0
Research Papers

Finite Element Model of the Knee for Investigation of Injury Mechanisms: Development and Validation

[+] Author and Article Information
Ali Kiapour

Engineering Center for Orthopaedic
Research Excellence (ECORE),
Departments of Orthopaedics and Bioengineering,
University of Toledo,
5051 Nitschke Hall MS 303,
2801 W. Bancroft St.,
Toledo, OH 43606
e-mail: kiapour@asme.org

Ata M. Kiapour

Engineering Center for Orthopaedic
Research Excellence (ECORE),
Departments of Orthopaedics and Bioengineering,
University of Toledo,
Toledo, OH 43606
Department of Orthopaedic Surgery,
Boston Children's Hospital,
Harvard Medical School,
300 Longwood Ave.,
Enders 270.2,
Boston, MA 02115
e-mail: ata.kiapour@childrens.harvard.edu

Vikas Kaul

Engineering Center for Orthopaedic
Research Excellence (ECORE),
Departments of Orthopaedics and Bioengineering,
University of Toledo,
5051 Nitschke Hall MS 303,
2801 W. Bancroft St.,
Toledo, OH 43606
e-mail: vikaskaul@gmail.com

Carmen E. Quatman

Sports Health and Performance Institute,
The Ohio State University,
Columbus, OH 43221
Department of Orthopaedic Surgery,
The Ohio State University,
2050 Kenny Road, Suite 3100,
Columbus, OH 43210
e-mail: carmen.quatman@osumc.edu

Samuel C. Wordeman

Sports Health and Performance Institute,
The Ohio State University,
Columbus, OH 43221
Department of Biomedical Engineering,
The Ohio State University,
2050 Kenny Road, Suite 3100,
Columbus, OH 43210
e-mail: wordemans@gmail.com

Timothy E. Hewett

Sports Health and Performance Institute,
The Ohio State University,
Columbus, OH 43221
Department of Orthopaedic Surgery,
The Ohio State University,
Columbus, OH 43203
Department of Biomedical Engineering,
The Ohio State University,
Columbus, OH 43210
Departments of Physiology and Cell Biology,
Family Medicine and the School of Health
and Rehabilitation Sciences,
2050 Kenny Road, Suite 3100,
Columbus, OH 43210;
e-mail: timothy.hewett@osumc.edu

Constantine K. Demetropoulos

Biomechanics and Injury Mitigation Systems,
Research and Exploratory Development Department,
The Johns Hopkins University Applied Physics Laboratory,
11100 Johns Hopkins Road Mail Stop: MP2-N143,
Laurel, MD 20723
e-mail: constantine.demetropoulos@jhuapl.edu

Vijay K. Goel

Endowed Chair and McMaster-Gardner Professor of
Orthopaedic Bioengineering,
Co-Director of
Engineering Center for Orthopaedic
Research Excellence (ECORE),
Departments of Orthopaedics and Bioengineering,
University of Toledo,
5051 Nitschke Hall MS 303,
2801 W. Bancroft St.,
Toledo, OH 43606
e-mail: vijay.goel@utoledo.edu

1Corresponding author. Present address: 5051 NI, MS 303, College of Engineering, University of Toledo, Toledo, OH 43606.

Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received March 11, 2013; final manuscript received October 3, 2013; accepted manuscript posted October 11, 2013; published online November 26, 2013. Assoc. Editor: Tammy Haut Donahue.

J Biomech Eng 136(1), 011002 (Nov 26, 2013) (14 pages) Paper No: BIO-13-1126; doi: 10.1115/1.4025692 History: Received March 11, 2013; Revised October 03, 2013; Accepted October 11, 2013

Multiple computational models have been developed to study knee biomechanics. However, the majority of these models are mainly validated against a limited range of loading conditions and/or do not include sufficient details of the critical anatomical structures within the joint. Due to the multifactorial dynamic nature of knee injuries, anatomic finite element (FE) models validated against multiple factors under a broad range of loading conditions are necessary. This study presents a validated FE model of the lower extremity with an anatomically accurate representation of the knee joint. The model was validated against tibiofemoral kinematics, ligaments strain/force, and articular cartilage pressure data measured directly from static, quasi-static, and dynamic cadaveric experiments. Strong correlations were observed between model predictions and experimental data (r > 0.8 and p < 0.0005 for all comparisons). FE predictions showed low deviations (root-mean-square (RMS) error) from average experimental data under all modes of static and quasi-static loading, falling within 2.5 deg of tibiofemoral rotation, 1% of anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains, 17 N of ACL load, and 1 mm of tibiofemoral center of pressure. Similarly, the FE model was able to accurately predict tibiofemoral kinematics and ACL and MCL strains during simulated bipedal landings (dynamic loading). In addition to minimal deviation from direct cadaveric measurements, all model predictions fell within 95% confidence intervals of the average experimental data. Agreement between model predictions and experimental data demonstrates the ability of the developed model to predict the kinematics of the human knee joint as well as the complex, nonuniform stress and strain fields that occur in biological soft tissue. Such a model will facilitate the in-depth understanding of a multitude of potential knee injury mechanisms with special emphasis on ACL injury.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Daniel, D. M., Stone, M. L., Dobson, B. E., Fithian, D. C., Rossman, D. J., and Kaufman, K. R., 1994, “Fate of the ACL-Injured Patient. A Prospective Outcome Study,” Am. J. Sports Med., 22(5), pp. 632–644. [CrossRef] [PubMed]
Majewski, M., Susanne, H., and Klaus, S., 2003, “Epidemiology of Athletic Knee Injuries: A 10-Year Study,” Knee, 13(3), pp. 184–188. [CrossRef]
Kim, S., Bosque, J., Meehan, J. P., Jamali, A., and Marder, R., 2011, “Increase in Outpatient Knee Arthroscopy in the United States: A Comparison of National Surveys of Ambulatory Surgery, 1996 and 2006,” J. Bone Jt. Surg., Am. Vol., 93(11), pp. 994–1000. [CrossRef]
Demorat, G., Weinhold, P., Blackburn, T., Chudik, S., and Garrett, W., 2004, “Aggressive Quadriceps Loading Can Induce Noncontact Anterior Cruciate Ligament Injury,” Am. J. Sports Med., 32(2), pp. 477–483. [CrossRef] [PubMed]
Hashemi, J., Breighner, R., Jang, T. H., Chandrashekar, N., Ekwaro-Osire, S., and Slauterbeck, J. R., 2010, “Increasing Pre-Activation of the Quadriceps Muscle Protects the Anterior Cruciate Ligament During the Landing Phase of a Jump: An in Vitro Simulation,” Knee, 17(3), pp. 235–241. [CrossRef] [PubMed]
Meyer, E. G., and Haut, R. C., 2008, “Anterior Cruciate Ligament Injury Induced by Internal Tibial Torsion or Tibiofemoral Compression,” J. Biomech., 41(16), pp. 3377–3383. [CrossRef] [PubMed]
Wall, S. J., Rose, D. M., Sutter, E. G., Belkoff, S. M., and Boden, B. P., 2012, “The Role of Axial Compressive and Quadriceps Forces in Noncontact Anterior Cruciate Ligament Injury: A Cadaveric Study,” Am. J. Sports Med., 40(3), pp. 568–573. [CrossRef] [PubMed]
Kiapour, A. M., Quatman, C. E., Ditto, R. C., Levine, J. W., Wordeman, S. C., Hewett, T. E., Goel, V. K., and Demetropoulos, C. K., 2012, “Global Quasi-Static Mechanical Characterization of the Human Knee Under Single- and Multi-Axis Unconstrained Loading Conditions,” Proceedings of 2012 ASME Summer Bioengineering Conference, 44809, pp. 1119–1120. [CrossRef]
Levine, J. W., Kiapour, A. M., Quatman, C. E., Wordeman, S. C., Goel, V. K., Hewett, T. E., and Demetropoulos, C. K., 2013, “Clinically Relevant Injury Patterns After an Anterior Cruciate Ligament Injury Provide Insight Into Injury Mechanisms,” Am. J. Sports Med., 41(2), pp. 385–395. [CrossRef] [PubMed]
Lipps, D. B., Oh, Y. K., Ashton-Miller, J. A., and Wojtys, E. M., 2012, “Morphologic Characteristics Help Explain the Gender Difference in Peak Anterior Cruciate Ligament Strain During a Simulated Pivot Landing,” Am. J. Sports Med., 40(1), pp. 32–40. [CrossRef]
Griffith, C. J., Laprade, R. F., Johansen, S., Armitage, B., Wijdicks, C., and Engebretsen, L., 2009, “Medial Knee Injury: Part 1, Static Function of the Individual Components of the Main Medial Knee Structures,” Am. J. Sports Med., 37(9), pp. 1762–1770. [CrossRef] [PubMed]
Ford, K. R., Myer, G. D., and Hewett, T. E., 2003, “Valgus Knee Motion During Landing in High School Female and Male Basketball Players,” Med. Sci. Sports Exercise, 35(10), pp. 1745–1750. [CrossRef]
Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., Slauterbeck, J. R., Hewett, T. E., and Bahr, R., 2007, “Mechanisms of Anterior Cruciate Ligament Injury in Basketball: Video Analysis of 39 Cases,” Am. J. Sports Med., 35(3), pp. 359–367. [CrossRef] [PubMed]
Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Jr., Colosimo, A. J., Mclean, S. G., Van Den Bogert, A. J., Paterno, M. V., and Succop, P., 2005, “Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study,” Am. J. Sports Med., 33(4), pp. 492–501. [CrossRef] [PubMed]
Agel, J., Arendt, E. A., and Bershadsky, B., 2005, “Anterior Cruciate Ligament Injury in National Collegiate Athletic Association Basketball and Soccer: A 13-Year Review,” Am. J. Sports Med., 33(4), pp. 524–530. [CrossRef] [PubMed]
Arendt, E. A., Agel, J., and Dick, R., 1999, “Anterior Cruciate Ligament Injury Patterns Among Collegiate Men and Women,” J. Athl. Train., 34(2), pp. 86–92. Available at: http://www.ncbi.nlm.nih.gov.ezp-prod1.hul.harvard.edu/pmc/articles/PMC1322895/pdf/jathtrain00006-0014.pdf [PubMed]
Boden, B. P., Dean, G. S., Feagin, J. A., and Garrett, W. E., 2000, “Mechanisms of Anterior Cruciate Ligament Injury,” Orthopedics, 23(6), pp. 573–578. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=1431609 [PubMed]
Koga, H., Nakamae, A., Shima, Y., Iwasa, J., Myklebust, G., Engebretsen, L., Bahr, R., and Krosshaug, T., 2010, “Mechanisms for Noncontact Anterior Cruciate Ligament Injuries: Knee Joint Kinematics in 10 Injury Situations From Female Team Handball and Basketball,” Am. J. Sports Med., 38(11), pp. 2218–2225. [CrossRef] [PubMed]
Abdel-Rahman, E. M., and Hefzy, M. S., 1998, “Three-Dimensional Dynamic Behaviour of the Human Knee Joint Under Impact Loading,” Med. Eng. Phys., 20(4), pp. 276–290. [CrossRef] [PubMed]
Adouni, M., Shirazi-Adl, A., and Shirazi, R., 2012, “Computational Biodynamics of Human Knee Joint in Gait: From Muscle Forces to Cartilage Stresses,” J. Biomech., 45(12), pp. 2149–2156. [CrossRef] [PubMed]
Anderson, F. C., and Pandy, M. G., 2001, “Dynamic Optimization of Human Walking,” ASME J. Biomech. Eng., 123(5), pp. 381–390. [CrossRef]
Baldwin, M. A., Clary, C. W., Fitzpatrick, C. K., Deacy, J. S., Maletsky, L. P., and Rullkoetter, P. J., 2012, “Dynamic Finite Element Knee Simulation for Evaluation of Knee Replacement Mechanics,” J. Biomech., 45(3), pp. 474–483. [CrossRef] [PubMed]
Beillas, P., Papaioannou, G., Tashman, S., and Yang, K. H., 2004, “A New Method to Investigate in Vivo Knee Behavior Using a Finite Element Model of the Lower Limb,” J. Biomech., 37(7), pp. 1019–1030. [CrossRef] [PubMed]
Bendjaballah, M. Z., Shirazi-Adl, A., and Zukor, D. J., 1997, “Finite Element Analysis of Human Knee Joint in Varus-Valgus,” Clin. Biomech. (Bristol, Avon), 12(3), pp. 139–148. [CrossRef] [PubMed]
Blankevoort, L., and Huiskes, R., 1996, “Validation of a Three-Dimensional Model of the Knee,” J. Biomech., 29(7), pp. 955–961. [CrossRef] [PubMed]
Donahue, T. L., Hull, M. L., Rashid, M. M., and Jacobs, C. R., 2002, “A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact,” ASME J. Biomech. Eng., 124(3), pp. 273–280. [CrossRef]
Gardiner, J. C., and Weiss, J. A., 2003, “Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading,” J. Orthop. Res., 21(6), pp. 1098–1106. [CrossRef] [PubMed]
Li, G., Gil, J., Kanamori, A., and Woo, S. L., 1999, “A Validated Three-Dimensional Computational Model of a Human Knee Joint,” ASME J. Biomech. Eng., 121(6), pp. 657–662. [CrossRef]
Limbert, G., Taylor, M., and Middleton, J., 2004, “Three-Dimensional Finite Element Modelling of the Human ACL: Simulation of Passive Knee Flexion With a Stressed and Stress-Free ACL,” J. Biomech., 37(11), pp. 1723–1731. [CrossRef] [PubMed]
Mommersteeg, T. J., Huiskes, R., Blankevoort, L., Kooloos, J. G., Kauer, J. M., and Maathuis, P. G., 1996, “A Global Verification Study of a Quasi-Static Knee Model With Multi-Bundle Ligaments,” J. Biomech., 29(12), pp. 1659–1664. [CrossRef] [PubMed]
Pena, E., Calvo, B., Martinez, M. A., and Doblare, M., 2006, “A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint,” J. Biomech., 39(9), pp. 1686–1701. [CrossRef] [PubMed]
Penrose, J. M., Holt, G. M., Beaugonin, M., and Hose, D. R., 2002, “Development of an Accurate Three-Dimensional Finite Element Knee Model,” Comput. Methods Biomech. Biomed. Eng., 5(4), pp. 291–300. [CrossRef]
Ramaniraka, N. A., Saunier, P., Siegrist, O., and Pioletti, D. P., 2007, “Biomechanical Evaluation of Intra-Articular and Extra-Articular Procedures in Anterior Cruciate Ligament Reconstruction: A Finite Element Analysis,” Clin. Biomech. (Bristol, Avon), 22(3), pp. 336–343. [CrossRef] [PubMed]
Shelburne, K. B., Torry, M. R., and Pandy, M. G., 2006, “Contributions of Muscles, Ligaments, and the Ground-Reaction Force to Tibiofemoral Joint Loading During Normal Gait,” J. Orthop. Res., 24(10), pp. 1983–1990. [CrossRef] [PubMed]
Shin, C. S., Chaudhari, A. M., and Andriacchi, T. P., 2007, “The Influence of Deceleration Forces on ACL Strain During Single-Leg Landing: A Simulation Study,” J. Biomech., 40(5), pp. 1145–1152. [CrossRef] [PubMed]
Shirazi, R., Shirazi-Adl, A., and Hurtig, M., 2008, “Role of Cartilage Collagen Fibrils Networks in Knee Joint Biomechanics Under Compression,” J. Biomech., 41(16), pp. 3340–3348. [CrossRef] [PubMed]
Song, Y., Debski, R. E., Musahl, V., Thomas, M., and Woo, S. L., 2004, “A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis With Experimental Validation,” J. Biomech., 37(3), pp. 383–390. [CrossRef] [PubMed]
Xie, F., Yang, L., Guo, L., Wang, Z. J., and Dai, G., 2009, “A Study on Construction Three-Dimensional Nonlinear Finite Element Model and Stress Distribution Analysis of Anterior Cruciate Ligament,” ASME J. Biomech. Eng., 131(12), p. 121007. [CrossRef]
Quatman, C. E., Kiapour, A., Myer, G. D., Ford, K. R., Demetropoulos, C. K., Goel, V. K., and Hewett, T. E., 2011, “Cartilage Pressure Distributions Provide a Footprint to Define Female Anterior Cruciate Ligament Injury Mechanisms,” Am. J. Sports Med., 39(8), pp. 1706–1713. [CrossRef] [PubMed]
Andriacchi, T. P., Briant, P. L., Bevill, S. L., and Koo, S., 2006, “Rotational Changes at the Knee After ACL Injury Cause Cartilage Thinning,” Clin. Orthop. Relat. Res., 442, pp. 39–44. [CrossRef] [PubMed]
Park, H. S., Ahn, C., Fung, D. T., Ren, Y., and Zhang, L. Q., 2010, “A Knee-Specific Finite Element Analysis of the Human Anterior Cruciate Ligament Impingement Against the Femoral Intercondylar Notch,” J. Biomech., 43(10), pp. 2039–2042. [CrossRef] [PubMed]
Dhaher, Y. Y., Kwon, T. H., and Barry, M., 2010, “The Effect of Connective Tissue Material Uncertainties on Knee Joint Mechanics Under Isolated Loading Conditions,” J. Biomech., 43(16), pp. 3118–3125. [CrossRef] [PubMed]
Kiapour, A. M., Kaul, V., Kiapour, A., Quatman, C. E., Wordeman, S. C., Hewett, T. E., Demetropoulos, C. K., and Goel, V. K., 2013, “The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study,” Appl. Math., 4, pp. 91–97. [CrossRef]
Gering, D. T., Nabavi, A., Kikinis, R., Hata, N., O’donnell, L. J., Grimson, W. E., Jolesz, F. A., Black, P. M., and Wells, W. M., III, 2001, “An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and an Open Mr,” J. Magn. Reson. Imaging, 13(6), pp. 967–975. [CrossRef] [PubMed]
Bartling, S. H., Peldschus, K., Rodt, T., Kral, F., Matthies, H., Kikinis, R., and Becker, H., 2005, “Registration and Fusion of CT and MRI of the Temporal Bone,” J. Comput. Assist. Tomogr., 29(3), pp. 305–310. [CrossRef] [PubMed]
Fitzpatrick, J. M., Hill, D. L., Shyr, Y., West, J., Studholme, C., and Maurer, C. R., Jr., 1998, “Visual Assessment of the Accuracy of Retrospective Registration of MR and CT Images of the Brain,” IEEE Trans. Med. Imaging, 17(4), pp. 571–585. [CrossRef] [PubMed]
Grosland, N. M., Shivanna, K. H., Magnotta, V. A., Kallemeyn, N. A., Devries, N. A., Tadepalli, S. C., and Lisle, C., 2009, “IA-FEMesh: An Open-Source, Interactive, Multiblock Approach to Anatomic Finite Element Model Development,” Comput. Methods Programs Biomed., 94(1), pp. 96–107. [CrossRef] [PubMed]
Linde, F., 1994, “Elastic and Viscoelastic Properties of Trabecular Bone by a Compression Testing Approach,” Dan. Med. Bull., 41(2), pp. 119–138. [PubMed]
Goldstein, S. A., 1987, “The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function,” J. Biomech., 20(11–12), pp. 1055–1061. [CrossRef] [PubMed]
Kuhn, J. L., Goldstein, S. A., Ciarelli, M. J., and Matthews, L. S., 1989, “The Limitations of Canine Trabecular Bone as a Model for Human: A Biomechanical Study,” J. Biomech., 22(2), pp. 95–107. [CrossRef] [PubMed]
Lotz, J. C., Gerhart, T. N., and Hayes, W. C., 1991, “Mechanical Properties of Metaphyseal Bone in the Proximal Femur,” J. Biomech., 24(5), pp. 317–329. [CrossRef] [PubMed]
Mente, P. L., and Lewis, J. L., 1994, “Elastic Modulus of Calcified Cartilage is an Order of Magnitude Less Than That of Subchondral Bone,” J. Orthop. Res., 12(5), pp. 637–647. [CrossRef] [PubMed]
Donzelli, P. S., Spilker, R. L., Ateshian, G. A., and Mow, V. C., 1999, “Contact Analysis of Biphasic Transversely Isotropic Cartilage Layers and Correlations With Tissue Failure,” J. Biomech., 32(10), pp. 1037–1047. [CrossRef] [PubMed]
Eberhardt, A. W., Keer, L. M., Lewis, J. L., and Vithoontien, V., 1990, “An Analytical Model of Joint Contact,” ASME J. Biomech. Eng., 112(4), pp. 407–413. [CrossRef]
Armstrong, C. G., Lai, W. M., and Mow, V. C., 1984, “An Analysis of the Unconfined Compression of Articular Cartilage,” ASME J. Biomech. Eng., 106(2), pp. 165–173. [CrossRef]
Shepherd, D. E., and Seedhom, B. B., 1999, “The ‘Instantaneous’ Compressive Modulus of Human Articular Cartilage in Joints of the Lower Limb,” Rheumatology, 38(2), pp. 124–132. [CrossRef] [PubMed]
Yao, J., Funkenbusch, P. D., Snibbe, J., Maloney, M., and Lerner, A. L., 2006, “Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods,” ASME J. Biomech. Eng., 128(3), pp. 399–408. [CrossRef]
Tissakht, M., and Ahmed, A. M., 1995, “Tensile Stress-Strain Characteristics of the Human Meniscal Material,” J. Biomech., 28(4), pp. 411–422. [CrossRef] [PubMed]
Skaggs, D. L., Warden, W. H., and Mow, V. C., 1994, “Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus,” J. Orthop. Res., 12(2), pp. 176–185. [CrossRef] [PubMed]
Fung, Y. C., 1981, Biomechanics: Mechanical Properties of Living Tissues, Springer, New York.
Woo, S. L., Weiss, J. A., Gomez, M. A., and Hawkins, D. A., 1990, “Measurement of Changes in Ligament Tension With Knee Motion and Skeletal Maturation,” ASME J. Biomech. Eng., 112(1), pp. 46–51. [CrossRef]
Gasser, T. C., Ogden, R. W., and Holzapfel, G. A., 2006, “Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations,” J. R. Soc., Interface, 3(6), pp. 15–35. [CrossRef]
Hernandez, B., Pena, E., Pascual, G., Rodriguez, M., Calvo, B., Doblare, M., and Bellon, J. M., 2011, “Mechanical and Histological Characterization of the Abdominal Muscle. A Previous Step to Modelling Hernia Surgery,” J. Mech. Behav. Biomed. Mater., 4(3), pp. 392–404. [CrossRef] [PubMed]
Woo, S. L., Kanamori, A., Zeminski, J., Yagi, M., Papageorgiou, C., and Fu, F. H., 2002, “The Effectiveness of Reconstruction of the Anterior Cruciate Ligament With Hamstrings and Patellar Tendon. A Cadaveric Study Comparing Anterior Tibial and Rotational Loads,” J. Bone Jt. Surg., Am. Vol., 84A(6), pp. 907–914. Availale at: http://jbjs.org.ezp-prod1.hul.harvard.edu/article.aspx?articleid=25473
Girgis, F. G., Marshall, J. L., and Monajem, A., 1975, “The Cruciate Ligaments of the Knee Joint. Anatomical, Functional and Experimental Analysis,” Clin. Orthop. Relat. Res., 106, pp. 216–231. [CrossRef] [PubMed]
Butler, D. L., Sheh, M. Y., Stouffer, D. C., Samaranayake, V. A., and Levy, M. S., 1990, “Surface Strain Variation in Human Patellar Tendon and Knee Cruciate Ligaments,” ASME J. Biomech. Eng., 112(1), pp. 38–45. [CrossRef]
Quapp, K. M., and Weiss, J. A., 1998, “Material Characterization of Human Medial Collateral Ligament,” ASME J. Biomech. Eng., 120(6), pp. 757–763. [CrossRef]
Laprade, R. F., Engebretsen, A. H., Ly, T. V., Johansen, S., Wentorf, F. A., and Engebretsen, L., 2007, “The Anatomy of the Medial Part of the Knee,” J. Bone Jt. Surg., Am. Vol., 89(9), pp. 2000–2010. [CrossRef]
Laprade, R. F., Ly, T. V., Wentorf, F. A., and Engebretsen, L., 2003, “The Posterolateral Attachments of the Knee: A Qualitative and Quantitative Morphologic Analysis of the Fibular Collateral Ligament, Popliteus Tendon, Popliteofibular Ligament, and Lateral Gastrocnemius Tendon,” Am. J. Sports Med., 31(6), pp. 854–860. Available at: http://ajs.sagepub.com/content/31/6/854.full.pdf+html [PubMed]
Smirk, C., and Morris, H., 2003, “The Anatomy and Reconstruction of the Medial Patellofemoral Ligament,” Knee, 10(3), pp. 221–227. [CrossRef] [PubMed]
Amis, A. A., Firer, P., Mountney, J., Senavongse, W., and Thomas, N. P., 2003, “Anatomy and Biomechanics of the Medial Patellofemoral Ligament,” Knee, 10(3), pp. 215–220. [CrossRef] [PubMed]
Shahane, S. A., Ibbotson, C., Strachan, R., and Bickerstaff, D. R., 1999, “The Popliteofibular Ligament. An Anatomical Study of the Posterolateral Corner of the Knee,” J. Bone Jt. Surg., Br. Vol., 81(4), pp. 636–642. [CrossRef]
Atkinson, P., Atkinson, T., Huang, C., and Doane, R., 2000, “A Comparison of the Mechanical and Dimensional Properties of the Human Medial and Lateral Patellofemoral Ligaments,” Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL.
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., Guendelman, E., and Thelen, D. G., 2007, “Opensim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans. Biomed. Eng., 54(11), pp. 1940–1950. [CrossRef] [PubMed]
Aalbersberg, S., Kingma, I., Ronsky, J. L., Frayne, R., and Van Dieen, J. H., 2005, “Orientation of Tendons in Vivo With Active and Passive Knee Muscles,” J. Biomech., 38(9), pp. 1780–1788. [CrossRef] [PubMed]
Grood, E. S., and Suntay, W. J., 1983, “A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee,” ASME J. Biomech. Eng., 105(2), pp. 136–144. [CrossRef]
Kiapour, A. M., Wordeman, S. C., Paterno, M. V., Quatman, C. E., Levine, J. W., Goel, V. K., and Hewett, T. E., 2013, “Diagnostic Value of Knee Arthrometry in the Prediction of ACL Strain During Landing,” Orthopaedic Journal of Sports Medicine, 1(4)(suppl 1). [CrossRef]
Quatman, C. E., Kiapour, A. M., Demetropoulos, C. K., Kiapour, A., Wordeman, S. C., Levine, J. W., Goel, V. K., and Hewett, T. E., 2013, “Preferential Loading of the ACL Compared With the MCL During Landing: A Novel in Sim Approach Yields the Multi-Planar Mechanism of Dynamic Valgus During Acl Injury,” Am. J. Sports Med. Oct 11. [Epub ahead of print]. [CrossRef]
Kiapour, A. M., Quatman, C. E., Ditto, R. C., Levine, J. W., Wordeman, S. C., Hewett, T. E., Goel, V. K., and Demetropoulos, C. K., 2011, “Influence of Axial Rotation Moments on ACL Strain: A Cadaveric Study of Single- and Multi-Axis Loading of the Knee,” Proceedings of 37th ASB Annual Meeting.
Kiapour, A. M., 2013, “Non-Contact ACL Injuries During Landing: Risk Factors and Mechanisms,” Ph.D. thesis, The University of Toledo, Toledo, OH.
Kiapour, A. M., Quatman, C. E., Goel, V. K., Ditto, R. C., Wordeman, S. C., Levine, J. W., Hewett, T. E., and Demetropoulos, C. K., 2012, “Knee Articular Cartilage Pressure Distribution Under Single- and Multi-Axis Loading Conditions: Implications for ACL Injury Mechanism,” Proceedings of 38th ASB Annual Meeting.
Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A., and Slauterbeck, J. L., 1995, “Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces,” J. Orthop. Res., 13(6), pp. 930–935. [CrossRef] [PubMed]
Portney, L. G., and Watkins, M. P., 1999, Foundations of Clinical Research: Applications to Practice, Prentice Hall, Englewood Cliffs, NJ.
Freeman, M. A., and Pinskerova, V., 2005, “The Movement of the Normal Tibio-Femoral Joint,” J. Biomech., 38(2), pp. 197–208. [CrossRef] [PubMed]
Blemker, S. S., and Delp, S. L., 2005, “Three-Dimensional Representation of Complex Muscle Architectures and Geometries,” Ann. Biomed. Eng., 33(5), pp. 661–673. [CrossRef] [PubMed]
Blemker, S. S., Pinsky, P. M., and Delp, S. L., 2005, “A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii,” J. Biomech., 38(4), pp. 657–665. [CrossRef] [PubMed]
Atkinson, T. S., Haut, R. C., and Altiero, N. J., 1997, “A Poroelastic Model That Predicts Some Phenomenological Responses of Ligaments and Tendons,” ASME J. Biomech. Eng., 119(4), pp. 400–405. [CrossRef]
Laprade, R. F., Tso, A., and Wentorf, F. A., 2004, “Force Measurements on the Fibular Collateral Ligament, Popliteofibular Ligament, and Popliteus Tendon to Applied Loads,” Am. J. Sports Med., 32(7), pp. 1695–1701. [CrossRef] [PubMed]
Markolf, K. L., Gorek, J. F., Kabo, J. M., and Shapiro, M. S., 1990, “Direct Measurement of Resultant Forces in the Anterior Cruciate Ligament. An in Vitro Study Performed With a New Experimental Technique,” J. Bone Jt. Surg., Am. Vol., 72(4), pp. 557–567. Available at: http://jbjs.org.ezp-prod1.hul.harvard.edu/article.aspx?articleid=21273
Kiapour, A. M., Kiapour, A., Demetropoulos, C. K., Quatman, C. E., Wordeman, S. C., Hewett, T. E., and Goel, V. K., 2013, “Novel Framework to Personalize Validated Generalized Finite Element Model: Implication for Individual-Based ACL Injury Risk Assessment,” Proceedings of the 39th ASB Annual Meeting, American Society of Biomechanics, 2013 ASB Annual Meeting, Omaha, NE, September 4–7, 2013.

Figures

Grahic Jump Location
Fig. 1

Developed FE model of lower extremity ACL: anterior cruciate ligament; PCL: posterior cruciate ligament; FCL: fibular collateral ligament; sMCL, dMCL and oMCL: superficial, deep and oblique bundles of medial collateral ligament; CAPm, CAPl, CAPo and CAPa: medial, lateral, oblique popliteal and arcuate popliteal bundles of posterior capsule; ALS: anterolateral structure; PFL: popliteofibular ligament; MPFL: medial patellofemoral ligament; LPFL: lateral patellofemoral ligament; PT: patellar tendon; VM: vastus medialis; RF: rectus femoris; VI: vastus intermidus; VL: vastus lateralis; BFLH: biceps femoris long head; BFSH: biceps femoris short head; SM: semimembranous; ST: semitendinosus; SR: sartorius; GA: gracilis; GM: gastrocnemius medial; GL: gastrocnemius lateral.

Grahic Jump Location
Fig. 2

FE predictions versus experimental data of the uniaxial tension test for ACL and PCL (top) and MCL (bottom)

Grahic Jump Location
Fig. 3

FE predictions versus experimental data for tibiofemoral axial plane kinematics under quasi-static loading conditions (shaded area represent experimental 95% confidence intervals)

Grahic Jump Location
Fig. 4

FE predictions versus experimental data for tibiofemoral frontal plane kinematics under quasi-static loading conditions (shaded area represent experimental 95% confidence intervals)

Grahic Jump Location
Fig. 5

FE predictions versus experimental data for ACL strain under quasi-static isolated and combined internal rotation moments (shaded area represent experimental 95% confidence intervals)

Grahic Jump Location
Fig. 6

FE predictions versus experimental data for ACL strain under quasi-static isolated and combined abduction moments (shaded area represent experimental 95% confidence intervals)

Grahic Jump Location
Fig. 7

FE predictions versus experimental data for MCL strain under quasi-static isolated and combined internal rotation moments (shaded area represent experimental 95% confidence intervals)

Grahic Jump Location
Fig. 8

FE predictions versus experimental data for medial compartment COP translation under quasi-static loading conditions (shaded area represent experimental 95% confidence intervals)

Grahic Jump Location
Fig. 9

FE predictions versus experimental data for lateral compartment COP translation under quasi-static loading conditions (shaded area represent experimental 95% confidence intervals)

Grahic Jump Location
Fig. 10

Pressure distribution across the tibial articular cartilage under functional loading conditions obtained experimentally (top) and predicted by the FE model (bottom)

Grahic Jump Location
Fig. 11

FE predictions versus experimental data for ACL force under simulated static loading conditions (error bars represent experimental 95% confidence intervals)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In