Research Papers

The Role of Cardiac Fibroblasts in Extracellular Matrix-Mediated Signaling During Normal and Pathological Cardiac Development

[+] Author and Article Information
Kelly Elizabeth Sullivan

Department of Biomedical Engineering,
Tufts University,
4 Colby Street,
Medford, MA 02155

Lauren Deems Black, III

Department of Biomedical Engineering,
Tufts University,
4 Colby Street,
Medford, MA 02155;
Cellular, Molecular and Developmental Biology Program,
Sackler School of Graduate Biomedical Sciences,
Tufts University School of Medicine,
145 Harrison Ave,
Boston, MA 02111
e-mail: lauren.black@tufts.edu

1Corresponding author.

Contributed by the Bioengineering Division of ASME for publication in the JOURNAL OF BIOMECHANICAL ENGINEERING. Manuscript received December 14, 2012; final manuscript received April 24, 2013; accepted manuscript posted April 30, 2013; published online June 11, 2013. Assoc. Editor: Keith Gooch.

J Biomech Eng 135(7), 071001 (Jun 11, 2013) (9 pages) Paper No: BIO-12-1618; doi: 10.1115/1.4024349 History: Received December 14, 2012; Revised April 24, 2013; Accepted April 30, 2013

The extracellular matrix is no longer considered a static support structure for cells but a dynamic signaling network with the power to influence cell, tissue, and whole organ physiology. In the myocardium, cardiac fibroblasts are the primary cell type responsible for the synthesis, deposition, and degradation of matrix proteins, and they therefore play a critical role in the development and maintenance of functional heart tissue. This review will summarize the extensive research conducted in vivo and in vitro, demonstrating the influence of both physical and chemical stimuli on cardiac fibroblasts and how these interactions impact both the extracellular matrix and, by extension, cardiomyocytes. This work is of considerable significance, given that cardiovascular diseases are marked by extensive remodeling of the extracellular matrix, which ultimately impairs the functional capacity of the heart. We seek to summarize the unique role of cardiac fibroblasts in normal cardiac development and the most prevalent cardiac pathologies, including congenital heart defects, hypertension, hypertrophy, and the remodeled heart following myocardial infarction. We will conclude by identifying existing holes in the research that, if answered, have the potential to dramatically improve current therapeutic strategies for the repair and regeneration of damaged myocardium via mechanotransductive signaling.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Rozario, T., and DeSimone, D. W., 2010, “The Extracellular Matrix in Development and Morphogenesis: A Dynamic View,” Dev. Biol., 341(1), pp. 126–140. [CrossRef] [PubMed]
Bowers, S. L. K., Banerjee, I., and Baudino, T. A., 2010, “The Extracellular Matrix: At the Center of It All,” J. Mol. Cell. Cardiol., 48(3), pp. 474–482. [CrossRef] [PubMed]
Wessels, A., and Pérez-Pomares, J. M., 2004, “The Epicardium and Epicardially Derived Cells (EPDCs) as Cardiac Stem Cells,” Anat. Rec. Part A, 276(1), pp. 43–57. [CrossRef]
Blake, J. A., Richardson, J. E., Bult, C. J., Kadin, J. A., and Eppig, J. T., 2002, “The Mouse Genome Database: The Model Organism Database for the Laboratory Mouse,” Nucleic Acids Res., 30(1), pp. 113–115. [CrossRef] [PubMed]
Snider, P., Standley, K. N., Wang, J., Azhar, M., Doetschman, T., and Conway, S. J., 2009, “Origin of Cardiac Fibroblasts and the Role of Periostin,” Circ. Res., 105(10), pp. 934–947. [CrossRef] [PubMed]
Vega-Hernández, M., Kovacs, A., De Langhe, S., and Ornitz, D. M., 2011, “FGF10/FGFR2b Signaling is Essential for Cardiac Fibroblast Development and Growth of the Myocardium,” Development (Cambridge, U.K.), 138(15), pp. 3331–3340. [CrossRef]
Krenning, G., Zeisberg, E. M., and Kalluri, R., 2010, “The Origin of Fibroblasts and Mechanism of Cardiac Fibrosis,” J. Cell. Physiol., 225(3), pp. 631–637. [CrossRef] [PubMed]
Brown, R. D., Ambler, S. K., Mitchell, M. D., and Long, C. S., 2005, “The Cardiac Fibroblast: Therapeutic Target in Myocardial Remodeling and Failure,” Annu. Rev. Pharmacol. Toxicol., 45(1), pp. 657–687. [CrossRef] [PubMed]
Jacot, J. G., Martin, J. C., and Hunt, D. L., 2010, “Mechanobiology of Cardiomyocyte Development,” J. Biomech., 43(1), pp. 93–98. [CrossRef] [PubMed]
Young, J. L., and Engler, A. J., 2011, “Hydrogels With Time-Dependent Material Properties Enhance Cardiomyocyte Differentiation In Vitro,” Biomaterials, 32(4), pp. 1002–1009. [CrossRef] [PubMed]
Weber, K. T., 1989, “Cardiac Interstitium in Health and Disease: The Fibrillar Collagen Network,” J. Am. Coll. Cardiol., 13(7), pp. 1637–1652. [CrossRef] [PubMed]
Wang, J., Chen, H., Seth, A., and McCulloch, C. A., 2003, “Mechanical Force Regulation of Myofibroblast Differentiation in Cardiac Fibroblasts,” Am. J. Physiol. Heart Circ. Physiol., 285(5), pp. 1871–1881.
Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G., and Chaponnier, C., 2001, “Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity,” Mol. Biol. Cell, 12(9), pp. 2730–2741. [PubMed]
Carver, W., Terracio, L., and Borg, T. K., 1993, “Expression and Accumulation of Interstitial Collagen in the Neonatal Rat Heart,” Anat. Rec., 236(3), pp. 511–520. [CrossRef] [PubMed]
Souders, C. A., Bowers, S. L. K., and Baudino, T. A., 2009, “Cardiac Fibroblast: The Renaissance Cell,” Circ. Res., 105(12), pp. 1164–1176. [CrossRef] [PubMed]
Shirwany, A., and Weber, K. T., 2006, “Extracellular Matrix Remodeling in Hypertensive Heart Disease,” J. Am. Coll. Cardiol., 48(1), pp. 97–98. [CrossRef] [PubMed]
Manabe, I., 2002, “Gene Expression in Fibroblasts and Fibrosis: Involvement in Cardiac Hypertrophy,” Circ. Res., 91(12), pp. 1103–1113. [CrossRef] [PubMed]
Loftis, M. J., Sexton, D., and Carver, W., “Effects of Collagen Density on Cardiac Fibroblast Behavior and Gene Expression,” J. Cell. Physiol., 196(3), pp. 504–511. [CrossRef] [PubMed]
MacKenna, D., 2000, “Role of Mechanical Factors in Modulating Cardiac Fibroblast Function and Extracellular Matrix Synthesis,” Cardiovasc. Res., 46(2), pp. 257–263. [CrossRef] [PubMed]
Cleutjens, J. P., Verluyten, M. J., Smiths, J. F., and Daemen, M. J., 1995, “Collagen Remodeling After Myocardial Infarction in the Rat Heart,” Am. J. Pathol., 147(2), pp. 325–338. [PubMed]
Atance, J., Yost, M. J., and Carver, W., 2004, “Influence of the Extracellular Matrix on the Regulation of Cardiac Fibroblast Behavior by Mechanical Stretch,” J. Cell. Physiol., 200(3), pp. 377–386. [CrossRef] [PubMed]
Jeong, M. Y., Kinugawa, K., Vinson, C., and Long, C. S., 2005, “AFos Dissociates Cardiac Myocyte Hypertrophy and Expression of the Pathological Gene Program,” Circulation, 111(13), pp. 1645–1651. [CrossRef] [PubMed]
Butt, R. P., Laurent, G. J., and Bishop, J. E., 1995, “Mechanical Load and Polypeptide Growth Factors Stimulate Cardiac Fibroblast Activity,” Ann. N.Y. Acad. Sci., 752(1) pp. 387–393. [CrossRef] [PubMed]
Bashey, R., 1992, “Growth Properties and Biochemical Characterization of Collagens Synthesized by Adult Rat Heart Fibroblasts in Culture,” J. Mol. Cell. Cardiol., 24(7), pp. 691–700. [CrossRef] [PubMed]
Carver, W., Nagpal, M. L., Nachtigal, M., Borg, T. K., and Terracio, L., 1991, “Collagen Expression in Mechanically Stimulated Cardiac Fibroblasts,” Circ. Res., 69(1), pp. 116–122. [CrossRef] [PubMed]
Marijianowski, M. M., van der Loos, C. M., Mohrschladt, M. F., and Becker, A. E., 1994, “The Neonatal Heart Has a Relatively High Content of Total Collagen and Type I Collagen, a Condition That May Explain the Less Compliant State,” J. Am. Coll. Cardiol., 23(5), pp. 1204–1208. [CrossRef] [PubMed]
Lee, A. A., Delhaas, T., McCulloch, A. D., and Villarreal, F. J., 1999, “Differential Responses of Adult Cardiac Fibroblasts to In Vitro Biaxial Strain Patterns,” J. Mol. Cell. Cardiol., 31(10), pp. 1833–1843. [CrossRef] [PubMed]
MacKenna, D. A., Dolfi, F., Vuori, K., and Ruoslahti, E., 1998, “Extracellular Signal-Regulated Kinase and c-Jun NH2-Terminal Kinase Activation by Mechanical Stretch Is Integrin-Dependent and Matrix-Specific in Rat Cardiac Fibroblasts,” J. Clin. Invest., 101(2), pp. 301–310. [CrossRef] [PubMed]
Shi, X., Qin, L., Zhang, X., He, K., Xiong, C., Fang, J., Fang, X., and Zhang, Y., 2011, “Elasticity of Cardiac Cells on the Polymer Substrates With Different Stiffness: An Atomic Force Microscopy Study,” Phys. Chem. Chem. Phys., 13(16), pp. 7540–7545. [CrossRef] [PubMed]
Porter, K. E., and Turner, N. A., 2009, “Cardiac Fibroblasts: At the Heart of Myocardial Remodeling,” Pharmacol. Ther., 123(2), pp. 255–278. [CrossRef] [PubMed]
Galie, P. A., Westfall, M. V., and Stegemann, J. P., 2011, “Reduced Serum Content and Increased Matrix Stiffness Promote the Cardiac Myofibroblast Transition in 3D Collagen Matrices,” Cardiovasc. Pathol., 20(6), pp. 325–333. [CrossRef] [PubMed]
Adapala, R. K., Thoppil, R. J., Luther, D. J., Paruchuri, S., Meszaros, J. G., Chilian, W. M., and Thodeti, C. K., 2013, “TRPV4 Channels Mediate Cardiac Fibroblast Differentiation by Integrating Mechanical and Soluble Signals,” J. Mol. Cell. Cardiol., 54, pp. 45–52. [CrossRef] [PubMed]
Kakkar, R., and Lee, R. T., 2010, “Intramyocardial Fibroblast Myocyte Communication,” Circ. Res., 106(1), pp. 47–57. [CrossRef] [PubMed]
Matsusaka, T., Katori, H., Inagami, T., Fogo, A., and Ichikawa, I., 1999, “Communication Between Myocytes and Fibroblasts in Cardiac Remodeling in Angiotensin Chimeric Mice,” J. Clin. Invest., 103(10), pp. 1451–1458. [CrossRef] [PubMed]
Mima, T., Ueno, H., Fischman, D. A., Williams, L. T., and Mikawa, T., 1995, “Fibroblast Growth Factor Receptor is Required for In Vivo Cardiac Myocyte Proliferation at Early Embryonic Stages of Heart Development,” Proc. Natl. Acad. Sci. U.S.A., 92(2), pp. 467–471. [CrossRef] [PubMed]
Sucov, H. M., Gu, Y., Thomas, S., Li, P., and Pashmforoush, M., 2009, “Epicardial Control of Myocardial Proliferation and Morphogenesis,” Pediatr. Cardiol., 30(5), pp. 617–625. [CrossRef] [PubMed]
Li, P., Cavallero, S., Gu, Y., Chen, T. H. P., Hughes, J., Hassan, A. B., Brüning, J. C., Pashmforoush, M., and Sucov, H. M., 2011, “IGF Signaling Directs Ventricular Cardiomyocyte Proliferation During Embryonic Heart Development,” Development (Cambridge, U.K.), 138(9), pp. 1795–1805. [CrossRef]
Kang, J., Gu, Y., Li, P., Johnson, B. L., Sucov, H. M., and Thomas, P. S., 2008, “PDGF-A as an Epicardial Mitogen During Heart Development,” Dev. Dyn., 237(3), pp. 692–701. [CrossRef] [PubMed]
Ross, R. S., Pham, C., Shai, S.-Y., Goldhaber, J. I., Fenczik, C., Glembotski, C. C., Ginsberg, M. H., and Loftus, J. C., 1998, “β1 Integrins Participate in the Hypertrophic Response of Rat Ventricular Myocytes,” Circ. Res., 82(11), pp. 1160–1172. [CrossRef] [PubMed]
Yoshida, H., 2001, “Characterization of Cardiac Myocyte and Tissue β-Adrenergic Signal Transduction in Rats With Heart Failure,” Cardiovasc. Res., 50(1), pp. 34–45. [CrossRef] [PubMed]
Ogawa, E., Saito, Y., Harada, M., Kamitani, S., Kuwahara, K., Miyamoto, Y., Ishikawa, M., Hamanaka, I., Kajiyama, N., Takahashi, N., Nakagawa, O., Masuda, I., Kishimoto, I., and Nakao, K., 2000, “Outside-In Signalling of Fibronectin Stimulates Cardiomyocyte Hypertrophy in Cultured Neonatal Rat Ventricular Myocytes,” J. Mol. Cell. Cardiol., 32(5), pp. 765–776. [CrossRef] [PubMed]
Taylor, J. M., Rovin, J. D., and Parsons, J. T., 2000, “A Role for Focal Adhesion Kinase in Phenylephrine-Induced Hypertrophy of Rat Ventricular Cardiomyocytes,” J. Biol. Chem., 275(25), pp. 19250–19257. [CrossRef] [PubMed]
Chopra, A., Lin, V., McCollough, A., Atzet, S., Prestwich, G. D., Wechsler, A. S., Murray, M. E., Oake, S. A., Kresh, J. Y., and Janmey, P. A., 2012, “Reprogramming Cardiomyocyte Mechanosensing by Crosstalk Between Integrins and Hyaluronic Acid Receptors,” J. Biomech., 45(5), pp. 824–831. [CrossRef] [PubMed]
Olson, E. R., Shamhart, P. E., Naugle, J. E., and Meszaros, J. G., 2008, “Angiotensin II-Induced Extracellular Signal-Regulated Kinase 1/2 Activation Is Mediated by Protein Kinase Cdelta and Intracellular Calcium in Adult Rat Cardiac Fibroblasts,” Hypertension, 51(3), pp. 704–711. [CrossRef] [PubMed]
Sano, M., Fukuda, K., Sato, T., Kawaguchi, H., Suematsu, M., Matsuda, S., Koyasu, S., Matsui, H., Yamauchi-Takihara, K., Harada, M., Saito, Y., and Ogawa, S., 2001, “ERK and p38 MAPK, but Not NF-kappaB, Are Critically Involved in Reactive Oxygen Species-Mediated Induction of IL-6 by Angiotensin II in Cardiac Fibroblasts,” Circ. Res., 89(8), pp. 661–669. [CrossRef] [PubMed]
Kawano, H., Cody, R. J., Graf, K., Goetze, S., Kawano, Y., Schnee, J., Law, R. E., and Hsueh, W. A., 2000, “Angiotensin II Enhances Integrin and Alpha-Actinin Expression in Adult Rat Cardiac Fibroblasts,” Hypertension, 35(1), pp. 273–279. [CrossRef] [PubMed]
Leask, A., 2007, “TGFbeta, Cardiac Fibroblasts, and the Fibrotic Response,” Cardiovasc. Res., 74(2), pp. 207–212. [CrossRef] [PubMed]
Fix, C., Bingham, K., and Carver, W., 2011, “Effects of Interleukin-18 on Cardiac Fibroblast Function and Gene Expression,” Cytokine, 53(1), pp. 19–28. [CrossRef] [PubMed]
Tian, Y., and Morrisey, E. E., 2012, “Importance of Myocyte-Nonmyocyte Interactions in Cardiac Development and Disease,” Circ. Res., 110(7), pp. 1023–1034. [CrossRef] [PubMed]
Noseda, N., and Schneider, M. D., 2009, “Fibroblasts Inform the Heart: Control of Cardiomyocyte Cycling and Size by Age-Dependent Paracrine Signals,” Dev. Cell, 16(2), pp. 161–162. [CrossRef] [PubMed]
Rosenkranz, S., 2004, “TGF-beta1 and Angiotensin Networking in Cardiac Remodeling,” Cardiovasc. Res., 63(3), pp. 423–432. [CrossRef] [PubMed]
Li, W., Liu, W., Zhong, J., and Yu, X., 2009, “Early Manifestation of Alteration in Cardiac Function in Dystrophin Deficient Mdx Mouse Using 3D CMR Tagging,” J. Cardiovasc. Magn. Reson., 11, p. 40. [CrossRef] [PubMed]
Tschöpe, C., Walther, T., Königer, J., Spillmann, F., Westermann, D., Escher, F., Pauschinger, M., Pesquero, J. B., Bader, M., Schultheiss, H.-P., and Noutsias, M., 2004, “Prevention of Cardiac Fibrosis and Left Ventricular Dysfunction in Diabetic Cardiomyopathy in Rats by Transgenic Expression of the Human Tissue Kallikrein Gene,” FASEB J., 18(7), pp. 828–835. [CrossRef] [PubMed]
Burlew, B. S., and Weber, K. T., 2002, “Cardiac Fibrosis as a Cause of Diastolic Dysfunction,” Herz, 27(2), pp. 92–98. [CrossRef] [PubMed]
Ganame, J., Ayres, N. A., and Pignatelli, R. H., 2006, “Left Ventricular Noncompaction, a Recently Recognized Form of Cardiomyopathy,” Insuficiencia Cardíaca, 1(3), pp. 119–124.
Espinola-Zavaleta, N., Soto, M. E., Castellanos, L. M., Játiva-Chávez, S., and Keirns, C., 2006, “Non-compacted Cardiomyopathy: Clinical-Echocardiographic Study,” Cardiovasc. Ultrasound, 4(1), p. 35. [CrossRef] [PubMed]
Yang, J., Bücker, S., Jungblut, B., Böttger, T., Cinnamon, Y., Tchorz, J., Müller, M., Bettler, B., Harvey, R., Sun, Q.-Y., Schneider, A., and Braun, T., 2012, “Inhibition of Notch2 by Numb/Numblike Controls Myocardial Compaction in the Heart,” Cardiovasc. Res., 96(2), pp. 276–285. [CrossRef] [PubMed]
Guarino, N., Shima, H., and Puri, P., 2000, “The Hypoplastic Heart in Congenital Diaphragmatic Hernia: Reduced Expression of Basic Fibroblast Growth Factor and Platelet-Derived Growth Factor,” Pediatr. Surg. Int., 16(4), pp. 243–246. [CrossRef] [PubMed]
Sharma, H. S., Peters, T. H. F., Moorhouse, M. J., van der Spek, P. J., and Bogers, A. J. J. C., 2006, “DNA Microarray Analysis for Human Congenital Heart Disease,” Cell Biochem. Biophys., 44(1), pp. 1–9. [CrossRef] [PubMed]
Chaturvedi, R. R., Herron, T., Simmons, R., Shore, D., Kumar, P., Sethia, B., Chua, F., Vassiliadis, E., and Kentish, J. C., 2010, “Passive Stiffness of Myocardium From Congenital Heart Disease and Implications for Diastole,” Circulation, 121(8), pp. 979–988. [CrossRef] [PubMed]
Koch, A., Zink, S., and Singer, H., 2006, “B-Type Natriuretic Peptide in Paediatric Patients With Congenital Heart Disease,” Eur. Heart J., 27(7), pp. 861–866. [CrossRef] [PubMed]
Borck, A., Massey, E., Loftis, M. J., and Carver, W., 2004, “Exposure of Cardiac Fibroblasts to the Herbicide Nitrofen Causes Altered Interactions With the Extracellular Matrix,” Cell Biol. Toxicol., 20(1), pp. 15–24. [CrossRef] [PubMed]
Hamilton, D. W., 2008, “Functional Role of Periostin in Development and Wound Repair: Implications for Connective Tissue Disease,” J. Cell Commun. Signaling, 2(1–2), pp. 9–17. [CrossRef]
Beyar, R., and Andesberg, A., 2010, Analysis of Cardiac Development: From Embryo to Old Age, Wiley, New York, p. 352.
Stewart, J. A., Massey, E. P., Fix, C., Zhu, J., Goldsmith, E. C., and Carver, W., 2010, “Temporal Alterations in Cardiac Fibroblast Function Following Induction of Pressure Overload,” Cell Tissue Res., 340(1), pp. 117–126. [CrossRef] [PubMed]
Baicu, C. F., Li, J., Zhang, Y., Kasiganesan, H., Cooper, G., Zile, M. R., and Bradshaw, A. D., 2012, “Time Course of Right Ventricular Pressure-Overload Induced Myocardial Fibrosis: Relationship to Changes in Fibroblast Postsynthetic Procollagen Processing,” Am. J. Physiol. Heart Circ. Physiol., 303(9), pp. 1128–1134. [CrossRef]
Burgess, M. L., Terracio, L., Hirozane, T., and Borg, T. K., 2002, “Differential Integrin Expression by Cardiac Fibroblasts From Hypertensive and Exercise-Trained Rat Hearts,” Cardiovasc. Pathol., 11(2), pp. 78–87. [CrossRef] [PubMed]
Siwik, D. A., Pagano, P. J., and Colucci, W. S., 2001, “Oxidative Stress Regulates Collagen Synthesis and Matrix Metalloproteinase Activity in Cardiac Fibroblasts,” Am. J. Physiol.: Cell Physiol., 280(1), pp. C53–C60. [PubMed]
Xie, L., Terrand, J., Xu, B., Tsaprailis, G., Boyer, J., and Chen, Q. M., 2010, “Cystatin C Increases in Cardiac Injury: A Role in Extracellular Matrix Protein Modulation,” Cardiovasc. Res., 87(4), pp. 628–635. [CrossRef] [PubMed]
Flack, E. C., Lindsey, M. L., Squires, C. E., Kaplan, B. S., Stroud, R. E., Clark, L. L., Escobar, P. G., Yarbrough, W. M., and Spinale, F. G., 2006, “Alterations in Cultured Myocardial Fibroblast Function Following the Development of Left Ventricular Failure,” J. Mol. Cell. Cardiol., 40(4), pp. 474–483. [CrossRef] [PubMed]
Fomovsky, G. M., and Holmes, J. W., 2010, “Evolution of Scar Structure, Mechanics, and Ventricular Function After Myocardial Infarction in the Rat,” Am. J. Physiol. Heart Circ. Physiol., 298(1), pp. H221–H228. [CrossRef] [PubMed]
Fomovsky, G. M., Rouillard, A. D., and Holmes, J. W., 2012, “Regional Mechanics Determine Collagen Fiber Structure in Healing Myocardial Infarcts,” J. Mol. Cell. Cardiol., 52, pp. 1083–1090. [CrossRef] [PubMed]
Mitchell, M. D., Laird, R. E., Brown, R. D., and Long, C. S., 2007, “IL-1beta Stimulates Rat Cardiac Fibroblast Migration Via MAP Kinase Pathways,” Am. J. Physiol. Heart Circ. Physiol., 292(2), pp. H1139–H1147. [CrossRef] [PubMed]
Sutton, M. G. S. J., and Sharpe, N., 2000, “Left Ventricular Remodeling After Myocardial Infarction: Pathophysiology and Therapy,” Circulation, 101(25), pp. 2981–2988. [CrossRef] [PubMed]
Holmes, J. W., Borg, T. K., and Covell, J. W., 2005, “Structure and Mechanics of Healing Myocardial Infarcts,” Annu. Rev. Biomed. Eng., 7, pp. 223–253. [CrossRef] [PubMed]
Rubin, S. A., Fishbein, M. C., and Swan, H. J., 1983, “Compensatory Hypertrophy in the Heart After Myocardial Infarction in the Rat,” J. Am. Coll. Cardiol., 1(6), pp. 1435–1441. [CrossRef] [PubMed]
Takeda, N., Manabe, I., Uchino, Y., Eguchi, K., Matsumoto, S., Nishimura, S., Shindo, T., Sano, M., Otsu, K., Snider, P., Conway, S. J., and Nagai, R., 2010, “Cardiac Fibroblasts Are Essential for the Adaptive Response of the Murine Heart to Pressure Overload,” J. Clin. Invest., 120(1), pp. 254–265. [CrossRef] [PubMed]
Manso, A. M., Elsherif, L., Kang, S.-M., and Ross, R. S., 2006, “Integrins, Membrane-Type Matrix Metalloproteinases and ADAMs: Potential Implications for Cardiac Remodeling,” Cardiovasc. Res., 69(3), pp. 574–584. [CrossRef] [PubMed]
Goldsmith, E. C., Carver, W., McFadden, A., Goldsmith, J. G., Price, R. L., Sussman, M., Lorell, B. H., Cooper, G., and Borg, T. K., 2003, “Integrin Shedding as a Mechanism of Cellular Adaptation During Cardiac Growth,” Am. J. Physiol. Heart Circ. Physiol., 284(6), pp. H2227–H2234. [PubMed]


Grahic Jump Location
Fig. 1

A schematic illustrating the dynamic role of CFs during development, normal and pathological physiology of myocardia through their interactions with CMs, and the ECM. References described in detail within text.

Grahic Jump Location
Fig. 2

The CF phenotype is dynamically regulated by the physical (substrate stiffness and mechanical stimulation) and chemical mediators (substrate composition and soluble factors) present within the extracellular environment of the myocardium. (a) Migration rates of CFs are dependent on matrix density [18]. (b) Mechanotransductive ion channels regulate CF differentiation to a myofibroblast phenotype through the integration of physical stimulation (substrate stiffness) and chemical mediators (TGF-β1) [32]. (c) Matrix production is enhanced following mechanical stretch and dependent on substrate composition [21]. (d) Periostin mRNA expression is significantly upregulated in the presence of IL-18 [47].



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In