0
Research Papers

Influence of Variable Native Arterial Diameter and Vasculature Status on Coronary Diagnostic Parameters

[+] Author and Article Information
Marwan F. Al-Rjoub

School of Dynamic Systems,
Mechanical Engineering Program,
University of Cincinnati,
Cincinnati, OH 45221

Lloyd H. Back

Jet Propulsion Laboratory,
California Institute of Technology,
Pasadena, CA 91125

Rupak K. Banerjee

School of Dynamic Systems,
Mechanical Engineering Program,
University of Cincinnati,
Cincinnati, OH 45221
e-mail: Rupak.banerjee@uc.edu

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received October 13, 2012; final manuscript received May 13, 2013; accepted manuscript posted May 31, 2013; published online July 10, 2013. Assoc. Editor: Hai-Chao Han.

J Biomech Eng 135(9), 091005 (Jul 10, 2013) (8 pages) Paper No: BIO-12-1480; doi: 10.1115/1.4024682 History: Received October 13, 2012; Revised May 13, 2013; Accepted May 31, 2013

In current practice, diagnostic parameters, such as fractional flow reserve (FFR) and coronary flow reserve (CFR), are used to determine the severity of a coronary artery stenosis. FFR is defined as the ratio of hyperemic pressures distal (p˜rh) and proximal (p˜ah) to a stenosis. CFR is the ratio of flow at hyperemic and basal condition. Another diagnostic parameter suggested by our group is the pressure drop coefficient (CDP). CDP is defined as the ratio of the pressure drop across the stenosis to the upstream dynamic pressure. These parameters are evaluated by invasively measuring flow (CFR), pressure (FFR), or both (CDP) in a diseased artery using guidewire tipped with a sensor. Pathologic state of artery is indicated by lower CFR (<2). Similarly, FFR lower than 0.75 leads to clinical intervention. Cutoff for CDP is under investigation. Diameter and vascular condition influence both flow and pressure drop, and thus, their effect on FFR and CDP was studied. In vitro experiment coupled with pressure-flow relationships from human clinical data was used to simulate pathophysiologic conditions in two representative arterial diameters, 2.5 mm (N1) and 3 mm (N2). With a 0.014 in. (0.35 mm) guidewire inserted, diagnostic parameters were evaluated for mild (∼64% area stenosis (AS)), intermediate (∼80% AS), and severe (∼90% AS) stenosis for both N1 and N2 arteries, and between two conditions, with and without myocardial infarction (MI). Arterial diameter did not influence FFR for clinically relevant cases of mild and intermediate stenosis (difference < 5%). Stenosis severity was underestimated due to higher FFR (mild: ∼9%, intermediate: ∼ 20%, severe: ∼ 30%) for MI condition because of lower pressure drops, and this may affect clinical decision making. CDP varied with diameter (mild: ∼20%, intermediate: ∼24%, severe: by 2.5 times), and vascular condition (mild: ∼35%, intermediate: ∼14%, severe: ∼ 9%). However, nonoverlapping range of CDP allowed better delineation of stenosis severities irrespective of diameter and vascular condition.

FIGURES IN THIS ARTICLE
<>
Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kern, M. J., Lerman, A., Bech, J.-W., De Bruyne, B., Eeckhout, E., Fearon, W. F., Higano, S. T., Lim, M. J., Meuwissen, M., Piek, J. J., Pijls, N. H. J., Siebes, M., and Spaan, J. A. E., 2006, “Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory,” Circulation, 114(12), pp. 1321–1341. [CrossRef] [PubMed]
Tobis, J., Azarbal, B., and Slavin, L., 2007, “Assessment of Intermediate Severity Coronary Lesions in the Catheterization Laboratory,” J. Am. Coll. Cardiol., 49(8), pp. 839–848. [CrossRef] [PubMed]
Bradley, A. J., and Alpert, J. S., 1991, “Coronary Flow Reserve,” Am. Heart J., 122(4, Part 1), pp. 1116–1128. [CrossRef] [PubMed]
Klocke, F. J., 1987, “Measurements of Coronary Flow Reserve: Defining Pathophysiology Versus Making Decisions About Patient Care,” Circulation, 76(6), pp. 1183–1189. [CrossRef] [PubMed]
Pijls, N. H., van Son, J. A., Kirkeeide, R. L., De Bruyne, B., and Gould, K. L., 1993, “Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity Before and After Percutaneous Transluminal Coronary Angioplasty,” Circulation, 87(4), pp. 1354–1367. [CrossRef] [PubMed]
Banerjee, R. K., Ashtekar, K. D., Helmy, T. A., Effat, M. A., Back, L. H., and Khoury, S. F., 2008, “Hemodynamic Diagnostics of Epicardial Coronary Stenoses: In-Vitro Experimental and Computational Study,” Biomed. Eng., 7, p. 24. [CrossRef]
Dodge, J. T., Brown, B. G., Bolson, E. L., and Dodge, H. T., 1992, “Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation,” Circulation, 86(1), pp. 232–246. [CrossRef] [PubMed]
Roy, A. S., Banerjee, R. K., Back, L. H., Back, M. R., Khoury, S., and Millard, R. W., 2005, “Delineating the Guide-Wire Flow Obstruction Effect in Assessment of Fractional Flow Reserve and Coronary Flow Reserve Measurements,” Am. J. Physiol., 289(1), pp. H392–H397. [CrossRef]
Banerjee, R. K., Back, L. H., Back, M. R., and Cho, Y. I., 1999, “Catheter Obstruction Effect on Pulsatile Flow Rate–Pressure Drop During Coronary Angioplasty,” ASME J. Biomech. Eng., 121(3), pp. 281–289. [CrossRef]
Banerjee, R. K., Back, L. H., Back, M. R., and Cho, Y. I., 2000, “Physiological Flow Simulation in Residual Human Stenoses After Coronary Angioplasty,” ASME J. Biomech. Eng., 122(4), pp. 310–320. [CrossRef]
Banerjee, R. K., Back, L. H., Back, M. R., and Cho, Y. I., 2003, “Physiological Flow Analysis in Significant Human Coronary Artery Stenoses,” Biorheology, 40(4), pp. 451–476. [PubMed]
Patel, B., and Fisher, M., 2010, “Therapeutic Advances in Myocardial Microvascular Resistance: Unravelling the Enigma,” Pharmacol. Therapeut., 127(2), pp. 131–147. [CrossRef]
Camici, P. G., and Crea, F., 2007, “Coronary Microvascular Dysfunction,” New Eng. J. Med., 356(8), pp. 830–840. [CrossRef]
Chamuleau, S. A., Siebes, M., Meuwissen, M., Koch, K. T., Spaan, J. A., and Piek, J. J., 2003, “Association Between Coronary Lesion Severity and Distal Microvascular Resistance in Patients With Coronary Artery Disease,” Am. J. Physiol., 285(5), pp. H2194–H2200. [CrossRef]
Kloner, R. A., Rude, R. E., Carlson, N., Maroko, P. R., DeBoer, L. W., and Braunwald, E., 1980, “Ultrastructural Evidence of Microvascular Damage and Myocardial Cell Injury After Coronary Artery Occlusion: Which Comes First?,” Circulation, 62(5), pp. 945–952. [CrossRef] [PubMed]
Peelukhana, S. V., Banerjee, R. K., Kolli, K. K., Effat, M. A., Helmy, T. A., Leesar, M. A., Schneeberger, E. W., Succop, P., Gottliebson, W., and Irif, A., 2012, “Effect of Heart Rate on Hemodynamic Endpoints Under Concomitant Microvascular Disease In A Porcine Model,” Am. J. Physiol., 302(8), pp. H1563–H1573. [CrossRef]
Aarnoudse, W., Fearon, W. F., Manoharan, G., Geven, M., van de Vosse, F., Rutten, M., De Bruyne, B., and Pijls, N. H., 2004, “Epicardial Stenosis Severity Does Not Affect Minimal Microcirculatory Resistance,” Circulation, 110(15), pp. 2137–2142. [CrossRef] [PubMed]
Marzilli, M., 2007, “European Society of Cardiology Working Groups. Working Group 6: Coronary Pathophysiology and Microcirculation. Interview by Emma Baines,” Circulation, 115(23), pp. f117–f118 [CrossRef]. [PubMed]
Meuwissen, M., Chamuleau, S. A., Siebes, M., Schotborgh, C. E., Koch, K. T., de Winter, R. J., Bax, M., de Jong, A., Spaan, J. A., and Piek, J. J., 2001, “Role of Variability in Microvascular Resistance on Fractional Flow Reserve and Coronary Blood Flow Velocity Reserve in Intermediate Coronary Lesions,” Circulation, 103(2), pp. 184–187. [CrossRef] [PubMed]
Wilson, R. F., Johnson, M. R., Marcus, M. L., Aylward, P. E., Skorton, D. J., Collins, S., and White, C. W., 1988, “The Effect of Coronary Angioplasty on Coronary Flow Reserve,” Circulation, 77(4), pp. 873–885. [CrossRef] [PubMed]
Ashtekar, K. D., Back, L. H., Khoury, S. F., and Banerjee, R. K., 2007, “In Vitro Quantification of Guidewire Flow-Obstruction Effect in Model Coronary Stenoses for Interventional Diagnostic Procedure,” J. Med. Devices, 1(3), p. 185. [CrossRef]
Banerjee, R. K., Back, L. H., and Back, M. R., 2003, “Effects of Diagnostic Guidewire Catheter Presence on Translesional Hemodynamic Measurements Across Significant Coronary Artery Stenoses,” Biorheology, 40(6), pp. 613–635. [PubMed]
Peelukhana, S. V., Back, L. H., and Banerjee, R. K., 2009, “Influence of Coronary Collateral Flow on Coronary Diagnostic Parameters: An In Vitro Study,” J. Biomech., 42(16), pp. 2753–2759. [CrossRef] [PubMed]
Brookshier, K. A., and Tarbell, J. M., 1993, “Evaluation of a Transparent Blood Analog Fluid: Aqueous Xanthan Gum/Glycerin,” Biorheology, 30(2), pp. 107–116. [PubMed]
Bache, R. J., and Schwartz, J. S., 1982, “Effect of Perfusion Pressure Distal to a Coronary Stenosis on Transmural Myocardial Blood Flow,” Circulation, 65(5), pp. 928–935. [CrossRef] [PubMed]
Hundley, W. G., Lange, R. A., Clarke, G. D., Meshack, B. M., Payne, J., Landau, C., McColl, R., Sayad, D. E., Willett, D. L., Willard, J. E., Hillis, L. D., and Peshock, R. M., 1996, “Assessment of Coronary Arterial Flow and Flow Reserve in Humans With Magnetic Resonance Imaging,” Circulation, 93(8), pp. 1502–1508. [CrossRef] [PubMed]
Kessler, W., Moshage, W., Galland, A., Zink, D., Achenbach, S., Nitz, W., Laub, G., and Bachmann, K., 1998, “Assessment of Coronary Blood Flow in Humans Using Phase Difference MR Imaging. Comparison With Intracoronary Doppler Flow Measurement,” Int. J. Cardiac Imag., 14(3), pp. 179–186; discussion pp. 187–179. [CrossRef]
Downey, J. M., and Kirk, E. S., 1975, “Inhibition of Coronary Blood Flow by a Vascular Waterfall Mechanism,” Circ. Res., 36(6), pp. 753–760. [CrossRef] [PubMed]
van de Hoef, T. P., Nolte, F., Rolandi, M. C., Piek, J. J., van den Wijngaard, J. P. H. M., Spaan, J. A. E., and Siebes, M., 2012, “Coronary Pressure-Flow Relations as Basis for the Understanding of Coronary Physiology,” J. Mol. Cellular Cardiol., 52(4), pp. 786–793. [CrossRef]
Van Herck, P. L., Carlier, S. G., Claeys, M. J., Haine, S. E., Gorissen, P., Miljoen, H., Bosmans, J. M., and Vrints, C. J., 2007, “Coronary Microvascular Dysfunction After Myocardial Infarction: Increased Coronary Zero Flow Pressure Both in the Infarcted and in the Remote Myocardium is Mainly Related to Left Ventricular Filling Pressure,” Heart, 93(10), pp. 1231–1237. [CrossRef] [PubMed]
Claeys, M. J., Vrints, C. J., Bosmans, J., Krug, B., Blockx, P. P., and Snoeck, J. P., 1996, “Coronary Flow Reserve During Coronary Angioplasty in Patients With a Recent Myocardial Infarction: Relation to Stenosis and Myocardial Viability,” J. Am. College Cardiol., 28(7), pp. 1712–1719. [CrossRef]
Gosselin, R. E., and Kaplow, S. M., 1991, “Venous Waterfalls in Coronary Circulation,” J. Theor. Biol., 149(2), pp. 265–279. [CrossRef] [PubMed]
Back, L. H., Kwack, E. Y., and Back, M. R., 1996, “Flow Rate-Pressure Drop Relation in Coronary Angioplasty: Catheter Obstruction Effect,” ASME J. Biomech. Eng., 118(1), pp. 83–89. [CrossRef]
Brown, B. G., Bolson, E. L., and Dodge, H. T., 1984, “Dynamic Mechanisms in Human Coronary Stenosis,” Circulation, 70(6), pp. 917–922. [CrossRef] [PubMed]
Gould, K. L., 1978, “Pressure-Flow Characteristics of Coronary Stenoses in Unsedated Dogs at Rest and During Coronary Vasodilation,” Circ. Res., 43(2), pp. 242–253. [CrossRef] [PubMed]
Alpert, J. S., Thygesen, K., Antman, E., and Bassand, J. P., 2000, “Myocardial Infarction Redefined–A Consensus Document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction,” J. Am. Coll. Cardiol., 36(3), pp. 959–969. [CrossRef] [PubMed]
Claeys, M. J., Bosmans, J. M., Hendrix, J., and Vrints, C. J., 2001, “Reliability of Fractional Flow Reserve Measurements in Patients With Associated Microvascular Dysfunction: Importance of Flow on Translesional Pressure Gradient,” Catheterization And Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 54(4), pp. 427–434.
McClish, J. C., Ragosta, M., Powers, E. R., Barringhaus, K. G., Gimple, L. W., Fischer, J., Garnett, J., Siadaty, M., Sarembock, I. J., and Samady, H., 2004, “Effect of Acute Myocardial Infarction on the Utility of Fractional Flow Reserve for the Physiologic Assessment of the Severity of Coronary Artery Narrowing,” Am. J. Cardiol., 93(9), pp. 1102–1106. [CrossRef]
Baumgartner, H., Schima, H., Tulzer, G., and Kuhn, P., 1993, “Effect of Stenosis Geometry on the Doppler-Catheter Gradient Relation In Vitro: A Manifestation of Pressure Recovery,” J. Am. Coll. Cardiol., 21(4), pp. 1018–1025. [CrossRef]
Seeley, B. D., and Young, D. F., 1976, “Effect of Geometry on Pressure Losses Across Models of Arterial Stenoses,” J. Biomech., 9(7), pp. 439–448. [CrossRef]
Mates, R. E., Gupta, R. L., Bell, A. C., and Klocke, F. J., 1978, “Fluid Dynamics of Coronary Artery Stenosis,” Circ. Res., 42(1), pp. 152–162. [CrossRef]
Young, D. F., 1979, “Fluid Mechanics of Arterial Stenoses,” ASME J. Biomech. Eng., 101(3), pp. 157–175. [CrossRef]
May, A. G., De Weese, J. A., and Rob, C. G., 1963, “Hemodynamic Effects of Arterial Stenosis,” Surgery, 53, pp. 513–524.
Feldman, R. L., Nichols, W. W., Pepine, C. J., and Conti, C. R., 1978, “Hemodynamic Significance of the Length of a Coronary Arterial Narrowing,” Am. J. Cardiol., 41(5), pp. 865–871. [CrossRef]
Drexler, H., Zeiher, A. M., Wollschläger, H., Meinertz, T., Just, H., and Bonzel, T., 1989, “Flow-Dependent Coronary Artery Dilatation in Humans,” Circulation, 80(3), pp. 466–474. [CrossRef]
Vita, J. A., Treasure, C. B., Ganz, P., Cox, D. A., David Fish, R., and Selwyn, A. P., 1989, “Control of Shear Stress in the Epicardial Coronary Arteries of Humans: Impairment by Atherosclerosis,” J. Am. College Cardiol., 14(5), pp. 1193–1199. [CrossRef]
Konala, B. C., Das, A., and Banerjee, R. K., 2011, “Influence of Arterial Wall-Stenosis Compliance on the Coronary Diagnostic Parameters,” J. Biomech., 44(5), pp. 842–847. [CrossRef]
Cho, Y. I., and Kensey, K. R., 1991, “Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows,” Biorheology, 28(3–4), pp. 241–262.
Daripa, P., and Dash, R. K., 2002, “A Numerical Study of Pulsatile Blood Flow in an Eccentric Catheterized Artery Using a Fast Algorithm,” J. Eng. Math., 42, pp. 1–22. [CrossRef]
Nanto, S., Masuyama, T., Hori, M., Shimonagata, T., Ohara, T., and Kubori, S., 1996, “Zero Flow Pressure in Human Coronary Circulation,” Angiology, 47(2), pp. 115–122. [CrossRef]
Dole, W. P., 1987, “Autoregulation of the Coronary Circulation,” Prog. Cardiovasc. Diseases, 29(4), pp. 293–323. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

(a) Typical stenotic geometry used. Subscripts e, c, m, and r denote proximal, converging, throat, and distal, respectively for diameter (d) and lengths (l). (b) Schematic of the experimental flow loop.

Grahic Jump Location
Fig. 2

Representative flow and pressure pulses obtained during the experiments

Grahic Jump Location
Fig. 3

Pressure drop–flow rate characteristics comparison for different stenosis in the two native arterial models. Flow condition: pulsatile.

Grahic Jump Location
Fig. 4

CFR-prh curve for the two native arterial models

Grahic Jump Location
Fig. 5

Variation of parameters with native diameter with non-MI vascular condition. Comparison of (a) FFR and (b) CDP.

Grahic Jump Location
Fig. 6

Variation of various parameters with vascular conditions shown for 3 mm diameter (N2) artery. (a) CFR, (b) FFR, (c) CDP.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In