, D. R., 2006, “Cartilage Contact Pressure Elevations in Dysplastic Hips: A Chronic Overload Model,” J. Orthop. Surg. Res., 1, p. 6.

[CrossRef] [PubMed]Shivanna, K. H., Grosland, N. M., Russell, M. E., and Pedersen, D. R., 2008, “Diarthrodial Joint Contact Models: Finite Element Model Development of the Human Hip,” Eng. Comput., 24, pp. 155–163.

[CrossRef]Demirdzić, I., Martinović, D., and Ivanković, A., 1988, “Numerical Simulation of Thermal Deformation in Welded Workpiece” (in Croatian), Zavarivanje31, pp. 209–219.

Ivanković, A., Muzaferija, A., and Demirdzić, I., 1997, “Finite Volume Method and Multigrid Acceleration in Modelling of Rapid Crack Propagation in Full-Scale Pipe Test,” Comput. Mech., 20(1–2), pp. 46–52.

[CrossRef]Georgiou, I., Ivanković, A., Kinloch, A. J., and Tropsa, V., 2003, “Rate Dependent Fracture Behaviour of Adhesively Bonded Joints,” Vol. 32, *Fracture of Polymers, Composites and Adhesives II, Volume 32 of European Structural Integrity Society*, A.Pavan, B. R. K.Blackman, and J. G.Williams, eds., Elsevier, New York, pp. 317–328.

Karač, A., Blackman, B. R. K., Cooper, V., Kinloch, A. J., Rodriguez Sanchez, S., Teo, W. S., and Ivanković, A., 2011, “Modelling the Fracture Behaviour of Adhesively-Bonded Joints as a Function of Test Rate,” Eng. Fract. Mech., 78, pp. 973–989.

[CrossRef]Demirdzić, I., and Muzaferija, S., 1995, “Numerical Method for Coupled Fluid Flow, Heat Transfer and Stress Analysis Using Unstructured Moving Meshes With Cells of Arbitrary Topology,” Comput. Methods Appl. Mech. Eng., 125(1–4), pp. 235–255.

[CrossRef]Jasak, H., and Weller, H. G., 2000, “Application of the Finite Volume Method and Unstructured Meshes to Linear Elasticity,” Int. J. Numer. Methods Eng., 48, pp. 267–287.

[CrossRef]Fryer, Y. D., Bailey, C., Cross, M., and Lai, C. H., 1991, “A Control Volume Procedure for Solving Elastic Stress-Strain Equations on an Unstructured Mesh,” Appl. Math. Model., 15(11–12), pp. 639–645.

[CrossRef]Wheel, M. A., 1996, “A Geometrically Versatile Finite Volume Formulation for Plane Elastostatic Stress Analysis,” J. Strain Anal. Eng. Des., 31(2), pp. 111–116.

[CrossRef]Tuković, Ž., Ivanković, A., and Karač, A., 2012, “Finite Volume Stress Analysis In Multi-Material Linear Elastic Body,” Int. J. Numer. Methods Eng., 93(4), pp. 400–419.

[CrossRef]Demirdzić, I., and Martinović, D., 1993, “Finite Volume Method for Thermo-Elasto-Plastic Stress Analysis,” Comput. Methods Appl. Mech. Eng., 109, pp. 331–349.

[CrossRef]Demirdzić, I., Dzafarović, E., and Ivanković, A. I., 2005, “Finite-Volume Approach to Thermoviscoelasticity,” Numer. Heat Transfer, Part B: Fundamentals, 47(3), pp. 213–237.

[CrossRef]Bijelonja, I., Demirdzić, I., and Muzaferija, S., 2005, “A Finite Volume Method for Large Strain Analysis of Incompressible Hyperelastic Materials,” Int. J. Numer. Methods Eng., 64(12), pp. 1594–1609.

[CrossRef]Cardiff, P., Karač, A., and Ivanković, A., 2012, “Development of a Finite Volume Contact Solver Based on the Penalty Method,” Comput. Mater. Sci., 64, pp. 283–284.

[CrossRef]Tropsa, V., Georgiou, I., Ivanković, A., Kinloch, A. J., and Williams, J. G., 2006, “OpenFOAM in Non-Linear Stress Analysis: Modelling of Adhesive Joints,” First OpenFOAM Workshop, Zagreb, Croatia.

Jasak, H., and Weller, H., 2000, “Finite Volume Methodology for Contact Problems of Linear Elastic Solids,” Proceedings of the third International Conference of Croatian Society of Mechanics, Cavtat/Dubrovnik, 7, pp. 253–260.

Cardiff, P., 2012, “Development of the Finite Volume Method for Hip Joint Stress Analysis,” Ph.D. thesis, University College Dublin.

Karač, A., and Ivanković, 2009, “Investigating the Behaviour of Fluid-Filled Polyethylene Containers Under Base Drop Impact: A Combined Experimental/Numerical Approach,” Int. J. Impact Eng., 36(4), pp. 621–631.

[CrossRef]Kanyanta, V., Ivanković, A., and Karač, A., 2009, “Validation of a Fluid-Structure Interaction Numerical Model for Predicting Flow Transients in Arteries,” J. Biomech., 42(11), pp. 1705–1712.

[CrossRef] [PubMed]Kelly, A., and O'Rourke, M. J., 2010, “Two System, Single Analysis, Fluid-Structure Interaction Modelling of the Abdominal Aortic Aneurysms,” Proc. IMechE Part H, 224(H8), pp. 955–970.

[CrossRef]Weller, H. G., Tabor, G., Jasak, H., and Fureby, C., 1998, “A Tensorial Approach to Computational Continuum Mechanics Using Object Orientated Techniques,” Comput. Phys., 12(6), pp. 620–631.

[CrossRef]Cardiff, P., Karać, A., Flavin, R., FitzPatrick, D., and Ivanković, A., 2012, “Modelling the Muscles for Hip Joint Stress Analysis Using a Finite Volume Methodology,” 18th Bioengineering In Ireland, Belfast, Northern Ireland.

Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J., and Duda.G. N., 2001, “Hip Contact Forces and Gait Patterns From Routine Activities,” J. Biomech., 34, pp. 859–871.

[CrossRef] [PubMed]Pieper, S., Lorensen, B., Schroeder, W., and Kikinis, R., 2006, “The NA-MIC Kit: ITK, VTK, Pipelines, Grids and 3D Slicer as an Open Platform for the Medical Image Computing Community,” Proceedings of the Third IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Vol. 1, pp. 698–701.

Misch, C. E., 2008, *Contemporary Implant Dentistry*, 3rd ed., Mosby Elsevier.

Vollmer, J., Mencl, R., and Muller.H., 1999, “Improved Laplacian Smoothing of Noisy Surface Meshes,” Eurographics, 18(3), pp. 131–138.

[CrossRef]Cignoni, P., Rocchini, C., and Scopigno, R., 1998, “Metro: Measuring Error on Simplified Surfaces,” Computer Graphics Forum, 17(2), pp. 167–174.

[CrossRef]Campen, M., Kobbelt, L., andAttene.M., 2012, “A Practical Guide to Polygon Mesh Repairing,” Eurographics 33rd Annual Conference of the European Association for Computer Graphics, Cagliari, Sardinia, France.

CifuentesA. O., and Kalbag, A., 1992, “A Performance Study of Tetrahedral and Hexahedral Elements in 3-D Finite Element Structural Analysis,” Finite Elements in Analysis and Design, 12, pp. 313–318.

[CrossRef]Ramos, A., and Simoes, J. A., 2006, “Tetrahedral Versus Hexahedral Finite Elements in Numerical Modeling of the Proximal Femur,” Med. Eng. Phys., 28, pp. 916–924.

[CrossRef] [PubMed]Kitware Inc. and VTK, 2012, VTK File Formats: The VTK User's Guide.

www.kitware.comCardiff, P., Karac, A., Tuković, Z., and Ivanković, A., 2012, “Development of a Finite Volume Based Structural Solver for Large Rotation of Non-Orthogonal Meshes,” Seventh OpenFOAM Workshop, Darmstadt, Germany.

Goel, V. K., Valliappan, S., and Svensson, N. L., 1978, “Stresses in the Normal Pelvis,” Comput. Biol. Med., 8, pp. 91–104.

[CrossRef] [PubMed]Dalstra, M., Huiskes, R., Odgaard, A., and Van Erning, L., 1993, “Mechanical and Textural Properties of Pelvic Trabecular Bone,” J. Biomech., 26(4–5), pp. 523–535.

[CrossRef] [PubMed]Jonkers, I., Sauwen, N., Lenaerts, G., Mulier, M., Van Der Perre, G., and Jaecques, S., 2008, “Relation Between Subject-Specific Hip Joint Loading, Stress Distribution in the Proximal Femur and Bone Mineral Density Changes After Total Hip Replacement,” J. Biomech., 41, pp. 3405–3413.

[CrossRef] [PubMed]Pustoc'h, A., and Cheze, L., 2009, “Normal and Osteoarthritic Hip Joint Mechanical Behaviour: A Comparison Study,” Med. Biol. Eng. Comput., 47(4), pp. 375–383.

[CrossRef] [PubMed]Taylor, M., Tanner, K. E., Freeman, M. A. R., and Yettram, A. L., 1995, “Cancellous Bone Stresses Surrounding The Femoral Component of a Hip Prosthesis: An Elastic-Plastic Finite Element Analysis,” Med. Eng. Phys., 17(7), pp. 544–550.

[CrossRef] [PubMed]Mesfar, W., and Shirazi-Adl, A., 2005, “Biomechanics of the Knee Joint in Flexion Under Various Quadriceps Forces,” The Knee, 12, pp. 424–434.

[CrossRef] [PubMed]Muzaferija, S., 1994, “Adaptive Finite Volume Method Flow Prediction Using Unstructured Meshes and Multigrid Approach,” British Thesis Service. University of London.

Hodge, W. A., Fijan, R. S., Carlson, K. L., Burgess, R. G., Harris, W. H., and Mann, R. W., 1986, “Contact Pressures in the Human Hip Joint Measured In Vivo,” Proc. Natl. Acad. Sci. USA, 83(9), pp. 2879–2883.

[CrossRef]Phillips, A. T. M., Pankaj, P., Howie, C. R., Usmani, A. S., and Simpson, A. H. R. W., 2007, “Finite Element Modelling of the Pelvis: Inclusion of Muscular and Ligamentous Boundary Conditions,” Med. Eng. Phys., 29(7), pp. 739–748.

[CrossRef] [PubMed]Wolff, J., 1986, *The Law of Bone Remodeling (translation of the German 1892 edition*), Springer, Berlin Heidelberg New York.

Cardiff, P., Karač, A., and Ivanković, A, 2014, “A Large Strain Finite Volume Method for Orthotropic Bodies with General Material Orientations,” Computer Methods Appl. Mech. Eng., 268, pp. 1–18.

[CrossRef]Carolan, D., Tukovic, Ž., Murphy, N., and Ivanković, A, 2013, “Arbitrary Crack Propagation in Multi-phase Materials Using the Finite Volume Method,” Comput. Materials Sci., 69, pp. 153–159.

[CrossRef]